
Galois theory — All exam questions

(1) Put L = Q(
√

7,
√

13) and α =
√

7 +
√

13 ∈ L.

(a) Give a basis for L over Q. (2 marks)

(b) Define the Galois group G(L/Q), and list all its elements. (3 marks)

(c) Let α0, . . . , αr be the images of α under all the automorphisms of L. Calculate the sum α0+· · ·+αr
and the product α0α1 · · ·αr. (4 marks)

(d) Find a monic polynomial f(x) of degree four over Q such that f(α) = 0. (3 marks)

(e) Consider an element a = w + x
√

7 + y
√

13 + z
√

91 ∈ L, and suppose that a2 ∈ Q. By considering
the action of automorphisms on a and a2, prove that

a ∈ Q ∪ Q.
√

7 ∪ Q.
√

13 ∪ Q.
√

91.

(7 marks)

(f) Describe all the subfields K with Q ⊆ K ⊆ L, justifying your answer briefly. For each such field
K, state the values of [L : K] and [K : Q]. (6 marks)

Solution: Parts (a), (b), (d) and (f) are standard, and very similar to examples in the notes
and exercises. Part (c) will not be familiar but nonetheless is easy. Part (e) is intended to
be more challenging.

(a) The list 1,
√

7,
√

13,
√

7
√

13 is a basis for L over Q. [2]

(b) G(L/Q) is the group of automorphisms of L (that act as the identity on Q). [1]There are four such
automorphisms, as follows:

σ0(w + x
√

7 + y
√

13 + z
√

7
√

13) = w + x
√

7 + y
√

13 + z
√

7
√

13

σ1(w + x
√

7 + y
√

13 + z
√

7
√

13) = w − x
√

7 + y
√

13− z
√

7
√

13

σ2(w + x
√

7 + y
√

13 + z
√

7
√

13) = w + x
√

7− y
√

13− z
√

7
√

13

σ3(w + x
√

7 + y
√

13 + z
√

7
√

13) = w − x
√

7− y
√

13 + z
√

7
√

13.[2]

(c) The relevant images are

α0 = +
√

7 +
√

13 α1 = −
√

7 +
√

13

α2 = +
√

7−
√

13 α3 = −
√

7−
√

13.[1]

From this it is clear that α0 + α1 + α2 + α3 = 0 [1]. We also have α0α1 = (
√

7)2 − (
√

13)2 =
7− 13 = −6 and similarly α2α3 = −6 so α0α1α2α3 = 36. [2]

(d) We have α2 = 7 + 2
√

7
√

13 + 13 = 20 + 2
√

91 [1], so (α2 − 20)2 = 4 × 91 = 364 [1]. Thus, if we
put f(x) = (x2 − 20)2 − 364 = x4 − 40x2 + 36 then f(α) = 0 [1].

(e) Consider an element a = w + x
√

7 + y
√

13 + z
√

91 ∈ K with a2 ∈ Q. For any automorphism σi,
we then have σi(a)2 = σi(a

2) = a2, so σi(a) = ±a [2]. Recall that

σ1(a) = w − x
√

7 + y
√

13− z
√

7
√

13.

This is only equal to a if x = z = 0, and is only equal to −a if w = y = 0 [1]. From this and the
parallel arguments for σ2 and σ3, we see that
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(1) either w = y = 0, or x = z = 0;

(2) either w = x = 0, or y = z = 0;

(3) either w = z = 0, or x = y = 0. [2]

Suppose that w 6= 0; then we see from (1) that x = z = 0, and from (2) that y = z = 0, so
x = y = z = 0, so a ∈ Q. Similarly, if x 6= 0 we see from (1) that w = y = 0, and from (2) that
y = z = 0, so w = y = z = 0 and a ∈ Q.

√
7. In the same way, if y 6= 0 then w = x = z = 0 and

a ∈ Q.
√

13, and if z 6= 0 then w = x = y = 0 and a ∈ Q.
√

91. [2]

(f) The intermediate fields between Q and K biject with the subgroups of G(K/Q) [1]. If we put
Hi = {σ0, σi} then the full list of subgroups is {1}, H1, H2, H3 and G(K/Q) itself [2], so the
intermediate fields are

K{1} = K

KH1 = Q(
√

13)

KH2 = Q(
√

7)

KH3 = Q(
√

7
√

13)

KG(K/Q) = Q.[2]

The degrees are [K : Q] = 4 and [K : KHi ] = [KHi : Q] = 2. [1]

(2)

(a) Define what is meant by an automorphism of a field. (3 marks)

(b) Let K be an extension field of Q, and let φ be an automorphism of K. Prove that φ(q) = q for all
q ∈ Q. (5 marks)

(c) Define the Galois group G(L/K) for a field extension K ≤ L. (2 marks)

(d) Show that G(Q(i)/Q) is a cyclic group of order two. (Your proof should be complete and self-
contained, except that you may assume part (b).) (9 marks)

(e) Give an example of an extension K ≤ L where [L : K] = 4 but |G(L/K)| = 2. Justify your answer.
(6 marks)

Solution:

(a) (Bookwork) An automorphism of a field K is a bijective [1]map φ : K → K such that

– φ(0) = 0 and φ(1) = 1. [1]

– φ(a+ b) = φ(a) + φ(b) for all a, b ∈ K.

– φ(ab) = φ(a)φ(b) for all a, b ∈ K. [1]

(b) (Bookwork) Let φ : K → K be an automorphism, where Q ≤ K. We first claim that φ(n) = n
for all n ∈ N. Indeed, this is true for n = 0 and n = 1 by the definition of a homomorphism.[1]If
φ(n) = n for some n, it follows that

φ(n+ 1) = φ(n) + φ(1) = n+ 1.[1]

We therefore see by induction that φ(n) = n for all n ∈ N. From this, we see that

n+ φ(−n) = φ(n) + φ(−n) = φ(n+ (−n)) = φ(0) = 0,

which gives φ(−n) = −n for all n ∈ N, so φ(m) = m for all m ∈ Z [1]. Now suppose that n,m ∈ Z
with n > 0, and put q = m/n ∈ Q. As nq = m and n,m ∈ Z we have

nφ(q) = φ(n)φ(q) = φ(nq) = φ(m) = m,

so φ(q) = m/n = q [2]. As every element of Q can be written as m/n for some such m and n, we
deduce that φ|Q = 1Q as required.
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(c) (Bookwork) G(L/K) is defined to be the set of all automorphisms θ : L → L [1]that satisfy
θ(a) = a for all a ∈ K [1].

(d) (This is a rearrangement/specialisation of standard material.) Q(i) is the set of complex
numbers of the form a = x+ iy with x, y ∈ Q. We can define σ : Q(i)→ Q(i) by σ(x+ iy) = x− iy
[1]. This has σ(0) = 0 and σ(1) = σ(1 + 0i) = 1− 0i = 1. If b = u+ iv (with u, v ∈ Q) then it is
clear that σ(a+ b) = σ(a) + σ(b) [1]. We also have

σ(ab) = σ(xu− yv + (xv + yu)i) = xy − yv − (xv + yu)i

= (x− iy)(y − iv) = σ(a)σ(b).[1]

This proves that σ is a homomorphism from Q(i) to Q(i). it is also clear that σ2(a) = σ(x− iy) =
x+ iy = a for all a, so σ is its own inverse, so it is an automorphism [1].

Now let τ : Q(i)→ Q(i) be an arbitrary automorphism. Note that τ(i)2 + 1 = τ(i2 + 1) = τ(0) = 0
[1]. From this it is clear that τ(i) ∈ {i,−i}. Note also that τ(x) = x for all x ∈ Q by part (b) [1].
Thus, if τ(i) = i we have τ(x+ iy) = τ(x) + τ(i)τ(y) = x+ iy, so τ = 1Q(i) [1]. On the other hand,
if τ(i) = −i we have τ(x+ iy) = τ(x) + τ(i)τ(y) = x− iy = σ(x+ iy) for all x and y, so τ = σ [1].
This proves that G(Q(i)/Q) = {1, σ}, which is a cyclic group of order two [1].

(e) (Unseen) Take K = Q and L = Q(21/4) ≤ R [3]. As L ' Q[x]/(x4−2) we see that automorphisms
of L biject with roots of x4 − 2 in L [2], of which there are precisely two (namely 21/4 and −21/4)
so |G(L/K)| = 2 [1].

(3)

(a) Explain what is meant by the following. (7 marks)

(1) A homomorphism of fields.

(2) The degree of a homomorphism.

(3) An automorphism of a field.

(4) The Galois group of a field extension.

(b) Show that any homomorphism of fields is injective. (5 marks)

(c) Let N/K be a field extension of finite degree. Explain what it means for N to be normal over K.
You should give one criterion in terms of roots of polynomials, and another criterion in terms of
numbers of homomorphisms. (5 marks)

(d) Which of the following fields are normal over Q? Justify your answers briefly. (8 marks)

L1 = Q(
√

11,
√

13)

L2 = Q(e2πi/11)

L3 = Q(21/11)

L4 = Q
(√

3 +
√

7

)

Solution:

(a) Bookwork

(1) Let K and L be fields. A homomorphism from K to L is a function φ : K → L such that

φ(0K) = 0L

φ(1K) = 1L

φ(a+ b) = φ(a) + φ(b) for all a, b ∈ K
φ(ab) = φ(a)φ(b) for all a, b ∈ K.[2]

(The first condition here could be omitted as it follows from the third. However, the second
condition does not follow from the fourth one, because φ could be zero.)
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(2) The degree of a homomorphism φ as above is the dimension of L considered as a vector space
over the subfield φ(K). [2]

(3) An automorphism of K is a bijective homomorphism from K to itself. [1]

(4) Let L be a field extension of K. The Galois group G(L/K) is the group of all automorphisms
φ : L→ L that satisfy φ(a) = a for all a ∈ K. [2]

(b) I will give the students a list of 8-10 proofs to learn, of which this will be one. Let
φ : K → L be a homomorphism of fields. We first claim that if a ∈ K and a 6= 0 then φ(a) 6= 0.
[1]Indeed, as a 6= 0 there exists b ∈ K with ab = 1, so φ(a)φ(b) = φ(ab) = φ(1) = 1. However, if
φ(a) were 0 we would instead have φ(a)φ(b) = 0×φ(b) = 0, which is impossible because 0 6= 1. [2]

Now suppose we have u, v ∈ K with u 6= v. This means that u − v 6= 0, so by the previous
paragraph the element φ(u)− φ(v) = φ(u− v) is nonzero, so φ(u) 6= φ(v). Thus, φ is injective. [2]

(c) Bookwork Let N/K be a field extension of finite degree. We say that N is normal over K if for
every monic irreducible polynomial f(x) ∈ K[x], either f has no roots in N or f splits properly
over N [3]. One can show that this is equivalent to the following criterion: for any other extension
L/K, either EK(L,N) = ∅ or |EK(L,N)| = [L : K] (where EK(L,N) = {φ : L → N | φ|K = 1}).
[2] (Alternatively, it is equivalent to say that |G(N/K)| = [N : K]; two marks will also be given
for this answer.)

(d) Similar to examples in the notes and problem sheets. The field L1 is the splitting field for
(x2 − 11)(x2 − 13) over Q, [1]so it is normal [1]. Similarly, L2 is the splitting field for x11 − 1 (or
for the cyclotomic polynomial ϕ11(x)) [1]and so is normal over Q [1]. However, L3 contains the
unique real root of the polynomial x11 − 2 but none of the non-real roots (such as e2πi/1121/11)

[1], so it cannot be normal [1]. Similarly, L4 contains the number α =
√

3 +
√

7 which is a root
of the irreducible polynomial f(x) = (x2 − 3)2 − 7 = x4 − 6x2 + 2, but it does not contain the

number β =
√

3−
√

7 which is another root of f(x) [1]. This means that f(x) has a root in L3 but
does not split, so L3 is not normal over Q [1]. (The polynomial f(x) is irreducible by Eisenstein’s
criterion at the prime 2, but candidates are not required to prove this. They are also not required
to prove that β 6∈ Q(α). Some such facts have been proved in lectures, but in most cases we have
merely remarked that they can be proved by congruence arguments that have not been given.)

(4)

(a) Define the cyclotomic polynomial ϕn(x) (where n is a positive integer). (2 marks)

(b) Explain the recursive method for calculating ϕn(x). (2 marks)

(c) You may assume that ϕ8(x) = x4 + 1. Determine the relationship between x24 − 1, x12 − 1, ϕ8(x)
and ϕ24(x), and thus calculate ϕ24(x). (5 marks)

(d) Put ζ = e2πi/24. Use de Moivre’s Theorem to calculate ζ2, ζ3, ζ6, ζ2 + ζ−2 and ζ3 + ζ−3 in terms
of
√

2,
√

3 and i. (5 marks)

(e) Using (d), calculate (1+i)(
√

3−i)/
√

2 in terms of ζ. Deduce that Q(ζ) = Q(
√

2,
√

3, i). (3 marks)

(f) Using the general theory of cyclotomic fields, list the elements of G(Q(ζ)/Q). (3 marks)

(g) There is an automorphism τ of Q(
√

2,
√

3, i) = Q(ζ) given by

τ(
√

2) = −
√

2 τ(
√

3) =
√

3 τ(i) = i.

Calculate τ(ζ) and thus determine which of the automorphisms in (f) is equal to τ . (5 marks)

Solution: The notes and exercises contain many examples similar to parts (a) to (f), but
(g) will be less familiar.
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(a) ϕn(x) is defined to be the product
∏
ζ∈µ×

n
(x− ζ), where µ×n ⊂ C is the set of primitive n’th roots

of unity. [2]

(b) It is a standard fact that

xn − 1 =
∏
d|n

ϕd(x).

Thus, if we already know ϕd(x) for all d|n with d < n, then we can divide xn − 1 by the product
of all these to find ϕn(x). [2]

(c) We have

x12 − 1 = ϕ1(x)ϕ2(x)ϕ3(x)ϕ4(x)ϕ6(x)ϕ12(x)

x24 − 1 = ϕ1(x)ϕ2(x)ϕ3(x)ϕ4(x)ϕ6(x)ϕ8(x)ϕ12(x)ϕ24(x)[2]

= (x12 − 1)ϕ8(x)ϕ24(x) = (x12 − 1)(x4 + 1)ϕ24(x)

ϕ24(x) =
x24 − 1

(x12 − 1)(x4 + 1)
=
x12 + 1

x4 + 1
= x8 − x4 + 1.[3]

(d) We have

ζ2 = eπi/6 = cos(π/6) + i sin(π/6) = (
√

3 + i)/2[1]

ζ3 = eπi/4 = cos(π/4) + i sin(π/4) = (1 + i)/
√

2[1]

ζ6 = eπi/2 = cos(π/2) + i sin(π/2) = i[1]

ζ2 + ζ−2 = (
√

3 + i)/2 + (
√

3− i)/2 =
√

3[1]

ζ3 + ζ−3 = (1 + i)/
√

2 + (1− i)/
√

2 = 2/
√

2 =
√

2[1].

(e) We now have (1 + i)/
√

2 = ζ3 and
√

3− i = 2ζ−2 so (1 + i)(
√

3− i)/
√

2 = 2ζ [2]. It follows that
ζ ∈ Q(

√
2,
√

3, i), so Q(ζ) ⊆ Q(
√

2,
√

3, i). On the other hand, it is clear from (d) that
√

2,
√

3 and
i lie in Q(ζ), so Q(

√
2,
√

3, i) ⊆ Q(ζ), so Q(
√

2,
√

3, i) = Q(ζ). [1]

(f) The general theory says that for each

k ∈ (Z/24)× = {1, 5, 7, 11, 13, 17, 19, 23}

there is a unique automorphism σk ∈ G(Q(ζ)/Q) such that σk(ζ) = ζk, and that the map k 7→ σk
gives an isomorphism (Z/24)× → G(Q(ζ)/Q). [3]

(g) The automorphism τ must be equal to σk for some k. We have

τ(ζ) = τ

(
(1 + i)(

√
3− i)

2
√

2

)
=

(1 + i)(
√

3− i)
−2
√

2
= −ζ, [2]

and ζ12 = eiπ = −1 [1], so we can rewrite this as τ(ζ) = ζ13 [1]. We must therefore have τ = σ13.
[1]

(5) Put L = Q(
√

2,
√

3,
√

5).

(a) Give a basis for L over Q. (You need not prove that your answer is correct.) (3 marks)

(b) List the elements of the group G(L/Q), and show that |G(L/Q)| = [L : Q]. To which well-known
group is G(L/Q) isomorphic? (5 marks)

(c) For each of the following fields Ki, determine the subgroup Hi ≤ G(L/Q) that corresponds to Ki

under the Galois correspondence.

K1 = Q(
√

10) K2 = Q(
√

6,
√

15) K3 = Q(
√

2 +
√

5) K4 = Q(
√

30)

(6 marks)
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(d) Use the Galois correspondence to show that K1 ≤ K3, then prove the same thing by a direct
calculation. (4 marks)

(e) How many fields M are there with Q < M < L and [M : Q] = 4? (4 marks)

(f) Show that if f(x) ∈ Q[x] is an irreducible monic polynomial of degree 3, then f(x) has no roots in
L. (3 marks)

Solution:

(a) (Examples of this type have been seen.) The set

B = {1,
√

2,
√

3,
√

5,
√

6,
√

10,
√

15,
√

30}

is a basis for L over Q [3].

(b) (Examples of this type have been seen.) We can define automorphisms φ, ψ, χ ∈ G(L/Q) by

φ(
√

2) = −
√

2 φ(
√

3) =
√

3 φ(
√

5) =
√

5

ψ(
√

2) =
√

2 ψ(
√

3) = −
√

3 ψ(
√

5) =
√

5

χ(
√

2) =
√

2 χ(
√

3) =
√

3 χ(
√

5) = −
√

5.[3]

More explicitly, we have

φ(a+ b
√

2 + c
√

3 + d
√

5 + e
√

6 + f
√

10 + g
√

15 + h
√

30) =

a− b
√

2 + c
√

3 + d
√

5 +−e
√

6− f
√

10 + g
√

15− h
√

30

and so on. These automorphisms commute with each other and satisfy φ2 = ψ2 = χ2 = 1. The
full group is

G(L/Q) = {1, φ, ψ, χ, φψ, φχ, ψχ, φψχ} ' C2 × C2 × C2.[2]

(c) (Broadly similar examples have been seen.) Hi is the set of automorphisms θ ∈ G(L/Q)
satisfying θ|Ki

= 1. For example, this means that H1 is the group of those θ ∈ G(L/K) for which
θ(
√

10) =
√

10, or equivalently θ(
√

2)θ(
√

5) =
√

2
√

5. This gives the list

H1 = {1, φχ, ψ, φψχ}.[2]

Similarly, we have

H2 = {1, φψχ}[1]

H4 = {1, φψ, φχ, ψχ}[1].

For H3, we note that any θ ∈ G(L/Q) has θ(
√

2 +
√

5) = ±
√

2 ±
√

5. As
√

2 and
√

5 are linearly
independent over Q, we see that θ(

√
2 +
√

5) can only be equal to
√

2 +
√

5 if θ(
√

2) =
√

2 and
θ(
√

5) =
√

5 [1], which means that θ cannot involve φ or χ. We conclude that

H3 = {1, ψ}.[1]

(d) (Unseen) As the Galois correspondence is an order-reversing bijection, we have K1 ≤ K3 iff
H1 ≥ H3, which is true by part (c) [2]. More explicitly, we have

√
10 = 1

2 (
√

2 +
√

5)2 − 7
2 ,

so
√

10 ∈ Q(
√

2 +
√

5), so K1 = Q(
√

10) ≤ Q(
√

2 +
√

5) = K3. [2]
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(e) (Unseen) If a field M (with Q < M < L) corresponds to a subgroup H ≤ G(L/Q), we have

|H| = [L : M ] = [L : Q]/[M : Q] = 8/[M : Q].

Thus, the intermediate fields with [M : Q] = 4 biject with subgroups of order 2 in G(L/Q) [2].
There are 7 non-identity elements θ ∈ G(L/K) [1], and each of these satisfies θ2 = 1 so it gives a
subgroup {1, θ} of order 2, and this gives all such subgroups [1]. Thus, there are 7 intermediate
fields of degree 4 over Q.

(f) (Fairly standard) Let f(x) be a monic irreducible polynomial of degree d over Q, and suppose
that f(x) has a root α ∈ L. Then Q(α) ' Q[x]/f(x) so [Q(α) : Q] = deg(f(x)) = d [1]. We also
have [L : Q(α)]d = [L : Q(α)][Q(α) : Q] = [L : Q] = 8, so d is a divisor of 8 [1], so d cannot be
equal to 3 [1].

(6)

(a) Let p be a prime number, and let f(x) be an irreducible monic polynomial of degree p over Q. Let
K be the splitting field of f(x) over Q. Suppose that f(x) has precisely p − 2 real roots. Prove
that the Galois group G(K/Q) contains a transposition. (2 marks)

(b) Let R be the set of complex roots of f(x), and define a relation on R by declaring that α ∼ β if
either α = β or the transposition (α β) lies in G(K/Q). Show that this is an equivalence relation,
and that all equivalence classes have the same size. (10 marks)

(c) Deduce that G(K/Q) is isomorphic to the whole symmetric group Σp. (3 marks)

(d) Now let L ⊆ C be a normal extension of Q such that G(L/Q) ' C5. Let α be any element of L
that does not lie in Q, and let g(x) be the minimal polynomial of α over Q. Show that g(x) must
have degree 5, and that it must split over L. (5 marks)

(e) Now show (using ideas from (a), or otherwise) that g(x) must have five real roots. (5 marks)

Solution: I will give the students a list of 8-10 proofs to learn. Parts (a) to (c) will be one
of these.

We will write G for the Galois group G(K/Q).

(a) As f has rational coefficients we see that complex conjugation defines an element τ ∈ G. This
must fix the p− 2 real roots and exchange the two non-real roots, so τ is a transposition [2].

(b) As α ∼ α by definition, we see that ∼ is reflexive [1]. As (α β) = (β α) we see that it is also
symmetric [1]. Now suppose that α ∼ β and β ∼ γ; we claim that α ∼ γ [1]. If any two of α, β
and γ are the same, then this is trivial [1]. We may therefore assume that α, β and γ are distinct,
and that (α β) and (β γ) are in G. As G is a group it follows that the product (β γ)(α β)(β γ)
lies in G, but this is equal to (α γ), so α ∼ γ as claimed [2]. This proves that ∼ is an equivalence
relation on R. We next claim that any two equivalence classes have the same size [1]. To see this,
consider equivalence classes [α] and [α′]. As G acts transitively on R [1], we can choose σ ∈ G
with σ(α) = α′. Now if β ∈ [α] with β 6= α then the transposition τ = (α β) must lie in G, so
the conjugate τ ′ = στσ−1 must also lie in G. However, this conjugate is just (α′ σ(β)), so we
see that σ(β) ∈ [α′]. This shows that σ([α]) ⊆ [α′] and essentially the same argument shows that
σ−1([α′]) ⊆ [α], so |[α]| = |[α′]| as claimed [2].

(c) Now suppose we have n different equivalence classes each of size m. We must then have nm =
|R| = p. Moreover, as G contains at least one transposition we see that one of the equivalence
classes has size larger than one, so they all do, so m > 1 [1]. As nm = p with m > 1 we must have
m = p and n = 1. This means that there is only one equivalence class, so for all α, β ∈ R with
α 6= β we have α ∼ β and thus (α β) ∈ G [1]. However, ΣR is generated by the transpositions, so
we must have G = ΣR as claimed [1].

7



(d) Unseen. As α 6∈ Q we have [Q(α) : Q] > 1 [1]. We also have [L : Q(α)][Q(α) : Q] = 5 so we must
have [L : Q(α)] = 1 and [Q(α) : Q] = 5 [2]. This means that Q(α) = L. It is also standard that
the degree of the minimal polynomial g(x) is the same as [Q(α) : Q], which is 5 [1]. As L is normal
over Q and g(x) has a root in L we see that g(x) must split over L [1].

(e) Unseen. We see from (b) that L is the splitting field of the polynomial g(x) ∈ Q[x], so it is
preserved by complex conjugation [1]. The conjugation map therefore gives an element of G(L/Q),
which is either the identity (if all roots of g are real) or of order 2 (otherwise) [2]. As G(L/Q) has
order 5, it cannot contain any elements of order 2, so all the roots must be real [2].

(7)

(a) Let H be a transitive subgroup of the symmetric group Σ5 that contains a transposition. Prove
that H = Σ5. (12 marks)

(b) Let f(x) be an irreducible polynomial of degree five over Q, and let L ⊆ C be the splitting field.
Let n be the number of real roots of f(x). Prove that n ∈ {1, 3, 5}. (3 marks)

(c) Suppose that n = 3. Prove that G(L/Q) ' Σ5. (3 marks)

(d) Deduce that if n = 3 there is no field K with Q ⊆ K ⊆ L such that K is normal over Q and
[K : Q] = 60. (7 marks)

Solution: Part (a) is bookwork. I will give the students a list of perhaps six or eight proofs
to learn, including this one. The deduction of (c) from (a) is standard, and (b) is just a
small extension of that argument. Part (d) is unseen.

(a) We introduce a relation on the set N = {1, 2, 3, 4, 5} by declaring that i ∼ j iff (i = j or the
transposition (i j) lies in H) [1]. This is clearly reflexive and symmetric [1]. We claim that it is
also transitive [1]. To see this, suppose that i ∼ j and j ∼ k. There are various cases to consider:

(1) If i = j then the relation j ∼ k gives i ∼ k. [1]

(2) If j = k then the relation i ∼ j gives i ∼ k.

(3) If neither (1) nor (2) holds, then the transpositions (i j) and (j k) both lie in H, and H is a
subgroup so (i j)(j k)(i j) ∈ H, but this composite is just (i k), so again i ∼ k. [1]

We now see that we have an equivalence relation, so we can divide N into equivalence classes. We
next claim that if i ∼ j and σ ∈ H then σ(i) ∼ σ(j) [1]. Indeed, if i = j then σ(i) = σ(j), so
certainly σ(i) ∼ σ(j). Otherwise, the transposition (i j) must lie in H, so σ(i j)σ−1 ∈ H, but
σ(i j)σ−1 = (σ(i) σ(j)), so σ(i) ∼ σ(j) as claimed [1]. By applying the same logic to σ−1, we see
that i ∼ j iff σ(i) ∼ σ(j), so σ gives a bijection from the equivalence class [i] to the equivalence
class [σ(i)], so these equivalence classes have the same size [1]. As H is transitive, it follows that
all equivalence classes have the same size, say m [1]. As H contains a transposition we see that at
least one equivalence class has size larger than one, so m > 1 [1]. If there are n equivalence classes,
this means that nm = 5. As m > 1, we must have n = 1 and m = 5, so N is a single equivalence
class [1]. This means that for all i 6= j, the transposition (i j) lies in H. As Σ5 is generated by
transpositions, this means that H = Σ5 [1].

(b) Let f(x) be an irreducible polynomial of degree five over Q. It is then standard that f(x) has 5
distinct roots, say α1, . . . , α5 [1]. As the coefficients of f(x) are real we see that f(αi) = f(αi) =
0 = 0, so αi = αj for some j [1]. We can thus group the non-real roots in complex conjugate pairs,
so there are an even number of them. As there are 5 roots in total, the number of real ones must
be 1, 3 or 5. [1]

(c) Suppose that there are precisely 3 real roots, and thus two non-real ones. Let L be the splitting
field, and put H = G(L/K). It is standard that this can be identified with a transitive subgroup
of the group of permutations of the roots [1]. Complex conjugation gives an element of H which
exchanges the two non-real roots and fixes the real ones, so it is a transposition [1]. It therefore
follows from (a) that H = Σ5 [1].
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(d) Now suppose as above that H = Σ5, and that we have a field K with Q ⊆ K ⊆ L and [K : Q] = 60
and K is normal over Q. Note that [L : Q] = |H| = |Σ5| = 5! = 120 [1]. By the Galois
correspondence, there is a subgroup A ≤ H with K = LA [1]and |A| = [L : K] = [L : Q]/[K :
Q] = 120/60 = 2 [1]. As K is normal over Q, we also see that A is a normal subgroup of Σ5 [1].
On the other hand, we must have A = {1, σ} for some permutation σ with σ2 = 1, so σ must be a
transposition or a transposition pair [1]. In either case, σ is conjugate to every other permutation
of the same cycle type [1], so A is not normal in H [1].

(8)

(a) Define the cyclotomic polynomial φn(x). (2 marks)

(b) State the rule relating the polynomials φn(x) to the polynomials xm − 1. (2 marks)

(c) Find φ2(x), φ4(x) and φ8(x), then state and prove a general formula for φ2k(x). (6 marks)

(d) Put

ζ =

√
2 +
√

2 +
√

2−
√

2 i

2
.

Show that φ16(ζ) = 0, and thus that Q(ζ) = Q(µ16). (6 marks)

(e) Prove that Q(i) ≤ Q(ζ) and that G(Q(ζ)/Q(i)) is a cyclic group of order 4. You may assume
general facts about cyclotomic fields and their Galois groups, provided that you state them clearly.
(9 marks)

Solution:

(a) (Bookwork) φn(x) =
∏
k(x − e2πik/n), where k runs over all integers with 0 ≤ k < n that are

coprime to n. [2]

(b) (Bookwork) xn − 1 =
∏
d|n φd(x). [2]

(c) (The specific cases are standard. The general case is an exercise in the notes.) It is
clear from the definitions that φ1(x) = x− 1 and φ2(x) = x+ 1 [1]. Next note that

φ1(x)φ2(x)φ4(x) = x4 − 1,

so

φ4(x) =
x4 − 1

φ1(x)φ2(x)
=
x4 − 1

x2 − 1
= x2 + 1.[1]

Similarly, we have
φ1(x)φ2(x)φ4(x)φ8(x) = x8 − 1,

so

φ8(x) =
x8 − 1

φ1(x)φ2(x)φ4(x)
=
x8 − 1

x4 − 1
= x4 + 1.[1]

More generally, for any k > 0 we can divide the equation

φ1(x)φ2(x) · · ·φ2k(x) =

k∏
j=0

φ2j (x) = x2
k

− 1

by the equation

φ1(x)φ2(x) · · ·φ2k−1(x) =

k−1∏
j=0

φ2j (x) = x2
k−1

− 1

to get

φ2k(x) =
x2

k − 1

x2k−1 − 1
=

(x2
k−1

)2 − 1

x2k−1 − 1
=

(x2
k−1 − 1)(x2

k−1

+ 1)

x2k−1 − 1
= x2

k−1

+ 1.[3]
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(d) (Unseen, but requires no creativity.) By straightforward algebra we have

4ζ2 = (2 +
√

2) + 2

√
2 +
√

2

√
2−
√

2i− (2−
√

2)

= 2
√

2 + 2

√
22 −

√
2
2
i = 2

√
2(1 + i)

ζ2 =
2
√

2(1 + i)

4
=

1 + i√
2

[3]

ζ4 = (ζ2)2 =
1 + 2i− 1

2
= i[1]

ζ8 = (ζ4)2 = i2 = −1

φ16(ζ) = ζ8 + 1 = 0.[1]

This means that ζ is a generator of the group µ16, so Q(ζ) = Q(µ16). [1]

(e) (G(Q(µ16)/Q) is standard. Changing the ground field to Q(i) is new.) First, we saw in (d)
that i = ζ4 so Q(i) ≤ Q(ζ). [1]

It is a standard fact that for every a ∈ (Z/n)× there is a unique automorphism φa of Q(µn)
satisfying φa(ξ) = ξa for all ξ ∈ µn, and that the map a 7→ φa gives an isomorphism (Z/n)× →
G(Q(µn)/Q) [2]. Thus, if we put L = Q(µ16) = Q(ζ), we have

G(K/Q) = {φ1, φ3, φ5, φ7, φ9, φ11, φ13, φ15}.[1]

Note that i ∈ µ16 so φa(i) = ia. The group G(K/Q(i)) is the subgroup consisting of those φa for
which φa(i) = i [1], or equivalently a = 1 (mod 4) [1]. We thus have

G(K/Q(i)) = {φ1, φ5, φ9, φ13}.[1]

Moreover, we have

φ25 = φ25 = φ9

φ35 = φ5×9 = φ45 = φ13

φ45 = φ5×13 = φ65 = φ1.[1]

It follows that G(K/Q(i)) is cyclic of order 4, generated by φ5. [1]

(9) Consider the polynomial f(x) = x4 − 24x2 + 4. Some of the values of f are as follows:

x 0 1 2 3 4 5

f(x) 4 −19 −76 −131 −124 29

(a) Use the above table to show that f has four real roots and no integer roots. (4 marks)

(b) Suppose we have a factorisation f(x) = (x2 + ax+ b)(x2 + cx+ d). Show that c = −a and either
a = 0 or b = d. By continuing this analysis further, show that a, b, c and d cannot all be integers.
(7 marks)

(c) Deduce that f(x) is irreducible over Q, stating carefully any general results that you use. (5
marks)

(d) Now let α be the largest real root of f(x). Put β = 1
2α

2− 6 and γ = 1
4α(α2− 22). Simplify β2 and

γ2, and show that they are integers. (6 marks)

(e) Use (d) to find primes p and q such that Q(α) = Q(
√
p,
√
q). (3 marks)

Solution:
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(a) Similar to examples in the notes and problem sheets. As f(4) < 0 and f(5) > 0, the
Intermediate Value Theorem tells us that there is a root α with 4 < α < 5 [1]. As f(0) > 0 and
f(1) < 0, the IVT also tells us that there is a root α′ with 0 < α′ < 1 [1]. As f(x) = f(−x) we see
that −α′ and −α are also roots [1]. As f has degree four there can be no more roots, so we have
four real roots as required, and none of them are integers [1]. It is also clear that α is the largest
root, so our naming is consistent with part (d).

Alternatively, we can use the quadratic formula to see that the roots satisfy x2 = 12±2
√

35 ' 0.168
or 23.832, so x ' ±0.410 or x ' ±4.882. These kinds of approximations will be accepted as a proof
that the roots are real and not integral.

(b) Essentially unseen. By direct expansion we have

(x2 + ax+ b)(x2 + cx+ d)− f(x) = (a+ c)x3 + (b+ d+ ac+ 24)x2 + (ad+ bc)x+ (bd− 4).[1]

If this is zero then (by inspecting the coefficient of x3) we must have c = −a [1]. After substituting
for c and inspecting the coefficients of x2, x and 1 we get

b+ d+ 24 = a2 (A)

a(d− b) = 0 (B)

bd = 4.[1] (C)

From (B) we see that either a = 0 or b = d [1]. Now suppose that a, b, c and d are integers.
From (C) we see that b, d ∈ {±1,±2,±4} so b + d + 24 ≥ 16. By comparing this with (A) we
see that a cannot be zero. Using (B) we therefore see that b = d, so (C) gives b = d = ±2.
Equation (A) now gives a2 = 24± 4 ∈ {20, 28} which is impossible for integer a. Thus, there can
be no factorisation of this type. [3]

(c) Similar to examples in the notes and problem sheets. A lemma of Gauss says that if g(x)
is a monic polynomial with integer coefficients that is irreducible over Z, then it is also irreducible
over Q [2]. We saw in (a) that f(x) has no integer roots, so it cannot factor over Z as a linear
polynomial times a cubic polynomial. We also saw in (b) that f(x) cannot factor over Z as a
product of two quadratic polynomials. It follows that f(x) is irreducible over Z, and thus also over
Q [3].

(d) Similar to examples in the notes and problem sheets. As α is a root of f(x) we have
α4 = 24α2 − 4 [1]. Using this repeatedly we get

β2 = ( 1
2α

2 − 6)2 = 1
4α

4 − 6α2 + 36

= 6α2 − 1− 6α2 + 36 = 35[2]

γ2 = 1
16α

2(α2 − 22)2 = 1
16α

2(α4 − 44α2 + 484)

= 1
16α

2(480− 20α2) = 30α2 − 5
4α

4

= 30α2 − 5
4 (24α2 − 4) = 5.[3]

(e) Unseen. Using the approximation α ' 4.882 we also see that β, γ > 0 so β =
√

35 and γ =
√

5 [1].
This means that Q(α) contains both γ =

√
5 and β/γ =

√
7, so it contains the field K ′ = Q(

√
5,
√

7)
[1]. However, both K and K ′ have degree 4 over Q, so we must have K = K ′ [1].

(10)

(a) Give a detailed statement, without proof, of the Galois correspondence. You should include in-
formation about orders of subgroups, degrees and Galois groups of intermediate field extensions,
conjugacy and containment between subgroups, and normality of field extensions. (11 marks)

(b) Suppose we have fields K ⊆ L such that L is normal over K and G(L/K) is cyclic of order 2r.

(i) How many fields M are there with K ⊆M ⊆ L? (3 marks)
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(ii) Prove that every such field M is normal over K. (3 marks)

(c) Suppose instead that we have fields K ⊆ L such that L is normal over K and G(L/K) is isomorphic
to Σ5. What elements of order 5 are there in Σ5? Prove that there are precisely six intermediate
fields M1, . . . ,M6 for which [L : Mi] = 5, and that none of these is normal over K. (8 marks)

Solution: Part (a) is pure bookwork. Parts (b) and (c) have some similarity with examples
in the notes and exercises, but will still require original thought. The students will have
been reminded of the subgroup structure of cyclic groups.

(a) Let L be a normal extension [1]of finite degree over a subfield K, with Galois group G. Let H be
the set of subgroups of G, and letM be the set of fields M such that K ⊆M ⊆ L [1]. Then there
is an order-reversing [1]bijection H →M given by H 7→ LH [1], with inverse M 7→ G(L/M) [1].
Moreover, if H corresponds to M then

– [L : M ] = |H| [1]and [M : K] = |G/H| [1].

– L is normal over M , with Galois group H [1].

– For any σ ∈ G, the subgroup σHσ−1 corresponds to the field σ(M) [1].

– M is normal over K if and only if H is a normal subgroup of G [1], and if so, then the
corresponding Galois group is G/H [1].

(b) Suppose we have fields K ⊆ L such that L is normal over K and G(L/K) is cyclic of order 2r.
Choose a generator σ for G(L/K), so that σ2r = 1. For 0 ≤ s ≤ r let Hs be the subgroup generated
by σ2s , which is cyclic of order 2r−s [1]. We then have {1} = Hr < Hr−1 < · · · < H0 = G(L/K),
and these are all the subgroups of G(L/K) [1]. Put Ms = LHs , so that L = Mr > Mr−1 > · · · >
M0 = K, and these are the only intermediate fields [1]. There are thus r + 1 such fields [1]. As
G(L/K) is abelian, we see that all subgroups are normal [1], and so all intermediate fields are
normal over K [1].

(c) The intermediate fields M with [L : M ] = 5 are the fields LH , where H ≤ G(L/K) ' Σ5 and
|H| = 5 [1]. Any group of order 5 is cyclic, generated by an element of order 5 [1]. An element
of order 5 in Σ5 is a 5-cycle [1]. Any 5-cycle can be written uniquely as (1 p q r s), where p, q, r
and s are 2, 3, 4 and 5 in some order. It follows that there are 4! = 24 different 5-cycles [1]. Any
subgroup of order 5 consists of the identity together with 4 different generators. We can thus group
the 5-cycles into 6 groups of 4 according to which subgroup they generate. This means that there
are precisely six subgroups of order 5 [2]. As all 5-cycles are conjugate, we see that all subgroups
of order 5 are conjugate to each other, so none of them is normal [1]. It follows that none of the
corresponding intermediate fields is normal over K. [1]

(11) Put f(x) = x3 − 12x− 34.

(a) State Eisenstein’s criterion, and use it to prove that f(x) is irreducible over Q. (4 marks)

(b) Calculate f(x) and f ′(x) for x = −2, x = 2 and x = 5. By considering the shape of the graph,
show that f(x) has precisely one real root, say α. (5 marks)

(c) Show that α = 25/3 + 21/3. (4 marks)

(d) Let the other two roots be β and γ, and putK = Q(α, β, γ). Show thatG(K/Q) contains an element
of order two, and deduce that G(K/Q) is the full group of permutations of the set {α, β, γ}. (6
marks)

(e) Calculate the numbers

s1 = α+ β + γ

s2 = αβ + βγ + γα

s3 = αβγ.

(3 marks)
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(f) Calculate α2 + β2 + γ2 (by relating it to s1, s2 and s3). (3 marks)

Solution:

(a) (Standard) Eisenstein’s criterion: let g(x) = xn +
∑n−1
i=0 aix

i be a monic polynomial with coeffi-
cients ai ∈ Z. Let p be a prime number, and suppose that a0, . . . , an−1 are divisible by p and that
a0 is not divisible by p2. Then g(x) is irreducible over Q. [2]

Now consider the polynomial f(x) = x3 + 0x2 − 12x − 34. If we take p = 2, then the coefficients
0, −12 and −34 are all divisible by p and the constant term −34 is not divisible by p2. Thus,
Eisenstein’s criterion applies, and we see that f(x) is irreducible over Q. [2]

(b) (Similar problems have been seen.) We have f ′(x) = 3x2 − 12 = 3(x− 2)(x+ 2), which gives
the following table:

x f(x) f ′(x)

−2 −18 0

2 −50 0

5 31 63

[2]

From this we see that f(x) increases from −∞ to −2 on the interval (−∞, 0), then decreases to
−50 on (−2, 2), then increases on (2,∞), passing zero somewhere between 2 and 5. This means
that there is precisely one real root. [3]

(c) (Direct calculation) Now put α = 25/3 + 21/3 = 2× 22/3 + 21/3. We have

α2 = 4× 24/3 + 4× 22/3 × 21/3 + 22/3

= 8× 21/3 + 8 + 22/3[1]

α3 = (2× 22/3 + 21/3)(8× 21/3 + 8 + 22/3)

= 32 + 16× 22/3 + 4× 21/3 + 8× 22/3 + 8× 21/3 + 2

= 34 + 12× 21/3 + 24× 22/3[2]

f(α) = α3 − 12α− 34

= 34 + 12× 21/3 + 24× 22/3 − 24× 22/3 − 12× 21/3 − 34 = 0,

so α is a root of f(x). It is clearly real, so it is the unique real root. [1]

(d) (Similar ideas have been seen.) Now let β be another root of f(x), so the imaginary part of
β must be nonzero. Put γ = β, and note (by comparing real and imaginary parts) that α, β and
γ are disinct. As the coefficients of f(x) are real, we can conjugate the equation f(β) = 0 to see
that f(γ) = f(β) = f(β) = 0, so γ is the third complex root of f(x) [3]. We put R = {α, β, γ}, so
G(K/Q) can be identified with a transitive subgroup of ΣR, which must either be the alternating
group AR or the full group ΣR [1]. Note that the splitting field K = Q(α, β, γ) is preserved by
complex conjugation, so the map z 7→ z gives an element of order 2 in G(K/Q), corresponding to
the transposition (β γ) [1]. As AR contains no permutations, we must have G(K/Q) = ΣR [1].

(e) (Standard) We now have

x3 − 12x− 34 = f(x) = (x− α)(x− β)(x− γ) = x3 − (α+ β + γ)x2 + (αβ + αγ + βγ)x− αβγ.

By comparing coefficients, we obtain

s1 = α+ β + γ = 0

s2 = αβ + αγ + βγ = −12

s3 = αβγ = 34.[3]

13



(f) (Similar problems have been seen.) Note also that we always have

(α+ β + γ)2 = α2 + β2 + γ2 + 2(αβ + αγ + βγ), [2]

which in our case becomes 0 = α2 + β2 + γ2 + 2× (−12), so

α2 + β2 + γ2 = 24.[1]

(12) Put ζ = e2πi/21 and L = Q(ζ).

(a) State a general theorem about Galois groups of cyclotomic fields. Use it to show that there are
automorphisms ρ, τ ∈ G(L/Q) such that ρ6 = τ2 = 1 and

G(L/Q) = {1, ρ, ρ2, ρ3, ρ4, ρ5, τ, ρτ, ρ2τ, ρ3τ, ρ4τ, ρ5τ}.

(8 marks)

(b) Give a formula for the cyclotomic polynomial ϕ21(x) in terms of polynomials of the form xk − 1.
(You need not carry out the relevant divisions.) (4 marks)

(c) You may assume that

√
−3 = ζ7 − ζ−7
√
−7 = −(ζ3 − ζ−3)(ζ6 − ζ−6)(ζ9 − ζ−9).

Use this to find ρ(
√
−3), τ(

√
−3), ρ(

√
−7) and τ(

√
−7). (6 marks)

(d) Use the Galois correspondence to show that there is a unique field K with Q < K < L and
[K : Q] = 4. Give generators for that subfield. (7 marks)

Solution:

(a) Bookwork. For any integer k coprime to n, there is a unique automorphism σk of Q(µn) such that
σk(ω) = ωk for all ω ∈ µn. [2] This gives all the elements of G(Q(µn)/Q), and we have σj = σk iff
j ≡ k (mod n). Moreover, we have σjσk = σjk for all j and k. Thus, G(Q(µn)/Q) is isomorphic
to the group of invertible elements in the ring Z/nZ [2].

Unseen. We now specialise to the case n = 21 to see that

G(L/Q) ' (Z/21)× = {1, 2, 4, 5, 8, 10,−1,−2,−4,−5,−8,−10}.[1]

Note that the powers of 2 modulo 21 are

20 = 1 21 = 2 22 = 4 23 = 8 24 = −5 25 = −10 26 = 1.

Using this we see that every element of (Z/21)× can be written as 2k or −2k for some k with
0 ≤ k < 6. We can thus take ρ = σ2 and τ = σ−1. [3]

(b) Slight adjustment of a standard problem. Recall that xn − 1 =
∏
d|n ϕd(x) [1]. This gives

ϕ1(x) = x− 1 (A)

ϕ1(x)ϕ3(x) = x3 − 1 (B)

ϕ1(x)ϕ7(x) = x7 − 1 (C)

ϕ1(x)ϕ3(x)ϕ7(x)ϕ21(x) = x21 − 1[1] (D)

We can multiply equations (A) and (D) and divide by (B) and (C) to get

ϕ21(x) =
(x21 − 1)(x− 1)

(x7 − 1)(x3 − 1)
[2].
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(c) Similar to examples in the notes and problem sheets. Recall that ρ = σ2 is a homomorphism
with ρ(ζ) = ζ2. It follows that ρ(ζ7) = ζ14 but ζ21 = 1 so ζ14 = ζ−7 and similarly ζ−14 = ζ7. This
gives

ρ(
√
−3) = ρ(ζ7 − ζ−7) = ζ14 − ζ−14 = ζ−7 − ζ7

= −
√
−3[2].

Similarly, we have

ρ(ζ3) = ζ6

ρ(ζ6) = ζ12 = ζ−9

ρ(ζ9) = ζ18 = ζ−3

so

ρ(
√
−7) = ρ

(
−(ζ3 − ζ−3)(ζ6 − ζ−6)(ζ9 − ζ−9)

)
= −(ζ6 − ζ−6)(ζ−9 − ζ9)(ζ−3 − ζ3)

= −(ζ3 − ζ−3)(ζ6 − ζ−6)(ζ9 − ζ−9)

=
√
−7[2].

On the other hand, we have τ(ζ) = ζ−1. This implies that τ is just the complex conjugation map,
from which it is clear that τ(

√
−3) = −

√
−3 and τ(

√
−7) = −

√
−7 [2]. Alternatively, we can use

the same method as above:

τ(
√
−3) = τ(ζ7 − ζ−7) = ζ−7 − ζ7 = −

√
−3

τ(
√
−7) = τ

(
−(ζ3 − ζ−3)(ζ6 − ζ−6)(ζ9 − ζ−9)

)
= −(ζ−3 − ζ3)(ζ−6 − ζ6)(ζ−9 − ζ9)

= (ζ3 − ζ−3)(ζ6 − ζ−6)(ζ9 − ζ−9) = −
√
−7.

(d) Unseen. The Galois correspondence tells us that every intermediate field K with [K : Q] = 4 has
the form K = LH for some subgroup H ≤ G(L/Q) with |H| = [L : K] = [L : Q]/[K : Q] = 12/4 = 3
[2]. One can check that the only elements of (Z/21)× of order 3 are 4 = 22 and −5 = 42 = 24.
This means that there is only one subgroup of order 3 in (Z/12)×, namely {1, 22, 24}. It follows
that there is only one subgroup of order 3 in G(L/Q), namely H = {1, ρ2, ρ4} [2]. Thus, there is
only one field K = LH of the relevant type. The field Q(

√
−3,
√
−7) is clearly contained in L and

has degree 4 over Q, so this must be K [3].

(13) Consider a cubic
f(x) = x3 + ax2 + bx+ c = (x− α)(x− β)(x− γ)

with a, b, c ∈ Q and α, β, γ ∈ C. Suppose that f(x) is irreducible, and put K = Q(α, β, γ). You may
assume that

(α− β)2(β − γ)2(γ − α)2 = a2b2 − 4a3c− 4b3 + 18abc− 27c2.

(a) Prove that α, β and γ are distinct and nonzero. If you use any general result about repeated roots,
you should prove it. (8 marks)

(b) Prove that if c = 1 then α−1 + β−1 + γ−1 = −b. (4 marks)

(c) Explain the two possibilities for the Galois group G(K/Q). (2 marks)

(d) Now take f(x) = x3 + x2 − 4x+ 1. What is the Galois group in this case? (4 marks)

(e) Put u = (3
√
−3− 5)/(2

√
13), let v be any cube root of u, and put w =

√
13(v + v−1)/3.

(i) Show that uu = 1 and u+ u−1 = u+ u = −5/
√

13.
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(ii) Expand out f(x− 1/3).

(iii) Deduce that w − 1/3 is one of the roots of f(x). (7 marks)

Solution: Parts (a) and (c) are bookwork. The students have seen things similar to (b), but
only involving positive powers. Part (d) is a standard problem. The discussion of cubics in
the notes starts with an example similar to (e), but with the numbers working out more
simply.

(a) First let u(x) be the greatest common divisor of f(x) and f ′(x) [1]. Then u(x) is a monic divisor
of the irreducible monic polynomial f(x), so we must have u(x) = 1 or u(x) = f(x) [1]. However,
u(x) divides f ′(x), but f(x) has larger degree than f ′(x) and so does not divide f ′(x); so we cannot
have u(x) = f(x) [1]. It follows that u(x) = 1, so there exist polynomials a(x) and b(x) such that
a(x)f(x) + b(x)f ′(x) = 1 [1].

Now suppose that two of the roots coincide, say α = β, so that f(x) = (x − α)2(x − γ). We find
that f ′(x) = 2(x− α)(x− γ) + (x− α)2, and so f ′(α) = f(α) = 0 [1]. We can thus put x = α in
the relation a(x)f(x) + b(x)f ′(x) = 1 to get 0 = 1, which is false. It follows that the roots cannot
coincide, after all [1].

Now suppose that one of the roots is zero. This means that c = f(0) = 0, so f(x) = x3+ax2+bx =
(x2 + ax+ b)x, which is visibly reducible, contrary to assumption. Thus, all the roots are nonzero,
as claimed [2].

(b) We now expand out the relation x3 + ax2 + bx+ c = (x− α)(x− β)(x− γ) to get

a = −(α+ β + γ)

b = αβ + βγ + γα

c = −αβγ[2].

As α, β and γ are nonzero, we can divide the last two equations to get

1

α
+

1

β
+

1

γ
=
βγ + γα+ αβ

αβγ
= −b

c
[1].

If c = 1, this reduces to α−1 + β−1 + γ−1 = −b [1].

(c) The Galois group is either the group ΣR of all permutations of the set R = {α, β, γ}, or the
subgroup AR of even permutations [2].

(d) Consider the element

∆ = (α− β)2(β − γ)2(γ − α)2 = a2b2 − 4a3c− 4b3 + 18abc− 27c2 ∈ Q.[1]

The Galois group is AR if ∆ is the square of some element of Q, and ΣR otherwise [1]. In the case
f(x) = x3 + x2 − 4x+ 1, we have a = c = 1 and b = −4, so

∆ = (−4)2 − 4− 4.(−4)3 + 18.(−4)− 27 = 16− 4 + 256− 72− 27 = 169 = 132, [1]

so the Galois group is AR [1].

(e) Now put u = (3
√
−3− 5)/(2

√
13), let v be a cube root of u, and put w =

√
13(u1/3 + u1/3)/3. We

then have

uu =

(
3
√
−3− 5

2
√

13

)(
−3
√
−3− 5

2
√

13

)
= − (3

√
−3)2 − 52

4× 13
=

27 + 25

52
= 1,

or in other words u = 1/u [2]. It is also clear that u+ u = −5/
√

13. Now

f(x− 1/3) = (x− 1/3)3 + (x− 1/3)2 − 4(x− 1/3) + 1

= x3 − x2 + x/3− 1/27 + x2 − 2x/3 + 1/9− 4x+ 4/3 + 1

= x3 − 13x/3 + 65/27, [1]
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and

w =
131/2

3
(v + v−1)

w3 =
133/2

27
(v3 + 3v + 3v−1 + v−3)

=
133/2

27
(u+ 3v + 3v−1 + u−1)[2]

so

f(w − 1/3) = w3 − 13

3
w +

65

27
[1]

=
133/2

27
(u+ 3v + 3v−1 + u−1)− 13

3

131/2

3
(v + v−1) +

65

27

=
133/2

27
(u+ u) +

65

27
=

133/2

27
.
−5√

13
+

65

27
[1]

= 0.

(14)

(a) Give a detailed statement, without proof, of the Galois correspondence. You should include in-
formation about orders of subgroups, degrees and Galois groups of intermediate field extensions,
conjugacy and containment between subgroups, and normality of field extensions. (11 marks)

(b) Suppose we have a normal extension L/K such that G(L/K) is cyclic of order 30. Prove that
for each positive integer d that divides 30, there is a unique field Md with K ⊆ Md ⊆ L and
[Md : K] = d. Prove also that Md is normal over K. (9 marks)

(c) Suppose we have a normal extension L/K with |G(L/K)| = 105 and subgroups A,B ≤ G(L/K)
with |A| = 21 and |B| = 35. Prove that LA ∩ LB = K. (5 marks)

Solution:

(a) (Bookwork) Let L be a normal extension [1]of finite degree over a subfield K, with Galois group
G. Let H be the set of subgroups of G, and let M be the set of fields M such that K ⊆ M ⊆ L
[1]. Then there is an order-reversing [1]bijection H → M given by H 7→ LH [1], with inverse
M 7→ G(L/M) [1]. Moreover, if H corresponds to M then

– [L : M ] = |H| [1]and [M : K] = |G/H| [1].

– L is normal over M , with Galois group H [1].

– For any σ ∈ G, the subgroup σHσ−1 corresponds to the field σ(M) [1].

– M is normal over K if and only if H is a normal subgroup of G [1], and if so, then the
corresponding Galois group is G/H [1].

(b) (Similar problems have been seen.) Suppose we have fields K ⊆ L such that L is normal over
K and G(L/K) is cyclic of order 30. Choose a generator φ ∈ G(L/K), so G(L/K) = {φi | 0 ≤
i < 30}. For each d dividing 30, let Hd be the subgroup generated by φd, so |Hd| = 30/d [2].
Put Md = LHd , so [L : Md] = |Hd| = 30/d [1]. On the other hand, as L/K is normal we have
[L : Md][Md : K] = [L : K] = |G(L/K)| = 30, so [Md : K] = 30/[L : Md] = d as required [1]. As
G(L/K) is abelian we also see that Hd is automatically a normal subgroup [1], so Md is normal
over Q (with Galois group G(L/K)/Hd) [1]. As G(L/K) is cyclic, it is standard that the groups
Hd are the only subgroups [1]. It follows by the Galois corresponding that the fields Md are the
only intermediate fields between K and L; in particular, Md is the unique intermediate field with
[Md : K] = d [1].
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(c) (Unseen) Suppose we have a normal extension L/K with |G(L/K)| = 105 and subgroups A,B ≤
G(L/K) with |A| = 21 and |B| = 35. The Galois correspondence tells us that [LA : K] =
|G(L/K)|/|A| = 105/21 = 5 and similarly [LB : K] = 105/35 = 3 [2]. Now put M = LA ∩ LB .
We have a chain of fields K ≤ M ≤ LA, so 5 = [LA : K] = [LA : M ][M : K], so [M : K] divides
5. Similarly, using K ≤ M ≤ LB we see that [M : K] divides 3 [3]. We must therefore have
[M : K] = 1, so M = K [1].

(15)

(a) Give a detailed statement, without proof, of the Galois correspondence. You should include in-
formation about orders of subgroups, degrees and Galois groups of intermediate field extensions,
conjugacy and containment between subgroups, and normality of field extensions. (10 marks)

(b) List all the elements of the alternating group A4 and their orders. (3 marks)

(c) List all the subgroups of A4, and state which of them are normal. In particular, you should show
that there is a unique subgroup of order 4. You may assume without proof that there are no
subgroups of order 6. (8 marks)

(d) Let L be a normal extension of Q such that the Galois group G(L/Q) is isomorphic to A4. What
can we deduce about the subfields of L? You should give as many details as possible, but you need
not justify them. (4 marks)

Solution:

(a) Bookwork. Let L be a normal extension [1]of finite degree over a subfield K, with Galois group
G. Let H be the set of subgroups of G, and let M be the set of fields M such that K ⊆ M ⊆ L
[1]. Then there is an order-reversing bijection H → M given by H 7→ LH [1], with inverse
M 7→ G(L/M) [1]. Moreover, if H corresponds to M then

– [L : M ] = |H| [1]and [M : K] = |G/H| [1].

– L is normal over M , with Galois group H [1].

– For any σ ∈ G, the subgroup σHσ−1 corresponds to the field σ(M) [1].

– M is normal over K if and only if H is a normal subgroup of G [1], and if so, then the
corresponding Galois group is G/H [1].

(b) The students will have seen a similar analysis for other groups such as Σ3 and D8 and
(Z/n)× for various n. They will also have seen some facts about A4 in connection with
quartics. The elements of A4 are as follows:

(1) The identity permutation has order one.

(2) The elements τ1 = (2 3)(1 4), τ2 = (1 3)(2 4) and τ3 = (1 2)(3 4) are the only elements of
order 2. [1]

(3) There are 8 elements of order 3:

ρ1 = (2 3 4) ρ−11 = (4 3 2)

ρ2 = (1 3 4) ρ−12 = (4 3 1)

ρ3 = (1 2 4) ρ−13 = (4 2 1)

ρ4 = (1 2 3) ρ−14 = (3 2 1).[2]

(c) The subgroups of A4 are as follows:

(1) There is the trivial subgroup, denoted by 1.

(2) There are three subgroups of order 2, namely Pi = {1, τi} for i = 0, 1, 2. These are all
conjugate to each other, so none of them are normal. [1]
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(3) There are four subgroups of order 3, namely Qi = {1, ρi, ρ−1i } for i = 0, 1, 2, 3. These are all
conjugate to each other, so none of them are normal. [2]

(4) Put R = {1, τ1, τ2, τ3} [1], which is the set of all elements of order 1 or 2. One can check that
τ1τ2 = τ2τ1 = τ3 and τ2τ3 = τ3τ2 = τ1 and τ3τ1 = τ1τ3 = τ2, so R is a subgroup of A4 [1]. We
claim that it is the only one. To see this, note that there are no elements of order 4 (because
4-cycles are odd permutations and so do not lie in A4). Thus, any subgroup R′ of order 4
must consist of elements of order one or two, so we must have R′ ⊆ R, but |R′| = |R| = 4 so
R′ = R [2].

(5) It is given that there are no subgroups of order 6. For completeness we record a proof, which
students are not expected to provide. Any subgroup T of order 6 would have to contain an
element of order 2 (say τi) and an element of order 3 (say ρj). Put k = τi(j) and note that
k 6= j. The permutation τiρjτ

−1
i sends k to itself, so must be different from ρj , which sends

only j to itself. Thus τi and ρj do not commute, so the conjugate ρjτiρ
−1
j is an element of

order 2 different from τi, so it must be τm for some m 6= i. Now τi and τm generate R, so
R ≤ T , so |T | is divisible by |R| = 4, which contradicts the assumption that |T | = 6.

Alternatively, we can recall that any subgroup of index two is automatically normal. This
means that T would have to be a disjoint union of conjugacy classes, and a straightforward
check of cases shows that this is impossible.

(6) The full group A4 is the unique subgroup of order 12.

(7) The order of any subgroup must be a divisor of |A4| = 12, so we have now covered all
possibilities. [1]

(d) We now see that the subgroup lattice is as shown on the left below, with the larger subgroups
towards the top.

1

P1 P2 P3

Q1 Q2 Q3 Q4

R

A4

L

U1 U2 U3

V1 V2 V3 V4

W

Q

It follows that the lattice of subfields of L is as shown on the right, where Ui = LPi and Vi = LQi

and W = LR. The larger subfields are towards the bottom, and the degrees are as follows:

[L : Ui] = 2 [Ui : W ] = 2 [W : Q] = 3

[L : Vi] = 3 [Vi : Q] = 4.

The field W is normal over Q, with G(W/Q) = A4/R ' C3, but the fields Pi and Qi are not normal
over Q. [4]
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