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1. Fields: definitions and examples

Definition 1.1. [defn-field]
A commutative ring is a set K together with elements 0, 1 ∈ K and a definition of what it means to add or
multiply two elements of K, such that:

(a) If a, b ∈ K then a+ b ∈ K and ab ∈ K.
(b) The usual rules of algebra are valid. More explicitly, for all a, b, c ∈ K the following equations hold:

(1) 0 + a = a
(2) a+ (b+ c) = (a+ b) + c
(3) a+ b = b+ a
(4) 0.a = 0
(5) 1.a = a
(6) a(bc) = (ab)c
(7) ab = ba
(8) a(b+ c) = ab+ ac

(c) For every a ∈ K there is an element −a with a+ (−a) = 0.

A field is a commutative ring that satisfies the following two additional axioms:

(d) For every a ∈ K with a 6= 0 there is an element a−1 ∈ K with aa−1 = 1.
(e) 1 6= 0.

Remark 1.2. [rem-axioms]
The field axioms are equivalent to the following:

(a) The set K is a commutative group under addition, with 0 as the neutral element.
(b) The set K× = K \ {0} is a commutative group under multiplication, with 1 as the neutral element.
(c) The distributivity law a(b+ c) = ab+ ac holds for all a, b, c ∈ K.

Example 1.3. [eg-fields-numbers]
Recall that

N = { natural numbers } = {0, 1, 2, 3, 4, . . . }
Z = { integers } = {. . . ,−2,−1, 0, 1, 2, 3, 4, . . . }
Q = { rational numbers } = {a/b | a, b ∈ Z , b 6= 0}
R = { real numbers }
C = { complex numbers } = {x+ iy | x, y ∈ R},

so N ⊂ Z ⊂ Q ⊂ R ⊂ C. Then R, C and Q are fields. The set Z is a ring but not a field, because axiom (d)
is not satisfied: there is no element 2−1 in the set Z for which 2.2−1 = 1. Similarly N is not a ring, because
axiom (c) is not satisfied: there is no element −1 in the set N with 1 + (−1) = 0.
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Example 1.4. [eg-fields-rational]
Let K be any field, and let K[x] denote the set of polynomials with coefficients in K. This is a ring but not
a field (because the nonzero element 1 +x ∈ K[x] does not have an inverse in K[x], for example). A rational
function over K is an expression of the form p(x)/q(x), where p(x), q(x) ∈ K[x] and q(x) 6= 0. These can be
manipulated in an obvious way: in particular, expressions p(x)/q(x) and r(x)/s(x) are considered to be the
same if and only if p(x)s(x) = r(x)q(x). We write K(x) for the set of all rational functions; this is again a
field.

Lemma 1.5. [lem-domain]
Let K be a field, and let a and b be nonzero elements of K. Then ab 6= 0.

Proof. Suppose for a contradiction that ab = 0. Then we have

abb−1a−1 = 0.b−1a−1 = 0,

but also abb−1a−1 = a.1.a−1 = aa−1 = 1. This means that 0 = 1, which contradicts axiom (e). �

Next recall that Z/nZ is the set of congruence classes modulo n. For each a ∈ Z we have a congruence
class a ∈ Z/nZ, with a = b if and only if a− b is divisible by n, so

Z/nZ = {0, 1, . . . , n− 1}.
There are well-defined operations of addition and multiplication, given by a+ b = a+ b and a b = ab.

Proposition 1.6. [prop-Zn-field]
The set Z/nZ is always a commutative ring (under the operations mentioned above). It is a field if and only
if n is prime.

Proof. The commutative ring axioms for Z/nZ follow directly from those for Z. Next, note that

a has an inverse in Z/nZ

⇔ There exists b ∈ Z/nZ with a b = 1

⇔ There exists b ∈ Z with ab = 1 (mod n)

⇔ There exists b, c ∈ Z with ab+ nc = 1

⇔ a and n are coprime.

On the other hand, a is nonzero in Z/nZ if and only if a is not divisible by n. If n is prime then any number
that is not divisible by n is coprime to n, so whenever a is nonzero, it is invertible. This shows that Z/nZ
is a field. On the other hand, if n is not prime then we can write n = ab for some integers a, b > 1. We find
that a is not divisible by n but it is also not coprime with n, so a is a nonzero element of Z/nZ that is not
invertible, so Z/nZ is not a field. �

Remark 1.7. [rem-Z-pid]
Here we have used various standard facts about divisibility and factorisation of integers. We will not review
these facts in detail or prove them, but we will remark that the proofs are similar to those for divisibility
and factoriasation of polynomials, which are covered in Section 4.

Definition 1.8. [defn-Fp]
If p is prime we write Fp as another notation for Z/pZ. We will omit the bars on elements of Fp unless
necessary for emphasis. For example, the elements of F5 will usually be called 0, 1, 2, 3, 4 rather than
0, 1, 2, 3, 4.

The ideas in Proposition 1.6 can be generalised slightly as follows.

Definition 1.9. [defn-char]
Let K be a field. For any integer n ≥ 0 we write n.1 for the sum 1 + · · ·+ 1 ∈ K (with n terms). If for all
n > 0 we have n.1 6= 0 in K, we say that K has characteristic zero. Otherwise, the characteristic of K is
the smallest n > 0 such that n.1 = 0 in K.

Proposition 1.10. [prop-char]
Let K be a field. Then the characteristic of K is either zero or a prime number.
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Proof. If K has characteristic zero then there is nothing more to say, so we may assume that K has charac-
teristic p > 0. If p is not prime then we can write p = nm for some n,m with 1 < n,m < p. Put a = n.1 and
b = m.1. By definition p is the smallest positive integer with p.1 = 0, so we have a 6= 0 and b 6= 0. It follows
by Lemma 1.5 that ab 6= 0, but ab = p.1 = 0 so this is a contradiction. It follows that p must be prime after
all. �

Example 1.11. [eg-F-four]
Let F4 denote the following set of matrices over F2:

F4 = {[ 0 0
0 0 ] , [ 1 0

0 1 ] , [ 0 1
1 1 ] , [ 1 1

1 0 ]} .
We will allow ourselves to write 0 for the zero matrix [ 0 0

0 0 ] and 1 for the identity matrix [ 1 0
0 1 ]. We also write

α = [ 0 1
1 1 ]. Note that α2 = [ 1 1

1 2 ], which is the same as [ 1 1
1 0 ] because we are working with matrices over F2.

We thus have F4 = {0, 1, α, α2}. One can check that α3 = 1 and thus α4 = α, and also that 1 + α+ α2 = 0.
From this it follows that F4 is closed under the operations of addition and multiplication, which can be
tabulated as follows:

+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α

α α α2 0 1

α2 α2 α 1 0

· 0 1 α α2

0 0 0 0 0

1 0 1 α α2

α 0 α α2 1

α2 0 α2 1 α

From this we read off that every nonzero element of F4 has an inverse, namely 1−1 = 1 and α−1 = α2 and
(α2)−1 = α. This means that F4 is a field.

Remark 1.12. [rem-F-q]
Let p be a prime and n a positive integer. We will see in Section 9 that there is an an essentially unique
finite field with precisely pn different elements; this will be called Fpn . Example 1.11 is of course the case
where p = n = 2 so pn = 4.

Definition 1.13. [defn-subfield]
Let L be a field, and let K be a subset of L. We say that K is a subfield of L if

(a) 0 and 1 are elements of K.
(b) If a, b ∈ K then a+ b ∈ K and −a ∈ K and ab ∈ K.
(c) If a ∈ K and a 6= 0 (so that there exists an inverse a−1 ∈ L) then a−1 ∈ K.

If this holds, it is clear that K is itself a field. We also say that L is an extension of K.

Example 1.14. [eg-QRC]
Q is a subfield of R, which is a subfield of C, which is a subfield of C(x).

We next want to discuss the first of several examples involving square roots of primes. This relies on the
basic fact that such square roots are always irrational: we pause to recall the proof.

Lemma 1.15. [lem-root-p]
If p is prime then

√
p 6∈ Q.

Proof. Suppose for a contradiction that
√
p is rational. We can then write

√
p in the form a/b, where a and

b are integers with b > 0 such that a and b are coprime. We then have (a/b)2 = p in Q, so a2 = pb2 in Z.
This shows that p divides a2, so p must divide a, say a = pc. This gives p2c2 = pb2, so b2 = pc2. This shows
that b2 is divisible by p, so b is divisible by p. Thus a and b have p as a common factor contradicting the
assumption that a and b are coprime. �

Proposition 1.16. Let p be any prime. Then the set

Q(
√
p) = {a+ b

√
p | a, b ∈ Q}

is a subfield of R.
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Proof. We can write 0 as 0 + 0
√
p, and 1 as 1 + 0

√
p, so 0 and 1 are elements of Q(

√
p). Now suppose we

have two elements u, v ∈ Q(
√
p), say u = a+ b

√
p and v = c+ d

√
p with a, b, c, d ∈ Q. We find that

u+ v = (a+ c) + (b+ d)
√
p

uv = (ac+ bdp) + (ad+ bc)
√
p

with a+ c, b+ d, ac+ bdp, ad+ bc ∈ Q, so u+ v, uv ∈ Q(
√
p). Next, suppose that u 6= 0; we must show that

1/u ∈ Q(
√
p). There are two cases to consider, depending on whether b = 0 or not. If b = 0 then u is a

nonzero rational number so 1/u is again a nonzero rational number, so 1/u ∈ Q(
√
p). If b 6= 0 we note that

a/b cannot be ±√p (because
√
p is irrational) so (a/b)2 − p 6= 0, so a2 − pb2 6= 0. It is therefore admissible

to define

w =
a− b√p
a2 − pb2

=

(
a

a2 − pb2

)
+

(
−b

a2 − pb2

)
√
p ∈ Q(

√
p).

If we just expand out uw we get 1, so w = u−1, so u−1 ∈ Q(
√
p) as required. �

Remark 1.17. [rem-not-square]
Here and later in these notes we will mostly focus on the case where p is prime. However, many of the
things that we will prove for Q(

√
p) are also true for Q(

√
d) whenever d is an integer that is not the square

of another integer.

Proposition 1.18. [prop-subfield-meet]
Let K and L be subfields of a field M . Then K ∩ L is also a subfield of M .

Proof. As K is a subfield we have 0, 1 ∈ K, and as L is a subfield we have 0, 1 ∈ L; it follows that 0, 1 ∈ K∩L.
Now suppose that a, b ∈ K ∩ L. As a, b ∈ K and K is a subfield we have a+ b, a− b, ab ∈ K. As a, b ∈ L

and L is a subfield we have a+ b, a− b, ab ∈ L. It follows that a+ b, a− b, ab ∈ K ∩L, so we see that K ∩L
is a subring of M . Now suppose that a ∈ K ∩ L and a 6= 0. As a ∈ K \ {0} and K is a subfield, we see that
a−1 ∈ K. As a ∈ L \ {0} and L is a subfield, we see that a−1 ∈ L. It follows that a−1 ∈ K ∩ L, so we see
that K ∩ L is a subfield as claimed. �

Definition 1.19. [defn-field-hom]
Let R and S be commutative rings. A ring homomorphism from R to S is a function φ : R→ S satisfying

• φ(0) = 0 and φ(1) = 1.
• For all a, b ∈ R we have φ(a+ b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b) in S.

We say that φ is an isomorphism if there is another homomorphism ψ = φ−1 : S → R with ψ(φ(a)) = a for
all a ∈ R, and φ(ψ(b)) = b for all b ∈ S. An isomorphism from R to itself is called an automorphism.

It will turn out that automorphisms of fields are of central importance in Galois theory. We therefore
take some time to exhibit a number of examples.

Example 1.20. [eg-conjugation]
We can define an automorphism φ : C→ C by φ(z) = z, or in other words φ(x+ iy) = x− iy for all x, y ∈ R.

Example 1.21. [eg-quadratic-auto]
We claim that there is an automorphism φ of Q(

√
p) given by φ(a+b

√
p) = a−b√p (for a, b ∈ Q). Indeed, it

is clear that this formula defines a Q-linear map from Q(
√
p) to itself, which satisfies φ(0) = 0 and φ(1) = 1.

Suppose we have elements u = a+ b
√
p and v = c+ d

√
p, with a, b, c, d ∈ Q. We then have

uv = (ac+ bdp) + (ad+ bc)
√
p

φ(uv) = φ((ac+ bdp) + (ad+ bc)
√
p) = (ac+ bdp)− (ad+ bc)

√
p

φ(u)φ(v) = (a− b√p)(c− d√p) = (ac+ bdp)− (ad+ bc)
√
p

so φ(uv) = φ(u)φ(v). This shows that φ is a homomorphism of fields. It is also clear that

φ(φ(a+ b
√
p)) = φ(a− b√p) = a+ b

√
p,

so φ is an inverse for itself, so φ is an automorphism.
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Example 1.22. [eg-mobius-aut]
We can define an automorphism τ : C(x)→ C(x) by τ(r(x)) = r(x+ 1), so for example

τ

(
x2 + 1

x3 − 1

)
=

(x+ 1)2 + 1

(x+ 1)3 − 1
=

x2 + 2x+ 2

x3 + 3x2 + 3x
.

More generally, given any a, b, c, d ∈ C with ad− bc 6= 0 we can define an automorphism θ of C(x) by

θ(r(x)) = r

(
ax+ b

cx+ d

)
.

It can be shown that this construction gives all the automorphisms of C(x) that act as the identity on C.
Thus, the group of such automorphisms is the same as the group of Möbius transformations.

Example 1.23. [eg-generic-quintic-i]
Consider the quintic f(x) = x5 − 6x+ 3. This has five roots in C, approximately as follows:

α1 = −1.670935264

α2 = −0.1181039226− 1.587459162i

α3 = −0.1181039226 + 1.587459162i

α4 = 0.5055012304

α5 = 1.401641879.

Let K be the subfield of C generated by these roots. It turns out that the automorphisms of K are essentially
the same as the permutations of {1, 2, . . . , 5}. For example, corresponding to the transposition (4 5) there
is a unique automorphism φ with φ(α4) = α5 and φ(α5) = α4 and φ(αk) = αk for k = 1, 2, 3. Moreover,
most (but not all) other quintics behave in essentially the same way. All this will be explained with proofs
in Example 7.9.

Example 1.24. [eg-cyclotomic-i]
Fix an integer n > 1, put ζ = e2πi/n ∈ C, and let K be the subfield of C generated by ζ. We will see in
Section 8 that whenever k is coprime to n there is a unique automorphism φk of K that satisfies φk(ζ) = ζk.
Using this we will see that the group of automorphisms of K is isomorphic to the group of invertible elements
in the ring Z/nZ.

Proposition 1.25. [prop-aut-Q]
The only automorphism of Q is the identity, and the only automorphism of R is the identity.

Proof. Let φ be an automorphism of Q. By definition we have φ(0) = 0 and φ(1) = 1. If φ(n) = n for some
n ∈ N then

φ(n+ 1) = φ(n) + φ(1) = n+ 1.

It follows by induction that φ(n) = n for all n ∈ N. We also have n+φ(−n) = φ(n)+φ(−n) = φ(n+(−n)) =
φ(0) = 0, which can be rearranged to give φ(−n) = −φ(n). This shows that φ(a) = a for all a ∈ Z. Next,
an arbitrary rational number q can be written as q = a/b with a, b ∈ Z and b > 0. This gives qb = a so
φ(q)φ(b) = φ(qb) = φ(a), but a, b ∈ Z so φ(a) = a and φ(b) = b, so φ(q)b = a. This rearranges to give
φ(q) = a/b = q, so φ is the identity as claimed.

Now instead let φ be an automorphism of R. Just as before, we see that φ(q) = q for all q ∈ Q. Next,
we claim that if a ≤ b then φ(a) ≤ φ(b). Indeed, if a ≤ b then b − a ≥ 0 so b − a = t2 for some t ∈ R,
or equivalently a + t2 = b. We can apply φ to get φ(a) + φ(t)2 = φ(b), and all squares are nonnegative so
φ(a) ≤ φ(b). Now let r be an arbitrary real number. For any ε > 0 we can choose rational numbers q1 and
q2 such that q1 ≤ r ≤ q2 with q2 − q1 < ε. We can then apply φ, recalling that φ preserves order and acts as
the identity on rational numbers. That gives q1 ≤ φ(r) ≤ q2, which implies that |r − φ(r)| < ε. This holds
for all ε > 0, so we must actually have φ(r) = r as claimed. �

Proposition 1.26. [prop-Hom-C-R]
There are no homomorphisms from C to R.
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Proof. Suppose we had a homomorphism φ : C → R. Put a = φ(i) ∈ R. We could then apply φ to the
equation i2 + 1 = 0 to get a2 + 1 = 0. This is clearly not possible for a real number a, so there cannot be
any such homomorphism φ. �

For the next result we recall the following definitions, which should hopefully be very familiar:

Definition 1.27. [defn-jective]
Let X and Y be sets, and let φ be any function from X to Y .

(a) We say that φ is injective for whenever x, x′ ∈ X and φ(x) = φ(x′), we have x = x′.
(b) We say that φ is surjective if for every element y ∈ Y , there is an element x ∈ X with φ(x) = y.
(c) We say that φ is bijective if it is both injective and surjective.

Remark 1.28. [rem-bijective]
It is standard that φ is bijective if and only if there is an inverse map ψ = φ−1 : Y → X with ψ(φ(x)) = x
for all x ∈ X, and φ(ψ(y)) = y for all y ∈ Y .

Proposition 1.29. [prop-hom-inj]
Let φ : K → L be a field homomorphism.

(a) If a ∈ K× = K \ {0}, then φ(a) ∈ L× and φ(a−1) = φ(a)−1.
(b) The map φ is injective, and the image φ(K) is a subfield of L.

Proof. If a ∈ K is nonzero then we can find an inverse element a−1 ∈ K and we have

φ(a).φ(a−1) = φ(aa−1) = φ(1) = 1.

It follows from this that φ(a) must be nonzero, and φ(a−1) = φ(a)−1 as claimed.
Now suppose we have elements a, b ∈ K with a 6= b. This means that a− b 6= 0, so by the above we have

φ(a− b) 6= 0, but φ(a− b) = φ(a)− φ(b), so we conclude that φ(a) 6= φ(b). This proves that φ is injective.
Next, we have φ(0K) = 0L and φ(1K) = 1L, so 0L and 1L are in the image of φ. If u and v are in the

image of φ then we have u = φ(a) and v = φ(b) for some a, b ∈ K, so u ± v = φ(a ± b) and uv = φ(ab).
This shows that the image of φ is closed under addition, subtraction and multiplication, so it is a subring
of L. Now suppose that u = φ(a) again, and that u 6= 0. It follows that a must be nonzero, and as at the
beginning of this proof we see that φ(a−1) is an inverse for u lying in the image of φ. This completes the
proof that the image is a subfield. �

Remark 1.30. [rem-hom-inj]
If we are studying a problem that involves only one homomorphism φ : K → L, we will often identify K
with φ(K) and thus consider K itself as a subfield of L. This generally leads to more concise and convenient
notation. However, this convention can lead to confusion in cases where we need to consider more than one
homomorphism from K to L, so we will not adopt it everywhere.

Proposition 1.31. [prop-fixed-subfield]
Let H be a set of homomorphisms L→ L, and put

LH = {a ∈ L | φ(a) = a for all φ ∈ H}.
Then LH is a subfield of L.

Proof. For any homomorphism φ, we have φ(0) = 0 and φ(1) = 1. It follows that 0, 1 ∈ LH . Next, suppose
we have a, b ∈ LH , and consider φ ∈ H. As φ is a homomorphism, we have φ(a ± b) = φ(a) ± φ(b). As
a, b ∈ LH we also have φ(a) = a and φ(b) = b, so φ(a ± b) = a ± b. This holds for all φ ∈ H, so we
conclude that a± b ∈ LH . Essentially the same argument shows that ab ∈ LH . Also, if a 6= 0 we see (from
Proposition 1.29(a)) that φ(a−1) = φ(a)−1 = a−1 for all φ ∈ H, so a−1 ∈ LH . This shows that LH is a
subfield. �

Proposition 1.32. [prop-hom-char]

(a) Suppose that there exists a homomorphism φ : K → L. Then K and L have the same characteristic.
(b) Suppose that K has characteristic zero. Then there is a unique homomorphism φ : Q→ K.
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(c) Suppose instead that K has characteristic p > 0. Then there is a unique homomorphism φ : Fp → K.

Proof.

(a) Put I = {n ∈ Z | n.1K = 0} and J = {n ∈ Z | n.1L = 0}. As I determines the characteristic of K,
and J determines the characteristic of L, it will suffice to show that I = J . As φ is a homomorphism
we have φ(1K) = 1L and so φ(n.1K) = n.1L. In particular, if n ∈ I then n.1L = φ(n.1K) = φ(0) = 0
and so n ∈ J ; thus I ≤ J . Conversely, if n ∈ J then φ(n.1K) = n.1L = 0, but φ is injective by
Proposition 1.29, so n.1K = 0, so n ∈ I. This shows that J ≤ I and so I = J as required.

(b) This is related to proposition 1.25. Suppose that K has characteristic zero. We can certainly
define φ0 : N → K by φ0(n) = 1 + · · · + 1 (with n terms). We can then extend this over Z by
φ0(−n) = −φ0(n), and one can check that the resulting map φ0 : Z → K is a homomorphism.
As K has characteristic zero, we know that φ0(b) is invertible for all positive integers b. Any
rational number x ∈ Q can be written as x = a/b for some a, b ∈ Z with b > 0. We then put
φ(x) = φ0(a)φ0(b)−1. This is well-defined, because if x is also c/d then ad = bc in Z, and φ0 : Z→ K
is a homomorphism, so φ0(a)φ0(d) = φ0(b)φ0(c), so φ0(a)φ0(b)−1 = φ0(c)φ0(d)−1. We leave it to
the reader to check that this gives a homomorphism φ : Q → K, and that it is the unique such
homomorphism.

(c) Now suppose instead that K has characteristic p > 0. We again have a unique homomorphism
φ0 : Z → K. By assumption we have φ0(p) = 0, but φ0(k) 6= 0 for 0 < k < p. We would like
to define φ : Fp → K by φ(n) = φ0(n). To check that this is well-defined, we must show that
φ0(n) = φ0(m) whenever n = m. If n = m then we must have n = m + kp for some k ∈ Z
so φ0(n) = φ0(m) + φ0(k)φ0(p) = φ0(m) + φ0(k).0 = φ0(m) as required. This gives a function
φ : Fp → K, and one can easily check that it is a homomorphism, and indeed that it is the only
homomorphism.

�

Exercises

Exercise 1.1. [ex-which-fields]
Which of the following sets (with the usual definition of addition and multiplication) are fields?

K0 = {x ∈ R | x ≥ 0}

K1 = {a+ b
√

2 | a, b ∈ Z}

K2 = {a+ b
√

2 | a, b ∈ Q}

K3 = {a+ b
√

2 | a, b ∈ R}

K4 = {a+ b.21/3 | a, b ∈ Q}
K5 = Q× R = {(a, b) | a ∈ Q and b ∈ R}
K6 = Z/6Z
K7 = Z/7Z

Exercise 1.2. [ex-Ri-field]
For any ring R we can construct a new ring R[i] of “complex numbers over R”: the elements are expressions
a+ bi with a, b ∈ R, and the multiplication rule is

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i,

so that i2 = −1. Prove that F3[i] is a field, but F2[i] and F5[i] are not.

Exercise 1.3. [ex-Qp-subfields]
Show that the only subfields of Q(

√
p) are Q and Q(

√
p).
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Exercise 1.4. [ex-nth-root-aut]
Let n be an odd prime, and a ∈ Q. Show that there are no non-trivial automorphisms of Q(a1/n).

Exercise 1.5. [ex-aut-F-four]
Consider the field F4 from Example 1.11. This has precisely one automorphism that is not the identity; what
is it?

Exercise 1.6. [ex-equaliser]
Let L and M be fields, and suppose we have two homomorphisms φ, ψ : L → M . Show that the set
K = {a ∈ L | φ(a) = ψ(a)} is a subfield of L.

Exercise 1.7. [ex-product-ring]
Let K0 and K1 be fields. Show that K0 ×K1 is a commutative ring but not a field. (You should check a
representative sample of the ring axioms, but not necessarily the whole list.)

2. Vector spaces

Definition 2.1. [defn-vector-space]
A vector space over a field K is a set V , together with an element 0 ∈ V and a definition of what it means
to add elements of V or multiply them by elements of K, such that

(a) If u and v are elements of V , then u+ v is an also an element of V .
(b) If v is an element of V and t is an element of K, then tv is an element of V .
(c) For any elements u, v, w ∈ V and any elements s, t ∈ K, the following equations hold:

(1) 0 + v = v
(2) u+ v = v + u
(3) u+ (v + w) = (u+ v) + w
(4) 0u = 0
(5) 1u = u
(6) (st)u = s(tu)
(7) (s+ t)u = su+ tu
(8) s(u+ v) = su+ sv.

Example 2.2. [eg-Kn-vs]
We write Kn for the set of column vectors of length n with entries in K. We define addition and scalar
multiplication in the obvious way: for n = 4 this reduces to[

u1
u2
u3
u4

]
+

[
v1
v2
v3
v4

]
=

[ u1+v1
u2+v2
u3+v3
u4+v4

]
t

[
u1
u2
u3
u4

]
=

[ tu1
tu2
tu3
tu4

]
.

This makes Kn into a vector space over K.

Example 2.3. [eg-MnK-vs]
We write Mn(K) for the set of n×n matrices with entries in K. We define addition and scalar multiplication
in the obvious way: for n = 2 this reduces to[

a b
c d

]
+
[
e f
g h

]
=
[
a+e b+f
c+g d+h

]
t
[
a b
c d

]
=
[
ta tb
tc td

]
.

This makes Mn(K) into a vector space over K.

Example 2.4. [eg-rational-vs]
Recall that K[x] is the set of all polynomials over K. We can add together two polynomials to get a
new polynomial, or we can multiply a polynomial by an element of K to get a new polynomial, and these
operations satisfy all the usual algebraic rules. Thus, K[x] is a vector space over K. The field K(x) (of
rational functions over K, as in example 1.4) is also a vector space over K.
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Example 2.5. [eg-R-C-vs]
We can add together two complex numbers to get a new complex number, or we can multiply a complex
number by a real number to get a new complex number, and these operations satisfy all the usual algebraic
rules. Thus, C is a vector space over R. It can of course be identified with R2 by the usual rule a+ bi↔ [ ab ].

Example 2.6. [eg-extension-vs]
More generally, whenever L is a field and K is a subfield, we can regard L as a vector space over K.
Example 2.4 includes the case where L = K(x), and Example 2.5 is the case where K = R and L = C.
Examples of this type will be very important in our study of the structure of fields.

Remark 2.7. [rem-different-fields]
The same set can often be regarded as a vector space over many different fields. For example, the set C(x)
can be regarded as a vector space over Q, a vector space over R, a vector space over C or a vector space
over C(x) itself. These different points of view can all be useful for different purposes, and there is no
contradiction between them.

Definition 2.8. [defn-subspace]
Let V be a vector space over a field K. A vector subspace (or just subspace) of V is a subset W ⊆ V such
that

(a) 0 ∈W
(b) Whenever u and v lie in W , the element u + v also lies in W . (In other words, W is closed under

addition.)
(c) Whenever u lies in W and t lies in K, the element tu also lies in W . (In other words, W is closed

under scalar multiplication.)

These conditions mean that W is itself a vector space.

Definition 2.9. [defn-linear]
Let V and W be vector spaces over a field K, and let φ : V −→ W be a function (so for each element v ∈ V
we have an element φ(v) ∈W ). We say that φ is linear if

(a) For any v and v′ in V , we have φ(v + v′) = φ(v) + φ(v′) in W .
(b) For any t ∈ K and v ∈ V we have φ(tv) = tφ(v) in W .

By taking t = v = 0 in (b), we see that a linear map must satisfy φ(0) = 0. Further simple arguments also
show that φ(v − v′) = φ(v)− φ(v′).

Remark 2.10. [rem-linear]
One can check that φ is linear if and only if it satisfies the single axiom that φ(tv+ t′v′) = tφ(v) + tφ(v′) for
all t, t′ ∈ K and v, v′ ∈ V .

Definition 2.11. [defn-ker-img]
Let φ : V →W be a linear map of vector spaces over a field K. We put

ker(φ) = {v ∈ V | φ(v) = 0} ⊆ V
image(φ) = {φ(v) | v ∈ V } ⊆W.

Remark 2.12. [rem-ker-img]
It is not hard to see that ker(φ) and image(φ) are subspaces of V and W respectively. Moreover, φ is injective
iff ker(φ) = 0, and φ is surjective iff image(φ) = W .

Definition 2.13. [defn-basis]
Let K be a field, let V be a vector space over K, and let V = v1, . . . , vn be a finite list of elements of V . We
define a map µV : Kn → V by µV(λ) =

∑
i λivi.

• We say that V is linearly independent if ker(µV) = 0, or equivalently, µV is injective.
• We say that V spans V if image(µV) = V , or equivalently, µV is surjective.
• We say that V is a basis for V if it is linearly independent and it also spans.
• It can be shown that if V has a basis then all bases have the same length; we call this length the

dimension of V over K, and write it as dimK(V ). If V has no basis then we say that the dimension
is infinite.
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We recall without proof some basic facts about these concepts:

Proposition 2.14. [thm-vect-misc]
Let K be a field, and let V be a vector space of dimension d <∞ over K.

(a) Any linearly independent list in V has length at most d.
(b) Any spanning list in V has length at least d.
(c) Any linearly independent list of length d is a basis. More generally, if V is a linearly independent

list of length less than d then we can add extra elements on the end to make a basis.
(d) Any spanning list of length d is also a basis. �

Example 2.15. [eg-dim]
Kn has dimension n over K, and Mn(K) has dimension n2. The spaces K[x] and K(x) have infinite
dimension over K.

Example 2.16. [eg-dim-R-Cn]
C has dimension two over R. If we put

e1 =
[
1
0
0

]
e2 =

[
0
1
0

]
e3 =

[
0
0
1

]
then the list e1, e2, e3 is a basis for C3 over C, so dimC(C3) = 3, as mentioned in the previous example.
However, we can also regard C3 as a vector space over R, and the list e1, e2, e3 does not span C3 over R, so
it is not a basis. Instead, we can use the formula[

x1+iy1
x2+iy2
x3+iy3

]
= x1e1 + y1(ie1) + x2e2 + y2(ie2) + x3e3 + y3(ie3)

to show that the list e1, ie1, e2, ie2, e3, ie3 is a basis for C3 over R, so dimR(C3) = 6. In exactly the same
way, we have dimR(Cn) = 2n for all n ≥ 0.

Remark 2.17. [rem-partial-fractions]
We have set up our definitions so that bases are by definition finite lists. It is also possible to set up a theory
of infinite bases, but this involves some subtleties that we will not take the time to explain. It then works
out that the set X = {xn | n ≥ 0} is a basis for C[x] over C. Moreover, using the Fundamental Theorem of
Algebra (Theorem 4.31) and the theory of partial fractions one can show that the (uncountable) set

X ∪ {(x− λ)−n | λ ∈ C, n > 0}
is a basis for C(x) over C.

Definition 2.18. [defn-extension-degree]
If K is a subfield of L, then we write [L : K] = dimK(L), the dimension of L considered as a vector space
over K. We also say that L is an extension of K, and the number [L : K] is called the degree of the extension.

Definition 2.19. [defn-hom-degree]
For a slightly more general picture, suppose we have two fields K and L and a homomorphism φ : K → L.
Then the image φ(K) is a subfield of L, so we have a (possibly infinite) number [L : φ(K)]. We write deg(φ)
for this, and call it the degree of φ.

Example 2.20. [eg-degrees]
The list 1, i is a basis for C over R, so [C : R] = 2. Similarly, the list 1,

√
p is a basis for Q(

√
p) over Q, so

[Q(
√
p) : Q] = 2. More generally, for any n > 1 we can consider the field K = Q(p1/n) and we find that the

list 1, p1/n, p2/n, . . . , p(n−1)/n is a basis for K over Q, so [K : Q] = n. We can also consider a second prime
q 6= p and the field L = Q(

√
p,
√
q) generated by

√
p and

√
q. We will check in Proposition 7.2 that the list

1,
√
p,
√
q,
√
pq is a basis for L over Q, so [L : Q] = 4.

Example 2.21. [eg-infinite-degree]
On the other hand, it can be shown that [R : Q] = ∞. One proof of this uses the theory of countability:
standard methods show that Qn is countable for all n but R is uncountable, so R cannot be isomorphic to
Qn for any n. Another proof uses the fact (which we shall not justify) that the powers 1, e, e2, . . . (where
e ' 2.71828 is the base of natural logarithms) are linearly independent over Q. A third proof uses Section 10
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below. It follows from results given there that the list
√

2,
√

3,
√

7,
√

11, . . . (of square roots of all primes) is
linearly independent over Q, which would not be possible if [R : Q] were finite.

Proposition 2.22. [prop-degree-product]
If K is a subfield of L and L is a subfield of M then [M : L][L : K] = [M : K]. More precisely, if α1, . . . , αn
is a basis for L over K (so that [L : K] = n) and β1, . . . , βm is a basis for M over L (so that [M : L] = m)
then the nm elements αiβj form a basis for M over K.

Remark 2.23. [rem-degree-product]
We will prove this under the assumption that m and n are finite. It is also true that if L has infinite
dimension over K or M has infinite dimension over L then M has infinite dimension over K. We leave this
as an exercise.

Proof. Consider an element u ∈M . As the elements βj spanM over L, there must exist elements v1, . . . , vm ∈
L with u =

∑
j vjβj . Now vj ∈ L and the elements α1, . . . , αn span L over K, so there must exist elements

w1j , . . . , unj ∈ K with

vj = w1jα1 + w2jα2 + · · ·+ wnjαn =

n∑
i=1

wijαi.

It follows that

u =

m∑
j=1

vjβj =

m∑
j=1

n∑
i=1

wijαiβj .

This shows that u is a K-linear combination of the elements αiβj , so these elements span M over K.
We now need to prove that these elements are linearly independent. This essentially just reverses the

steps already taken. In detail, a linear relation between the elements αiβj is a system of elements wij ∈ K
for which

∑
i,j wijαiβj is zero. If we put vj =

∑
i wijαi then the relation can be written as

∑
j vjβj = 0.

Here vj ∈ L and the elements βj are assumed to be linearly independent over L, so we must have vj = 0
for all j. This means that

∑
i wijαi = 0, and here wij ∈ K and the elements αi are assumed to be linearly

independent over K, so we must have wij = 0 for all i and j, so our original linear relation between the
elements αiβj is the trivial relation. �

We can restate the same fact in different notation as follows:

Corollary 2.24. [cor-degree-product]

Let K, L and M be fields, and let K
φ−→ L

ψ−→M be homomorphisms of fields. Then deg(ψφ) = deg(ψ) deg(ψ).

Proof. Put K ′ = φ(K) ≤ L and K ′′ = ψ(K ′) ≤M and L′′ = ψ(L) ≤M , so

deg(φ) = [L : K ′] deg(ψ) = [M : L′′] deg(ψφ) = [M : K ′′].

The previous proposition tells us that [M : K ′′] = [M : L′′][L′′ : K ′′], so deg(ψφ) = deg(ψ)[L′′ : K ′′], so it
will be enough to prove that [L′′ : K ′′] = [L : K ′]. The homomorphism ψ gives an isomorphism L→ L′′ that
carries K ′ to K ′′. It is straightforward to check that a list α1, . . . , αd is a basis for L over K ′ if and only if
ψ(α1), . . . , ψ(αd) is a basis for L′′ over K ′′, and this means that [L′′ : K ′′] = [L : K ′] as claimed.

The fields considered can be displayed as follows:

M

L

ψ
=={{{{{{{{{ '

ψ
// L′′
OO ⊆

OO

K

φ

>>}}}}}}}} '
φ
// K ′
OO ⊆

OO

'
ψ
// K ′′
OO ⊆

OO

�

Proposition 2.25. [prop-deg-one]
A homomorphism φ : K → L is an isomorphism if and only if deg(φ) = 1.
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Proof. Put K ′ = φ(K) as before, so φ gives an isomorphism K → K ′, so the question is whether K ′ = L or
not. If deg(φ) = 1, then L has dimension one over K ′, so any nonzero element of L gives a basis for L over
K ′. In particular, the element 1 gives a basis for L over K ′, so L = K ′.1 = K ′ as required. The converse is
also clear. �

Exercises

Exercise 2.1. [ex-which-linear]
Which of the following maps are C-linear?

• The map φ0 : M2(C)→M2(C) given by φ0(A) = A2.
• The map φ1 : M2(C)→M2(C) given by φ1(A) = A−AT .
• The map φ2 : C2 → C[x] given by φ2 [ ab ] = ax+ bx2

• The map φ3 : C2 → C[x] given by φ3 [ ab ] = ax+ (bx)2

• The map φ4 : C[x]→ C2 given by φ4(f(x)) =
[
f(2)
f(−2)

]
• The map φ5 : C[t]→ C given by φ(f(x)) = f(0)f(1)f(2).

Exercise 2.2. [ex-degrees-possible]
Do there exist fields K,L,M with Q < K < M and Q < L < M and degrees as follows?

[K : Q] = 3 [L : Q] = 4 [M : L] = 5 [M : K] = 7.

Exercise 2.3. [ex-find-degrees]
Suppose we have fields K < L < M < N (all different) such that [M : K] = 6 and [N : L] = 15. Find
[L : K], [M : L] and [N : M ].

Exercise 2.4. [ex-basis-i]
Recall that the trace of a square matrix is the sum of the diagonal entries. Find a basis for the space

V = {M ∈M3(C) |MT = M and trace(M) = 0}

(considered as a vector space over C).

Exercise 2.5. [ex-matrix-subspaces]
Recall that for a matrix A =

[
a b
c d

]
∈M2(C), we write A† =

[
a c
b d

]
. Put V = {A ∈M2(C) | A+A† = 0}.

(a) Show that if we consider M2(C) as a vector space over C, then V is not a subspace.
(b) Show that if we consider M2(C) as a vector space over R, then V is a subspace of dimension 4.

Exercise 2.6. [ex-rational-extension]
Let L be the field C(x) of rational functions of x, and let K be the subfield C(xn). Prove that [L : K] = n.

3. Ideals and quotient rings

Definition 3.1. [defn-ideal]
Let R be a commutative ring. An ideal in R is a subset I ⊆ R such that

(a) 0 ∈ I
(b) If a, b ∈ I then a+ b ∈ I
(c) If a ∈ R and b ∈ I then ab ∈ I.

For any element x ∈ R, the set Rx = {ax | a ∈ R} is an ideal in R; ideals of this form are called principal
ideals, and we say that x is a generator of Rx.
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Remark 3.2. [rem-ideal-subtract]
If b ∈ I then −b = (−1).b ∈ I by the case a = −1 of axiom (c). It follows that if a, b ∈ I then a − b =
a+ (−b) ∈ I by axiom (b).

Example 3.3. [eg-silly-ideals]
In any ring R, the subsets {0} and R itself are ideals. These are both principal, because {0} = R.0 and
R = R.1.

Example 3.4. [eg-field-ideals]
Now let K be a field. We claim that {0} and K are the only ideals in K. Indeed, let I be an ideal that
is different from {0}. Then there is a nonzero element b ∈ I. As K is a field, there is an inverse element
b−1 ∈ K. Now Axiom (c) tells us that b−1b ∈ I, or in other words 1 ∈ I. Now for any element a ∈ K we
can use Axiom (c) again to see that a.1 ∈ I, or in other words a ∈ I; so I = K.

Example 3.5. [eg-poly-ideals]
Consider the following subsets of R[x]:

I0 = {f(x) | f(0) = 1}
I1 = {f(x) | f(0) = f(1)}
I2 = {f(x) | f(0)f(1) = 0}
I3 = {f(x) | f(0) = f ′(0) = f(1) = 0}.

We claim that I3 is an ideal, but that the other sets are not. Indeed, the zero polynomial does not lie in I0,
so Axiom (a) is violated. The constant polynomial 1 lies in I1, but x.1 is not in I1, so Axiom (c) is violated.
The polynomials x and 1− x both lie in I2 but x+ (1− x) does not, so Axiom (b) is violated. However, it
is clear that 0 ∈ I3. If f(x), g(x) ∈ I3 and h(x) = f(x) + g(x) then

h(0) = f(0) + g(0) = 0 + 0 = 0

h′(0) = f ′(0) + g′(0) = 0 + 0 = 0

h(1) = f(1) + g(1) = 0 + 0 = 0

so h ∈ I3. Similarly, if f(x) ∈ R[x] and g(x) ∈ I3 and h(x) = f(x)g(x) then g(0) = g′(0) = g(1) = 0 and
h′(x) = f ′(x)g(x) + f(x)g′(x) so

h(0) = f(0)g(0) = f(0).0 = 0

h′(0) = f ′(0)g(0) + f(0)g′(0) = f ′(0).0 + f(0).0 = 0

h(1) = f(1)g(1) = f(1).0 = 0,

so again h ∈ I3. Thus all axioms are satisfied and I3 is an ideal. In fact it is not hard to see that
I3 = R[x].(x3 − x2), so I3 is a principal ideal.

Proposition 3.6. [prop-ker-ideal]
Let φ : R → S be a homomorphism of rings, and put ker(φ) = {a ∈ R | φ(a) = 0}. Then ker(φ) is an ideal
in R. Moreover, φ is injective if and only if ker(φ) = {0}.
Proof. As φ is a homomorphism we have φ(0) = 0, so 0 ∈ ker(φ). Now suppose that a, b ∈ ker(φ). We then
have φ(a) = φ(b) = 0, so φ(a+ b) = φ(a) + φ(b) = 0 + 0 = 0, so a+ b ∈ ker(φ). Suppose instead that a ∈ R
and b ∈ ker(φ). We then have φ(b) = 0 and so φ(ab) = φ(a)φ(b) = φ(a).0 = 0, so ab ∈ ker(φ). This shows
that ker(φ) is an ideal as claimed.

Now suppose that φ is injective. If a ∈ ker(φ) then we have φ(a) = 0 = φ(0), so by injectivity we have
a = 0; thus ker(φ) = {0}.

Conversely, suppose we have ker(φ) = {0}. If a, b ∈ R satisfy φ(a) = φ(b), then φ(a−b) = φ(a)−φ(b) = 0,
so a− b ∈ ker(φ) = {0}, so a− b = 0, so a = b. This shows that φ is injective as claimed. �

Proposition 3.7. [prop-ideal-ops]
Let R be a commutative ring, and let I and J be ideals in R. Put

I + J = {a ∈ R | a = u+ v for some u ∈ I and v ∈ J}.
Then I + J and I ∩ J are both ideals in R.
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Proof. We first consider I ∩ J . As I and J are ideals we have 0 ∈ I and 0 ∈ J , so 0 ∈ I ∩ J , so Axiom (a) is
satisfied. Now suppose that a, b ∈ I ∩ J . As a, b ∈ I and I is an ideal we have a+ b ∈ I. As a, b ∈ J and J
is an ideal we have a+ b ∈ J . Thus a+ b ∈ I ∩ J , so Axiom (b) is satisfied. Now suppose instead that a ∈ R
and b ∈ I ∩J . As a ∈ R and b ∈ I and I is an ideal we see that ab ∈ I. As a ∈ R and b ∈ J and J is an ideal
we also have ab ∈ J . It follows that ab ∈ I ∩ J , so Axiom (c) is satisfied. Thus I ∩ J is an ideal as claimed.

Now consider I + J . We can write 0 as 0 + 0 with 0 ∈ I and 0 ∈ J , so 0 ∈ I + J , so Axiom (a) is satisfied.
Now suppose that a, b ∈ I + J . As a ∈ I + J we can write a = u+ v for some u ∈ I and v ∈ J . Similarly we
can write b = x+ y for some x ∈ I and y ∈ J . We now have a+ b = u+ v+ x+ y = (u+ x) + (v+ y). Here
u + x ∈ I and v + y ∈ J , so we see that a + b ∈ I + J , so Axiom (b) is satisfied. Finally, suppose instead
that a ∈ R and b ∈ I + J . We can write b = x + y as before, with x ∈ I and y ∈ J . As I is an ideal we
have ax ∈ I, and as J is an ideal we have ay ∈ J . We can write ab as ax + ay with ax ∈ I and ay ∈ J , so
ab ∈ I + J . Thus Axiom (c) is satisfied and I + J is an ideal. �

Definition 3.8. [defn-R-mod-I]
Let R be a commutative ring, and let I be an ideal in R. For any a ∈ R we put a+ I = {a+ b | b ∈ I} ⊆ R.
A coset of I in R is a set of the form a+ I for some a ∈ R. We write R/I for the set of all cosets. We define
a map π : R→ R/I by π(a) = a+ I.

Proposition 3.9. [prop-R-mod-I]

(a) If a − b ∈ I then the cosets π(a) = a + I and π(b) = b + I are the same; but if a − b 6∈ I then they
are disjoint.

(b) The set R/I has a unique ring structure such that π is a homomorphism.

Proof. (a) First suppose that the element a − b lies in I. Then any element of a + I can be written as
a+ x for some x ∈ I, but a+ x = b+ ((a− b) + x) with (a− b) + x ∈ I, so a+ x ∈ b+ I. This shows
that a + I ⊆ b + I, and a symmetrical argument shows that b + I ⊆ a + I, so a + I = b + I. Next
suppose that a+ I and b+ I are not disjoint, so we can choose an element u ∈ (a+ I) ∩ (b+ I). As
u ∈ a+ I we have u = a+ x for some x ∈ I. As u ∈ b+ I we have u = b+ y for some y ∈ I. We now
see that a+ x = b+ y, which can be rearranged as a− b = y− x. Here x and y lie in I so y− x ∈ I,
so a− b ∈ I. As we argued above, this means that in fact a+ I = b+ I.

(b) Suppose that A,B ∈ R/I, so A and B are subsets of R. We define

0R/I = π(0) = I

1R/I = π(1) = 1 + I

A+B = {x+ y | x ∈ A and y ∈ B}
AB = {xy + t | x ∈ A and y ∈ B and t ∈ I}.

We now claim A + B is always a coset. Indeed, the sets A and B are cosets by assumption, so we
can choose a and b such that A = a+ I = π(a) and B = b+ I = π(b). We claim more precisely that
A + B = π(a + b). Indeed, every element x ∈ A can be written as x = a + u for some u ∈ I, and
every element y ∈ B can be written as y+ v for some v ∈ I. It follows that x+ y = (a+ b) + (u+ v)
with u + v ∈ I, so A + B ⊆ a + b + I = π(a + b). Conversely, if z ∈ π(a + b) then z = a + b + w
for some w ∈ I, and so z = (a+ w) + (b+ 0) ∈ A+ B; so π(a+ b) = A+ B as required. Using the
special case b = 0 we see in particular that A+ 0R/I = A.

Similarly, we claim that AB is a coset, namely AB = π(ab). Indeed, any element of AB can
be written as xy + t for some x ∈ A and y ∈ B and t ∈ I. Equivalently, it can be written as
(a+ u)(b+ v) + t with u, v, t ∈ I, and thus as ab+ (ub+ av+ uv+ t) with ub+ av+ uv+ t ∈ I. This
shows that AB ⊆ π(ab). Conversely, any element z ∈ π(ab) can be written as ab+ t for some t ∈ I,
and a ∈ A and b ∈ B so ab + t ∈ AB. This shows that π(ab) = AB as claimed. Using the special
case b = 1 we see in particular that A.1R/I = A.

We next claim that these operations make R/I into a ring. Consider for example the distributive
law: we must show that if A,B,C ∈ R/I then A(B + C) = AB + AC. As A, B and C are cosets,
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there must exist elements a, b, c ∈ R such that A = π(a) and B = π(b) and C = π(c). From what
we proved above, we then have B + C = π(b+ c) and then

A(B + C) = π(a)π(b+ c) = π(a(b+ c)) = π(ab+ ac)

= π(ab) + π(ac) = π(a)π(b) + π(a)π(c) = AB +AC.

All the other axioms are obvious or can be proved in the same way.
We have shown that π(0) = 0 and π(1) = 1 and π(a+ b) = π(a) + π(b) and π(ab) = π(a)π(b), so

π : R→ R/I is a homomorphism of rings. We leave it to the reader to check that our ring structure
is the unique one with this property.

�

Proposition 3.10. [prop-induced-hom]
Let φ : R → S be a homomorphism of rings, and let I be an ideal in R such that φ(a) = 0 for all a ∈ I (so
I ⊆ ker(φ)). Then there is a unique homomorphism φ : R/I → S with φ ◦ π = φ : R→ S. Moreover, if φ is
surjective and ker(φ) = I then φ is an isomorphism.

The rings and homomorphisms under consideration can be displayed in a diagram as follows:

R
φ //

π

��

S

R/I
φ

>>||||||||

The equation φ ◦ π = φ says that the two routes around the diagram from R to S are actually the same.
The standard terminology for this is to say that the diagram commutes.

Proof. Suppose that A ∈ R/I, so A ⊆ R. If a, b ∈ A then Proposition 3.9 tells us that a − b ∈ I, so
φ(a) − φ(b) = φ(a − b) = 0, so φ(a) = φ(b). There is thus a well-defined map φ : R/I → S given by
φ(A) = φ(a) for any a ∈ A. For a general element x ∈ R we have x ∈ π(x) ∈ R/I, so φ(π(x)) = φ(x), which
shows that φ ◦ π = φ. We now claim that φ is a homomorphism. Indeed, the additive and multiplicative
identity elements in R/I are π(0) and π(1), and using φ ◦ π = φ we see that these are sent by φ to 0 and 1
in S. Next, consider elements A,B ∈ R/I. We can then choose a, b ∈ R with A = π(a) and B = π(b). It
then follows that A+B = π(a+ b), and so

φ(A+B) = φ(π(a+ b)) = φ(a+ b) = φ(a) + φ(b) = φ(π(a)) + φ(π(b)) = φ(A) + φ(B).

A similar argument shows that φ(AB) = φ(A)φ(B), so φ is a homomorphism as claimed.
Now suppose that φ is surjective and ker(φ) = I. For each c ∈ S, we put ψ(c) = {a ∈ R | φ(a) = c} ⊆ R.

We claim that ψ(c) is a coset of I. Indeed, as φ is surjective we see that ψ(c) is nonempty, so we can choose
a ∈ ψ(c), so φ(a) = c. If u ∈ I then φ(u) = 0 so φ(a + u) = φ(a) + φ(u) = c + 0 = c, so a + u ∈ ψ(c). It
follows that a+ I ⊆ ψ(c). Conversely, if b ∈ ψ(c) then φ(b) = c = φ(a), so φ(b−a) = φ(b)−φ(a) = c− c = 0,
so b− a ∈ ker(φ) = I, so b ∈ a+ I. This shows that ψ(c) ∈ R/I, so we have defined a function ψ : S → R/I.
One can see directly from the definitions that ψ(φ(A)) = A and φ(ψ(c)) = c, so ψ is inverse to φ. This
means that φ is a bijective homomorphism and thus an isomorphism. �

Exercises

Exercise 3.1. [ex-F-four-ideal]
Find an ideal I ≤ Z[x] such that Z[x]/I is isomorphic to the field F4 in Example 1.11.

Exercise 3.2. [ex-ideals-twelve]
Find all the principal ideals in the ring Z/12Z.
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4. Polynomials over fields

Definition 4.1. [defn-poly-degree]

Consider a polynomial f(t) =
∑d
i=0 ait

i. The degree of f(t) is the largest d for which ad is nonzero. (This
is only meaningful if f(t) is nonzero; the degree of the zero polynomial is undefined.) If this coefficient ad is
equal to one, we say that f(t) is monic.

Remark 4.2. [rem-degree]
We now have three different (but related) meanings for the word “degree”. The degree [L : K] of a field
extension was introduced in Definition 2.18, and the degree of a homomorphism φ : K → L in Definition 2.19.
These are related by the fact that deg(φ) = [L : φ(K)], and [L : K] is the degree of the inclusion homomor-
phism K → L. The connection between these and Definition 4.1 will emerge in Section 5.

Example 4.3. [eg-poly-degree]
The polynomial f(t) = 1 + 2t + 3t3 ∈ Q[t] has degree 3 and is not monic. The polynomial i + t6 ∈ C[t] is
monic and has degree 6.

Lemma 4.4. [lem-deg-prod]
If f(t) and g(t) are nonzero polynomials over a field K then f(t)g(t) 6= 0 and deg(f(t)g(t)) = deg(f(t)) +
deg(g(t)). Moreover, if f(t) and g(t) are both monic then so is f(t)g(t).

Proof. Put d = deg(f(t)) and e = deg(g(t)), so f(t) = atd + lower terms and g(t) = bte + lower terms
for some a, b ∈ K with a 6= 0 and b 6= 0. We then have f(t)g(t) = abtd+e + lower terms, and ab 6= 0 by
Lemma 1.5, so f(t)g(t) 6= 0 and deg(f(t)g(t)) = d+ e. The claim about the monic case is also clear now. �

Proposition 4.5. [prop-poly-division]
Let f(t) and g(t) be polynomials over a field K, with f(t) 6= 0. Then there is a unique pair of polynomials
(q(t), r(t)) such that

• g(t) = f(t)q(t) + r(t)
• Either r(t) = 0 or deg(r(t)) < deg(f(t)).

We can rephrase this result as saying that q(t) and r(t) are the quotient and remainder when g(t) is
divided by f(t). One way to prove it would be to explain and analyse the whole process of long division of
polynomials. The proof below is essentially equivalent to that, but arranged a little differently. We will only
analyse the first step of long division explicitly, and the remaining steps will be handled implicitly by the
inductive structure of the argument.

Proof of Proposition 4.5. First suppose we have pairs (q1(t), r1(t)) and (q2(t), r2(t)) that both have the stated
properties. We then have

f(t)q1(t) + r1(t) = g(t) = f(t)q2(t) + r2(t),

which can be rearranged to give
f(t)(q1(t)− q2(t)) = r2(t)− r1(t).

Suppose that q1(t)− q2(t) 6= 0. It follows that the left hand side is nonzero, with degree at least as large as
deg(f(t)), but the right hand side is either zero or has degree less than deg(f(t)), which is a contradiction. We
must therefore have q1(t)− q2(t) = 0, and thus r1(t)− r2(t) = −f(t)(q1(t)− q2(t)) = 0, so (q1, r1) = (q2, r2).
Thus, the pair (q, r) is unique if it exists. In the case g(t) = 0 we have q(t) = r(t) = 0.

From now on we assume that g(t) 6= 0, and work by induction on the degree of g(t). Put m = deg(f(t)).
If deg(g(t)) < m then we can take q(t) = 0 and r(t) = g(t); this starts the induction. Now suppose that
deg(g(t)) = n ≥ m. We then have g(t) = atn + lower terms and f(t) = btm + lower terms for some
nonzero constants a, b ∈ K. Put q0(t) = ab−1tn−m and g1(t) = g(t)− q0(t)f(t). The coefficient of tn in g1(t)
is a−ab−1b = 0, so g1(t) is zero or has degree less than n. By induction, we can write g1(t) = f(t)q1(t)+r(t)
for some q1(t) and r1(t), where r(t) is zero or has degree less than m. Now put q(t) = q0(t) + q1(t) and
observe that g(t) = f(t)q(t) + r(t) as required. �

Proposition 4.6. [prop-poly-subfield]
Let L be a field and let K be a subfield. Suppose we have polynomials f(t) ∈ K[t] \ {0} and g(t) ∈ L[t] such
that f(t)g(t) ∈ K[t]. Then g(t) ∈ K[t] also.

16



We will give two proofs of this. The first just considers the coefficients directly:

Proof. The claim is clear if g(t) = 0, so we may assume that g(t) 6= 0. Put h(t) = f(t)g(t) ∈ K[t]. We can
write

f(t) =
∑
i≥0

aix
i

g(t) =
∑
j≥0

bjx
j

h(t) =
∑
k≥0

ckx
k,

where ai ∈ K and bj ∈ L and ck ∈ K. The relation f(t)g(t) = h(t) reduces to ck =
∑
i+j=k aibj . Let m be

the smallest integer such that am 6= 0. We then find that c0 = · · · = cm−1 = 0 and

cm = amb0

cm+1 = am+1b0 + amb1

cm+2 = am+2b0 + am+1b1 + amb2

and so on. This can be rearranged as

b0 = cm/am

b1 = (cm+1 − am+1b0)/am

b2 = (cm+2 − am+2b0 − am+1b1)/am

and so on. As am, cm ∈ K the first line shows that b0 ∈ K. This means that everything appearing on the
right on the second line is in K, so b1 ∈ K. This means that everything appearing on the right on the third
line is in K, so b2 ∈ K. By continuing in the same way, we see that bj ∈ K for all j, so g(t) ∈ K[t] as
claimed. �

Another approach is to compare the division algorithm in K[t] with the division algorithm in L[t] and
argue that they must give the same answer. Details are as follows:

Alternative proof. Put h(t) = f(t)g(t) ∈ K[t]. By the proposition (applied to K[t]), there is a unique pair
(q(t), r(t)) of polynomials in K[t] with h(t) = f(t)q(t) + r(t) and r(t) = 0 or deg(r(t)) < deg(f(t)). As we
also have h(t) = f(t)g(t) we see that f(t)(g(t)− q(t)) = r(t). If g(t)− q(t) were nonzero then we would have
deg(r(t)) = deg(g(t)−q(t))+deg(f(t)) ≥ deg(f(t)), contrary to assumption. So we must have g(t)−q(t) = 0,
so g(t) = q(t). By construction q(t) ∈ K[t], so g(t) ∈ K[t] as claimed. �

Proposition 4.7. [prop-Kx-pid]
Let K be a field, and let I be an ideal in K[x]. Then I is principal. More precisely, we either have I = {0}
or there is a unique monic polynomial f(x) such that I = K[x].f(x).

Proof. If I = {0} then there is nothing more that we need to say, so suppose that I 6= {0}. Then I contains

some nonzero polynomials, each of which has a well-defined degree. Let f̃(x) be a nonzero polynomial

in I whose degree is as small as possible. Put d = deg(f̃(x)), so f̃(x) = axd + lower terms for some

nonzero element a ∈ K. Put f(x) = a−1f̃(x), so f(x) is a monic polynomial of degree d. The constant

polynomial a−1 is an element of K[x], and f̃(x) ∈ I, so Axiom (c) tells us that f(x) ∈ I. It also follows
using Axiom (c) that every multiple of f(x) lies in I, so K[x].f(x) ⊆ I. Conversely, let g(x) be an arbitrary
element of I. By Proposition 4.5 we have g(x) = f(x)q(x) + r(x) for some q(x), r(x) ∈ K[x] with r(x) = 0
or deg(r(x)) < d. Now r(x) = g(x) + (−q(x)).f(x). Using Axiom (c) we see that (−q(x)).f(x) ∈ I, and
also g(x) ∈ I by assumption, so r(x) ∈ I by Axiom (b). Now f(x) was chosen to have minimal degree
among the nonzero elements of I, so we cannot have deg(r(x)) < d, so we must have r(x) = 0. The
equation g(x) = f(x)q(x) + r(x) therefore reduces to g(x) = f(x)q(x), so g(x) ∈ K[x].f(x). This shows that
I ⊆ K[x].f(x) and we have already proved the reverse inclusion, so I = K[x].f(x) as claimed.

All that is left is to prove that f(x) is the unique monic polynomial that generates I. Suppose that we
also have I = K[x].g(x) for some monic polynomial g(x), with deg(g(x)) = e say. Then certainly g(x) ∈ I, so
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as above we have g(x) = f(x)q(x) for some polynomial q(x). By Lemma 4.4 we have e− d = deg(q(x)) ≥ 0,
so e ≥ d. Similarly, we have f(x) ∈ I = K[x].g(x), so we must have f(x) = g(x)p(x) for some polynomial
p(x). By Lemma 4.4 again we have d − e = deg(p(x)) ≥ 0, so d ≥ e. It now follows that d = e and
deg(p(x)) = deg(q(x)) = 0, so p and q are constants. As f(x) is monic and p.f(x) = g(x) is also monic, we
must have p = 1, so f(x) = g(x) as required. �

Definition 4.8. [defn-gcd]
Let K be a field, and let f(x) and g(x) be nonzero polynomials in K[x].

(a) The least common multiple of f(x) and g(x) is the monic generator of the ideal K[x].f(x)∩K[x].g(x).
We write lcm(f(x), g(x)) for this polynomial.

(b) The greatest common divisor of f(x) and g(x) is the monic generator of the ideal K[x].f(x) +
K[x].g(x). We write gcd(f(x), g(x)) for this polynomial.

(Proposition 3.7 shows that the sets considered really are ideals.)

Proposition 4.9. [prop-gcd]
Let f(x) and g(x) be as above.

(a) The polynomial lcm(f(x), g(x)) is divisible by both f(x) and g(x). Moreover, is h(x) is another
polynomial that is divisible by both f(x) and g(x), then h(x) is also divisible by lcm(f(x), g(x)).

(b) Both f(x) and g(x) are divisible by gcd(f(x), g(x)). Moreover, if k(x) is another polynomial such
that both f(x) and g(x) are divisible by k(x), then gcd(f(x), g(x)) is divisible by k(x).

(c) If we let f(x) and g(x) be the polynomials such that f(x) = f(x) gcd(f(x), g(x)) and g(x) =
g(x) gcd(f(x), g(x)), then

lcm(f(x), g(x)) = f(x)g(x) gcd(f(x), g(x)) = f(x)g(x) = f(x)g(x).

Proof. For brevity we will write p = lcm(f, g) and q = gcd(f, g).
By the definition of p we have K[x]f ∩ K[x]g = K[x]p. In particular, we have p ∈ K[x]f ∩ K[x]g, so

we can write p = sf = tg for some s, t ∈ K[x]. Moreover, if h is also divisible by both f and g then
h ∈ K[x]f ∩K[x]g = K[x]p so h is divisible by p. This proves (a).

Next, we also have q ∈ K[x]q = K[x]f + K[x]g, so we can write q = mf + ng for some m,n ∈ K[x].
Moreover, as f = f + 0 ∈ K[x]f +K[x]g = K[x]q, we have f = fq for some polynomial f ∈ K[x]. Similarly,
we have g = gq for some g ∈ K[x].

Now suppose we have another polynomial k such that both f and g are divisible by k, say f = uk and
g = vk. We then have q = mf + ng = muk + nvk = (mu+ nv)k, so q is divisible by k. This proves (b).

Note also that we have q = mf + ng = mfq + ngq, so (mf + ng − 1)q = 0. As q 6= 0 we can deduce
(using Lemma 4.4) that mf + ng − 1 = 0, so mf + ng = 1. We can also rewrite the equations p = sf = tg
as p = sfq = tgq.

Now consider the polynomial r = fgq = fg = fg. This is visibly a common multiple of f and g, so it
must be a multiple of p. Now multiply the equation 1 = mf + ng by p and use p = sfq = tgq to get

p = mfp+ ngp = mftgq + ngsfq = (mt+ ns)fgq = (mt+ ns)r.

In particular, we see that p is a multiple of r. As p and r are monic polynomials and are multiples of each
other, they must be the same. This proves (c). �

Remark 4.10. The gcd of two polynomials f0(x) and f1(x) can be calculated by the following procedure,
called the Euclidean algorithm. We may assume that deg(f1(x)) ≤ deg(f0(x)) (otherwise just exchange
the two polynomials) and that both polynomials are monic (otherwise just multiply by suitable constants).
Suppose that we have defined f0(x), . . . , fm(x), and fm(x) 6= 0. We then write fm−1(x) = fm(x)q(x) + r(x),
with r(x) = 0 or deg(r(x)) < deg(fm(x)). If r(x) 6= 0 then we define fm+1(x) to be r(x) divided by its top
coefficient (so that fm+1(x) is monic). This ensures that the ideal generated by fm+1(x) and fm(x) is the
same as the ideal generated by fm(x) and fm−1(x). We then continue the procedure in the same way. On
the other hand, if r(x) = 0 then the required gcd is just fm(x).

Definition 4.11. [defn-irreducible]
Let K be a field. A nonconstant polynomial p(x) ∈ K[x] is reducible over K if it can be written as
p(x) = f(x)g(x) with deg(f(x)) > 0 and deg(g(x)) > 0. If not, we say that p(x) is irreducible over K. We
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write PK (or just P, if K is understood from the context) for the set of all irreducible monic polynomials
over K.

Remark 4.12. [rem-irreducible-monic]
Suppose that p(x) is a monic polynomial of degree d, and that p(x) = f(x)g(x). If the leading term of f(x)
is axk, then the leading term of g(x) must be a−1xd−k. It follows that the polynomials f(x) = a−1f(x)
and g(x) = ag(x) are both monic, and they satisfy p(x) = f(x)g(x). Conversely, if p(x) has no factorisation
p(x) = f(x)g(x) with f(x) and g(x) monic and nonconstant, then p(x) is irreducible.

Example 4.13. [eg-linear-irreducible]
Any polynomial p(x) = ax+ b of degree one is irreducible. Indeed, if deg(f(x)) ≥ 1 and deg(g(x)) ≥ 1 then
f(x)g(x) has degree at least two and so cannot be equal to p(x).

Example 4.14. [eg-misc-irreducible]
The polynomial p(x) = x2 + 1 is reducible over C, because it can be factored as p(x) = (x + i)(x − i).
However, we claim that p(x) is irreducible over R. Indeed, by Remark 4.12, it is enough to show that there
is no factorisation p(x) = (x + a)(x + b) with a, b ∈ R. If there were such a factorisation, we would have
p(−a) = (−a+ a)(−a+ b) = 0, but also p(−a) = (−a)2 + 1 = a2 + 1, so we would have a2 + 1 = 0, which is
impossible for a ∈ R. Thus p(x) is irreducible after all.

We next discuss Eisenstein’s criterion, which is a useful test for irreducibility of polynomials over Q.

Definition 4.15. [defn-eisenstein]
Let p be a prime number. An Eisenstein polynomial for p is a polynomial q(x) = a0+a1x+· · ·+ad−1xd−1+xd

such that

(a) All the coefficients a0, . . . , ad−1 are integers, and are divisible by p.
(b) a0 is not divisible by p2.

Proposition 4.16. [prop-eisenstein]
If q(x) is an Eisenstein polynomial for some prime p, then q(x) is irreducible over Q.

Before proving this, we will need some preliminary definitions and auxiliary results. Note that the
proposition makes it easy to generate many examples of irreducible polynomials over Q. For example
x11 + 10x2 − 25x+ 35 is Eisenstein for p = 5 and so is irreducible over Q.

Remark 4.17. [rem-eisenstein-shift]
For c ∈ K and f(x) ∈ K[x], it is easy to see that f(x) is reducible if and only if f(x+ c) is irreducible.

The polynomial f(x) = x4 + x3 + x2 + x+ 1 does not satisfy Eisenstein’s criterion at any prime, but the
polynomial f(x+ 1) = x4 + 5x3 + 10x2 + 10x+ 5 satisfies the criterion at p = 5. It follows that f(x+ 1) is
irreducible over Q, so f(x) is irreducible. This trick is often useful.

Definition 4.18. [defn-primitive]

Consider a polynomial f(x) =
∑d
i=0 aix

i ∈ Z[x]. We say that f(x) is primitive if the greatest common
divisor of a0, . . . , ad is equal to one, or equivalently, there is no prime that divides all these coefficients.

Remark 4.19. [rem-primitive]
We can reduce the elements ai modulo p to get elements πp(ai) ∈ Fp. We then define πp(f)(x) =∑
i πp(ai)x

i ∈ Fp[x]. This will be zero if and only if all the original coefficients ai are divisible by p.
Thus, we see that f is primitive if and only if πp(f) 6= 0 for all p.

Lemma 4.20. [lem-primitive-product]
Suppose that f(x), g(x) ∈ Z[x] are both primitive. Then so is f(x)g(x).

Proof. Consider a prime p. By the above remark we have πp(f) 6= 0 and πp(g) 6= 0. We also know
from Proposition 1.6 that Fp is a field, so πp(f)πp(g) 6= 0 by Lemma 4.4. Moreover, it is clear that
πp(fg) = πp(f)πp(g), so πp(fg) 6= 0. As this holds for all p we deduce that fg is primitive, as claimed. �

Proposition 4.21. [prop-gauss]
Suppose that q(x) is a monic polynomial in Z[x], and that there is a factorisation q(x) = f(x)g(x) with f
and g monic polynomials in Q[x]. Then in fact f and g lie in Z[x].
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Proof. Let u be the least common multiple of the denominators of the coefficients of f , or equivalently the
smallest positive integer such that the polynomial f(x) = uf(x) lies in Z[x]. We claim that f is primitive.
Indeed, if it were not primitive, there would be a prime p that divides all the coefficients of f , and then (u/p).f
would also be in Z[x], contradicting the definition of u. So f must be primitive after all. Similarly, we can find
an integer v > 0 such that the polynomial g(x) = vg(x) is integral and primitive. Now put q(x) = f(x)g(x),
and note from Lemma 4.20 that q(x) is primitive. On the other hand, we have q(x) = uvf(x)g(x) = uvq(x),
with uv ∈ N and q(x) ∈ Z[x]. It follows that any prime dividing uv divides all the coefficients of q(x), which
is impossible because q(x) is primitive. It follows that there cannot be any primes dividing uv, so we must
have u = v = 1. Thus f(x) = f(x) ∈ Z[x] and g(x) = g(x) ∈ Z[x] as claimed. �

Lemma 4.22. [lem-monomial-factors]
Let K be a field, and let f(x) and g(x) be polynomials over K such that f(x)g(x) = xd for some d ≥ 0.
Then we have f(x) = axk and g(x) = a−1xd−k for some a and k with a ∈ K× and 0 ≤ k ≤ d. In particular,
if f(x) is monic then f(x) = xk and g(x) = xd−k.

Proof. Let axk be the highest nonzero term in f(x), and let a′xk
′

be the lowest one. Let bxj be the highest

nonzero term in g(x), and let b′xj
′

be the lowest one. Then Lemma 4.4 tells us that the highest term in

f(x)g(x) is abxk+j , and a similar argument shows that the lowest one is a′b′xk
′+j′ . As f(x)g(x) has only

the single term xd, we must have ab = a′b′ = 1 and j + k = j′ + k′. As j ≥ j′ and k ≥ k′ this implies that
j = j′ and k = k′, and thus that f(x) = axk and g(x) = bxj . It is now clear that we must have 0 ≤ k ≤ d
and j = d− k and b = a−1. �

Proof of Proposition 4.16. Let q(x) be an Eisenstein polynomial for the prime p, of degree d say. Suppose
that q(x) = f(x)g(x), where f(x) and g(x) are monic polynomials in Q[x], with deg(f(x)) = k > 0 and
deg(g(x)) = d− k > 0. We see from Proposition 4.21 that f(x), g(x) ∈ Z[x]. We can therefore consider the
mod p reductions πp(f), πp(g) ∈ Fp[x]. These are monic polynomials of degrees k and d − k respectively.
They satisfy πp(f)πp(g) = πp(fg) = πp(q), and from Definition 4.15 it is clear that πp(q) = xd. We can
thus invoke Lemma 4.22 to see that πp(f) = xk and πp(g) = xd−k. In particular, we see that the constant
terms f(0) and g(0) are divisible by p. It follows that the constant term q(0) = f(0)g(0) is divisible by
p2, which contradicts the definition of an Eisenstein polynomial. It follows that q(x) must be irreducible as
claimed. �

Proposition 4.23. [prop-irreducibles-prime]
Let K be a field, and let q(x) be an irreducible monic polynomial over K. Let f(x) and g(x) be polynomials
in K[x] that are not divisible by q(x).

(a) There exist polynomials a(x) and b(x) with a(x)f(x) + b(x)q(x) = 1.
(b) The product f(x)g(x) is again not divisible by q(x).

Proof. For part (a), put u(x) = gcd(f(x), q(x)). We know from Proposition 4.9 that u(x) can be written in
the form u(x) = a(x)f(x) + b(x)q(x), so it will be enough to show that u = 1. We also know from the same
proposition that u(x) divides both q(x) and f(x). As q(x) is irreducible, its only monic divisors are 1 and
q(x) itself, so either u(x) = q(x) or u(x) = 1. We also know that u(x) divides f(x) but q(x) does not divide
f(x), so we must have u(x) = 1 as required.

By the same argument, there exist polynomials c(x) and d(x) such that c(x)g(x) + d(x)q(x) = 1. We
can multiply the equation af + bq = 1 by cg + dq = 1 to get acfg + (adf + bcg + bdq)q = 1. Now suppose
for a contradiction that fg is divisible by q, say fg = eq. We could then rewrite the previous equation as
(ace + adf + bcg + bdq)q = 1. This means that the polynomial v = ace + adf + bcg + bdq is nonzero and
satisfies deg(v)+deg(q) = 0 so deg(v) = deg(q) = 0. This is impossible because q is irreducible and therefore
(by definition) not constant. �

Corollary 4.24. [cor-prime-multi]
Suppose that q(x) is monic and irreducible and that none of f1(x), . . . , fk(x) is divisible by q(x); then the

product f(x) =
∏k
i=1 fi(x) is also not divisible by q(x).

Proof. We can argue by induction on k. The case k = 1 is obvious, and the case k = 2 is just part (b) above.
More generally, part (b) can be used to deduce the case k = m from the case k = m− 1. �
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Corollary 4.25. [cor-quotient-field]
If q(x) is monic and irreducible then the quotient ring L = K[x]/(K[x].q(x)) is a field.

Proof. Put I = K[x].q(x), and let π : K[x]→ L be the quotient map, as usual. Suppose that F is a nonzero
element of L. We can then find f(x) ∈ K[x] such that F = π(f). As F is not the zero element we see that
f 6∈ I. Part (a) of Proposition 4.23 tells us that there exist polynomials a and b such that af + bq = 1. We
can apply π to this to get π(a)π(f) + π(b)π(q) = π(1), but q ∈ I so π(q) = 0, so we get π(a)F = π(1). Here
π(1) is the multiplicative identity element for the quotient ring L, so we see that π(a) is an inverse for F .
This shows that all nonzero elements of L are invertible. Moreover, as q(x) is irreducible it is nonconstant
and so does not divide 1K[x], so 1 6= 0 in L. This means that L is a field as claimed. �

Proposition 4.26. [prop-ufd]
Let K be a field, let M be the set of monic polynomials in K[x], and let P be the subset of irreducible
polynomials (as before). Then every element of M can be written in a unique way as a product of powers of
elements of P. More precisely, let N be the set of functions v : P → N such that {q ∈ P | v(q) > 0} is finite.
Then there is a bijection µ : N →M given by µ(v) =

∏
q∈P q

v(q), with inverse λ : M→N given

λ(f)(q) = max{n ∈ N | f is divisible by qn}.

Proof. First consider a polynomial f ∈ M. We will prove by induction on deg(f) that f = µ(v) for some
v. If deg(f) = 0 then we must have f = 1 (because f is monic) and so f = µ(0). This starts the induction.
Now suppose that deg(f) = d > 0, and that the statement is true for all monic polynomials of degree less
than d. If f is reducible then we can write f = gh with deg(g) < d and deg(h) < d. By the induction
hypothesis there are elements t, u ∈ N with µ(t) = g and µ(u) = h, and it follows that µ(t+ u) = gh = f as
required. On the other hand, if f is irreducible, we have f ∈ P. We can therefore define v ∈ N by v(f) = 1
and v(q) = 0 for all q 6= f , and we find that µ(v) = f . This completes the induction step, so we see that µ
is surjective.

Now suppose that q ∈ P and v ∈ N and that v(q) = 0. We claim that µ(v) is not divisible by q. Indeed,
by the definition of N there is a finite set r1, . . . , rk of distinct irreducibles such that v(ri) > 0 for all i, and

v(s) = 0 for all other irreducibles, so µ(v) =
∏k
i=1 r

v(ri)
i . As v(ri) > 0 and v(q) = 0 we have ri 6= q. As ri

and q are both monic irreducibles, it follows that ri cannot be divisible by q. It follows using Corollary 4.24
that µ(v) is not divisible by q either.

We now claim that for any v we have λ(µ(v)) = v. Equivalently, we claim that µ(v) is divisible by qv(q),
but not by any higher power of q. To see this, define w ∈ N by w(q) = 0, and w(r) = v(r) for all r 6= q.
From this it is clear that µ(v) = qv(q)µ(w), so µ(v) is certainly divisible by qv(q). Suppose that µ(v) is in
fact divisible by qv(q)+1, say µ(v) = qv(q)+1f . We then have qv(q)(µ(w) − qf) = 0, so µ(w) = qf . This is
impossible by the previous paragraph, because w(q) = 0. It follows that λ(µ(v)) = v as claimed.

Finally we claim that µ(λ(f)) = f for all f ∈M. Indeed, we have already seen that f = µ(v) for some v.
It follows that λ(f) = λ(µ(v)), which is equal to v by the last paragraph. We can substitute λ(f) = v back
into the equation f = µ(v) to get f = µ(λ(f)) as claimed. This shows that µ is a bijection with inverse λ,
as claimed. �

Definition 4.27. [defn-root]
Let K be a field, let f(x) be a polynomial in K[x], and let α be an element of K. We say that α is a root
of f if f(α) = 0.

Proposition 4.28. [prop-root]
The element α is a root of f(x) if and only if f(x) is divisible in K[x] by x− α.

Proof. If f(x) is divisible by x−α then f(x) = g(x)(x−α) for some polynomial g(x) ∈ K[x]. It follows that
f(α) = g(α)(α− α) = 0 as required.

Conversely, suppose that f(α) = 0. Proposition 4.5 tells us that we can write f(x) = q(x)(x− α) + r(x),
where either r(x) = 0 or deg(r(x)) < deg(x−α) = 1. This means that r(x) is a constant, say r(x) = c ∈ K,
so f(x) = q(x)(x − α) + c. Now put x = α to get 0 = f(α) = q(α)(α − α) + c = 0 + c, so c = 0. We can
substitute this back in to see that f(x) = q(x)(x− α), which is divisible by x− α as claimed. �
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Proposition 4.29. [prop-several-roots]
Suppose that α1, . . . , αk are distinct roots of a polynomial f(x). Then there exists a polynomial g(x) such

that f(x) = g(x)
∏k
i=1(x−αi). In particular, if f(x) is monic and deg(f(x)) = k then f(x) =

∏k
i=1(x−αi).

Proof. We argue by induction on k, noting that Proposition 4.28 covers the case k = 1. For general k, we

may assume inductively that f(x) = h(x)
∏k−1
i=1 (x− αi) for some polynomial h(x). We then have

h(αk)

k−1∏
i=1

(αk − αi) = f(αk) = 0.

By hypothesis the roots αj are distinct, so αk − αi 6= 0 for 1 ≤ i ≤ k − 1, so
∏k−1
i=1 (αk − αi) 6= 0. It follows

that we must instead have h(αk) = 0. We can now apply Proposition 4.28 to h(x) to get a factorisation

h(x) = g(x)(x−αk). We can then combine this with f(x) = h(x)
∏k−1
i=1 (x−αi) to get f(x) = g(x)

∏k
i=1(x−αi)

as required.
Now suppose that deg(f(x)) = k. It follows that we must have deg(g(x)) = 0, so g(x) is constant. If f(x)

is also monic then by considering the coefficient of xk we see that g(x) = 1 and so f(x) =
∏k
i=1(x−αi). �

Corollary 4.30. [cor-num-roots]
If f(x) is a nonzero polynomial of degree d, then f(x) has at most d roots. �

Theorem 4.31 (The Fundamental Theorem of Algebra). [thm-fta]
If f(x) ∈ C[x] and deg(f(x)) > 0 then f(x) has a root in C.

Remark 4.32. [rem-alg-cl]
A field K is said to be algebraically closed if it has the property mentioned above, that every nonconstant
polynomial in K[x] has a root in K. Thus, the theorem says that C is algebraically closed.

Sketch proof. Despite the traditional name, this is really a theorem in analysis, so we will only outline the
argument. After dividing through by a constant, we can assume that f(x) is monic, of degree d ≥ 1 say. We

can write f(x) =
∑d
k=0 akx

k, with ad = 1.
Suppose for a contradiction that f(x) has no roots. It follows that the formula g(x) = 1/f(x) defines a

continuous function g : C → C. (In fact, this function is even analytic, and we could shortcut some of the
following steps by using some further theory of analytic functions.) Next, for r ≥ 0 we define

h(r) =

∫ 2π

t=0

g(reit) dt.

Using some standard lemmas from analysis, we see that h is continuously differentiable, with derivative given
by differentiating under the integral sign:

h′(r) =
∂

∂r

∫ 2π

t=0

g(reit) dt =

∫ 2π

t=0

∂

∂r
g(reit) dt =

∫ 2π

t=0

eitg′(reit) dt.

On the other hand, we also have
∂

∂t
g(reit) = ireitg′(reit),

so we can rewrite the above as

h′(r) = 1
ir

∫ t=2π

t=0

∂
∂tg(reit) dt = 1

ir

[
g(reit)

]2π
t=0

= (g(1)− g(1))/(ir) = 0.

It follows that h(r) is constant, so h(r) = h(0) for all r. It is clear from the formula that h(0) = 2πg(0) =
2π/f(0) 6= 0. Now suppose that |x| is very large, and in particular, much larger than any of the coefficients
a0, . . . , ad−1. Then the term xd in f(x) will be much larger than any of the other terms, so |f(x)| will be
approximately |x|d, and |g(x)| will be approximately |x|−d. It follows that when r is very large we have

|h(r)| =
∣∣∣∣∫ 2π

t=0

g(reit) dt

∣∣∣∣ ≤ ∫ 2π

t=0

|g(reit)| dt '
∫ 2π

t=0

r−d dt = 2πr−d.

It follows that h(r) → 0 as r → ∞. This is inconsistent with the fact that h is constant, and h(0) 6= 0. It
follows that f(x) has a root after all. �

22



Corollary 4.33. [cor-fta]

Let f(x) be a monic polynomial of degree d over C. Then f(t) =
∏d
k=1(x − αk) for some list α1, . . . , αd of

elements of C.

Proof. We argue by induction on d. The case d = 0 is clear, if we recall the standard convention that the
product of no terms is equal to one. The case d = 1 is also clear, because any monic polynomial of degree one
certainly has the form f(x) = x− α1 for some α1 ∈ C. Consider a general monic polynomial f(x) of degree
d > 1. The thearem tells us that there exists αd ∈ C with f(αd) = 0. Using Proposition 4.28 we see that
f(x) = g(x)(x− αd) for some monic polynomial g(x) ∈ C[x] of degree d− 1. By induction, we may assume

that g(x) =
∏d−1
k=1(x−αk) for some list α1, . . . , αd−1 of elements of C. It follows that f(x) =

∏d
k=1(x−αk),

as claimed. �

It is useful to be able to extend Proposition 4.28 to determine when f(x) is divisible by some higher power
(x− α)m. For this, we need an algebraic theory of derivatives.

Definition 4.34. [defn-derivative]

Let K be a field, and let f(x) =
∑d
i=0 aix

i be a polynomial in f(x). The algebraic derivative of f(x) is

the polynomial f ′(x) defined by f ′(x) =
∑d
i=1 aix

i−1. We also define f (0)(x) = f(x), f (1)(x) = f ′(x),

f (2)(x) = f ′′(x) and so on, so in general f (n+1)(x) is the algebraic derivative of f (n)(x).

Remark 4.35. [rem-derivative]
In the case K = R, the derivative is usually defined by f ′(x) = limh→0(f(x+h)−f(x))/h, and it is a theorem

rather than a definition that f ′(x) =
∑d
i=1 aix

i−1. For a general field K (especially when the characteristic
is not zero) we may not be able to make sense of limits. However, we can still define algebraic derivatives
by the above formula, and we will find that they still have most of the familiar properties of derivatives as
used in calculus.

Lemma 4.36. [lem-derivative]
In the ring K[x][y] we have

f(x+ y) = f(x) + f ′(x)y + terms divisible by y2.

Moreover, f ′(x) is the only polynomial with this property.

Proof. By the binomial expansion (or by induction on i) we have (x+ y)i − xi = ixi−1y plus terms divisible
by y2. If f(x) =

∑
i aix

i, it follows that

f(x+ y)− f(x) =
∑
i

ai((x+ y)i − xi) =
∑
i

iaix
i−1y + terms divisible by y2

= f ′(x)y + terms divisible by y2

as claimed. If we also have f(x+y) = f(x)+g(x)y plus terms divisible by y2 then we find that (f ′(x)−g(x))y
is divisible by y2, which easily implies that f ′(x)− g(x) = 0 as required. �

Proposition 4.37. [prop-leibniz]
If f(x) = g(x)h(x) then f ′(x) = g′(x)h(x) + g(x)h′(x).

We will give two different proofs.

First proof. Lemma 4.36 tells us that for some r(x, y) and s(x, y) in K[x][y] we have

g(x+ y) = g(x) + g′(x)y + r(x, y)y2

h(x+ y) = h(x) + h′(x)y + s(x, y)y2.

We can multiply these and rearrange to get

f(x+ y) =(g(x) + g′(x)y + r(x, y)y2)(h(x) + h′(x)y + s(x, y)y2)

=g(x)h(x) + (g′(x)h(x) + g(x)h′(x))y+

(g′(x)h′(x) + g(x)s(x, y) + h(x)r(x, y) + g′(x)s(x, y)y + h′(x)r(x, y)y + r(x, y)s(x, y)y2)y2

=f(x) + (g′(x)h(x) + g(x)h′(x))y + terms divisible by y2.
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We must therefore have f ′(x) = g′(x)h(x) + g(x)h′(x) as claimed. �

Second proof. Suppose that g(x) =
∑
i bix

i and h(x) =
∑
j cjx

j . Then f(x) =
∑
k akx

k, where ak =∑k
i=0 bick−i. It follows that h′(x) =

∑
k kakx

k−1. On the other hand, we have

g′(x) =
∑
i

ibix
i−1

h′(x) =
∑
j

jcjx
j−1

g′(x)h(x) =
∑
i

∑
j

ibicjx
i+j−1

g(x)h′(x) =
∑
i

∑
j

jbicjx
i+j−1

g′(x)h(x) + g(x)h′(x) =
∑
i

∑
j

(i+ j)bicjx
i+j−1 =

∑
k

kxk−1
∑
i+j=k

bicj

=
∑
k

kakx
k−1 = h′(x).

�

Corollary 4.38. [cor-deriv-pow]
If f(x) = g(x)n then f ′(x) = ng(x)n−1g′(x).

Proof. This is clear for n = 0 or n = 1. Suppose that the function h(x) = g(x)k satisfies h′(x) =
kg(x)k−1g′(x), and we consider f(x) = g(x)k+1 = g(x)h(x). Using the proposition we deduce that

f ′(x) = g′(x)h(x) + g(x)h′(x) = g′(x)g(x)k + g(x).kg(x)k−1g′(x)

= g(x)kg′(x) + kg(x)kg′(x) = (k + 1)g(x)kg′(x),

so the claim holds for n = k + 1 as well. It follows by induction that it is true for all n. �

Lemma 4.39. [lem-deriv-shift]
If we put g(x) = f(x + α), then g′(x) = f ′(x + α). More generally, we have g(n)(x) = f (n)(x + α) for all
n ≥ 0.

Proof. We have f(x+ y) = f(x) + f ′(x)y + r(x, y)y2 for some r(x, y) ∈ K[x][y]. It follows that

g(x+ y) = f(x+α+ y) = f(x+α) + f ′(x+α)y+ r(x+α, y)y2 = g(x) + f ′(x+α)y+ terms divisible by y2,

so g′(x) = f ′(x+ α) as claimed. The more general statement then follows by induction. �

Proposition 4.40. [prop-multiple-roots]
Let K be a field of characteristic zero, let f(x) be a polynomial in K[x], and let α be an element of K. Then
f(x) is divisible by (x− α)n if and only if f(α) = f ′(α) = · · · = f (n−1)(α) = 0.

Proof. We first consider the case α = 0, where the claim is that f(x) is divisible by xn if and only if
f (i)(0) = 0 for all i < n. Suppose that f(x) =

∑
i aix

i. One can then check that

f (r)(x) =
∑
i≥r

i(i− 1)(i− 2) · · · (i− r + 1)aix
i−r,

and thus f (r)(0) = r!ar. As K has characteristic zero, we know that r! is invertible in K and so f (r)(0) = 0
if and only if ar = 0. It is clear that f(x) is divisible by xn if and only if the coefficients a0, . . . , an−1 are all
zero, and we now see that this happens if and only if f (i)(0) = 0 for all i < n.

Now consider the general case where α need not be zero, and put g(x) = f(x+α). Then f(x) is divisible
by (x−α)n if and only if g(x) is divisible by xn. By our special case, this holds if and only if g(i)(0) = 0 for
all i < n. Using Lemma 4.39 we see that g(i)(0) = f (i)(α), and the proposition now follows. �
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Remark 4.41. [rem-multiple-roots]
The above proposition does not extend to fields of nonzero characteristic. Indeed, in Fp[x] the polynomial

f(x) = xp has f ′(x) = pxp−1 = 0 and so f (k)(0) = 0 for all k > 0, but f(x) is not divisible by xp+1.

Proposition 4.42. [prop-distinct-roots]
Let L be a field of characteristic zero, and let K be a subfield of L. Suppose that f(x) ∈ K[x] is irreducible
over K (but not necessarily over L). Then there is no α ∈ L such that f(x) is divisible by (x− α)2 in L[x].

Proof. Suppose that deg(f(x)) = d > 0, so deg(f ′(x)) = d− 1. Let u(x) be the greatest common divisor of
f(x) and f ′(x). This is a monic divisor of the irreducible polynomial f(x), so we must have u(x) = 1 or u(x) =
f(x). However, u(x) must also divide f ′(x) and f(x) cannot divide f ′(x) because deg(f(x)) > deg(f ′(x)), so
we cannot have u(x) = f(x). We must therefore have u(x) = 1 instead. We also know from Proposition 4.9
that there exist polynomials a(x) and b(x) in K[x] with a(x)f(x) + b(x)f ′(x) = u(x) = 1. Now consider an
element α ∈ L, and suppose for a contradiction that f(x) is divisible by (x− α)2. By Proposition 4.40, this
means that f(α) = f ′(α) = 0. We can thus substitute x = α in the equation a(x)f(x) + b(x)f ′(x) = 1 to
get 0 = 1, which is impossible. �

Exercises

Exercise 4.1. [which-irreducible]
Which of the following polynomials are irreducible over Q?

f0(x) = x4 + 9x+ 12

f1(x) = x3 − x2 − x− 2

f2(x) = x2 − 3x− 18

f3(x) = x5 + 5x4 + 55x3 + 555x2 + 5555x+ 55555.

Exercise 4.2. [ex-euclid]
Use the Euclidean algorithm to find gcd(f(x), f ′(x)), where f(x) = x4 + 2x3 + 3x2 + 2x + 1. Use this to
factorise f(x).

Exercise 4.3. [ex-eisenstein-shift]
Use the method of Remark 4.17 to show that the polynomial f(x) = x4 − 5x3 + 9x2 − 5x+ 1 is irreducible
over Q.

Exercise 4.4. [ex-modular-irreducible]
Show, by considering all potential factors, that the polynomial x5 + x2 + 1 is irreducible in F2[x]. Deduce
that it is also irreducible in Q[x]

Exercise 4.5. [ex-x-to-the-p]
Let p be a prime number, and put R = {f(x) ∈ Fp[x] | f ′(x) = 0}. What can you say about this set?

5. Adjoining roots

Definition 5.1. [defn-bullet]
Let φ : R→ S be a homomorphism of rings. We then define φ• : R[x]→ S[x] by

φ•(
∑
i

aix
i) =

∑
i

φ(ai)x
i.

We leave it to the reader to check that φ• is again a ring homomorphism.
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Proposition 5.2. [prop-quotient-basis]
Let K be a field, let f(x) be a polynomial of degree d > 0 in K[x] and consider the quotient ring R =
K[x]/(K[x].f(x)). Then the list Π = π(1), π(x), . . . , π(xd−1) is a basis for R over K, so dimK(R) = d.

Proof. Any element G ∈ R can be written as G = π(g) for some polynomial g(x) ∈ K[x]. By Proposition 4.5
we can write g(x) = f(x)q(x)+ r(x) where q(x) and r(x) are polynomials with r(x) = 0 or deg(r(x)) < d. In

all cases we can write r(x) =
∑d−1
i=0 cix

i for some system of coefficients ci. Now we can apply π to the relation
g(x) = f(x)q(x) + r(x) and recall that π(q) = 0 to get G = π(g) = π(f).0 + π(r) = π(r) =

∑
i aiπ(xi). It

follows that Π spans R over K. Now suppose we have a linear relation a0π(1)+a1π(x)+· · ·+ad−1π(xd−1) = 0.

If we put h(x) =
∑d−1
i=0 aix

i, this can be rewritten as π(h(x)) = 0, so h(x) ∈ K[x].f(x). As f(x) has degree
d, we see that any nonzero multiple of f(x) has degree at least d. However, h(x) is a multiple of f(x) and
has degree less than d, so it must be zero, so a0 = · · · = ad−1 = 0. This shows that Π is linearly independent,
so it is a basis as claimed. �

Proposition 5.3. [prop-adjoin-root]
Let K be a field, and let f(x) be a polynomial of degree d > 0 in K[x]. Then there exists a homomorphism
φ : K → L such that φ•(f) has a root in L, and deg(φ) ≤ d.

Proof. Using Proposition 4.26 (or a more direct argument) we see that f(x) has at least one monic irreducible
factor. Let q(x) be such a factor. Put L = K[t]/(K[t].q(t)), which is a field by Corollary 4.25. Let π be the
usual quotient map K[t] → L. Let φ be the restriction of φ to K ⊂ K[t], and put α = π(t) ∈ L. We claim
that α is a root of φ•(q). To see this, suppose that q(t) =

∑n
i=0 ait

i. We then have

φ•(q(x)) =

n∑
i=0

π(ai)t
i

φ•(q(α)) =

n∑
i=0

π(ai)π(t)i = π

(
n∑
i=0

ait
i

)
= π(q(t)) = 0,

as required. Note also that Proposition 5.2 gives deg(φ) = deg(q) ≤ deg(f) = d. �

Remark 5.4. [rem-adjoin-root]
If we are willing to identify K with φ(K) as in Remark 1.30, we obtain the following statement: for any
nonconstant polynomial f(x) ∈ K[x], there is an extension field L ⊇ K such that [L : K] ≤ deg(f(x)) and
f(x) has a root in L.

Definition 5.5. [defn-algebraic]
Consider a field L, a subfield K, and an element α ∈ L. We write K(α) for the smallest subfield of L that
contains K and α. We also define an ideal I(α,K) ⊆ K[x] by

I(α,K) = {f(x) ∈ K[x] | f(α) = 0 ∈ L}.
(a) If I(α,K) = {0} we say that α is transcendental over K.
(b) Suppose instead that I(α,K) 6= 0. We then say that α is algebraic over K. We see from Proposi-

tion 4.7 that there is a unique monic polynomial min(α,K) ∈ K[x] (called the minimal polynomial
of α) that generates I(α,K). The degree of α over K is defined to be the degree of the polynomial
min(α,K).

(c) If K(α) = L, we say that α is a primitive element for L over K.

Remark 5.6. [rem-algebraic]
It is sometimes convenient to consider a slightly more general situation. Suppose we have a homomorphism
φ : K → L, and an element α ∈ L. We put K ′ = φ(K), so K ′ is a subfield of L, and φ can be considered as
an isomorphism K → K ′. We put

I(α, φ) = {f(x) ∈ K[x] | (φ•f)(α) = 0}.
If this is nonzero, then we write min(α, φ) for the unique monic generator of I(α, φ). This clearly correspond
to I(α,K ′) under the isomorphism φ• : K[x] → K ′[x]. We also say that α is a primitive element for φ if
L = K ′(α).
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Remark 5.7. [rem-Q-bar]
In some sense, almost all complex numbers are transcendental over Q. The simplest way to see this is to use
the theory of countability. Put

Q = {z ∈ C | z is algebraic over Q} =
⋃

06=f(x)∈Q[x]

{ roots of f(x)}.

Fairly standard methods show that Q[x] is countable, and it follows that Q is countable. However, R and
C are both uncountable, and so are much bigger than Q. Despite this, it is hard work to show that any
particular number is transcendantal. It is known that both π and e are transcendental, but we will not
discuss the proofs here.

Proposition 5.8. [prop-simple-algebraic]
Suppose that α is algebraic over K. Then the minimal polynomial min(α,K) is irreducible, and there is a
unique homomorphism χ : K[x]/(K[x].min(α,K))→ K(α) that acts as the identity on K and sends x to α.
Moreover, this homomorphism is an isomorphism, and so [K(α) : K] = dimK(K(α)) = deg(min(α,K)). In
particular, if α is a primitive element for L over K, then L itself is isomorphic to K[x]/(K[x].min(α,K)).

Proof. First put q(x) = min(α,K)(x) and let d be the degree of q(x). Suppose that q(x) = u(x)v(x), where
u(x) and v(x) are both nonconstant and so both have degree less than d. This means that neither u(x) nor
v(x) are divisible by q(x), so they do not lie in I(α,K), so u(α) and v(α) are nonzero elements of the field
L. It follows that q(α) = u(α)v(α) 6= 0, which contradicts the definition of q(x). It follows that q(x) has
no such factorisation, so it is irreducible as claimed. It then follows by Corollary 4.25 that the quotient ring
L′ = K[x]/(K[x].q(x)) = K[x]/I(α,K) is actually a field.

Now define χ : K[x] → L by χ(
∑
i aix

i) =
∑
i aiα

i, or equivalently χ(f(x)) = f(α). This is clearly
the unique homomorphism that acts as the identity on K and sends x to α. We have χ(f(x)) = 0 iff
f(α) = 0 iff f(x) ∈ I(α,K), so ker(χ) = I(α,K) = K[x].q(x). We therefore have an induced homomorphism
χ : L′ → L as in Proposition 3.10, and a subfield L′′ = χ(L′) ⊆ L as in Proposition 1.29. We claim that
L′′ = K(α). Indeed, it is clear that L′′ contains K and α, so it contains K(α). Conversely, K(α) is closed
under multiplication and contains K and α, so by induction it contains all elements of the form aαk. It
is also closed under addition, so it contains all elements of the form

∑n
i=0 aiα

i. In other words, it contains
the image of χ, which is the same as the image of χ, which is L′′. We can now regard χ as a surjective
homomorphism K[x] → K(α) with kernel I(α,K), so the induced map L′ = K[x]/I(α,K) → K(α) is an
isomorphism as claimed (by Proposition 3.10). �

We can restate essentially the same fact as follows:

Corollary 5.9. [cor-simple-algebraic]
Suppose we have a homomorphism φ : K → L, and an element α ∈ L that is algebraic over the subfield
K ′ = φ(K). Then there is an isomorphism

χ : K[x]/(K[x].min(α, φ))→ K ′(α) ⊆ L
given by

χ(f(x) +K[x].min(α, φ)) = (φ•f)(α),

or more explicitly by

χ(
∑
i

aix
i +K[x].min(α, φ)) =

∑
i

φ(ai)α
i.

It follows that deg(φ) = deg(q(x)). In particular, if α is a primitive element for φ then

L ' K[x]/(K[x].min(α, φ)). �

Proposition 5.10. [prop-finite-algebraic]
Suppose we have a field K and an extension field L such that [L : K] < ∞. Then every element of L is
algebraic over K.

Proof. Put d = [L : K] = dimK(L). Consider an element α ∈ L. The list A = 1, α, α2, . . . , αd has length
d + 1, which is larger than the dimension of L, so A must be linearly dependent. We therefore have a
linear relation a0.1 + a1.α + a2.α

2 + · · · + ad.α
d = 0, where not all the coefficients ai are zero. If we put
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f(x) =
∑
i aix

i ∈ K[x] then this means that f(x) 6= 0 but f(α) = 0. It follows that f(x) is a nonzero
element of I(α,K), as required. �

This is a convenient point to introduce another useful result that uses a related method.

Proposition 5.11. [prop-subring-subfield]
Suppose we have a field K, and extension L, and a subring R ⊆ L such that K ⊆ R and dimK(R) < ∞.
Then R is actually a subfield of L.

Proof. Suppose that α is a nonzero element of R; we need to show that α has an inverse in R. Just as
above we see that the powers of α are linearly dependent, so I(α,K) 6= 0, so we have an irreducible monic

polynomial q(x) = min(α,K)(x) =
∑d
i=0 aix

i say, with q(α) = 0. We claim that q(0) 6= 0. Indeed, if q(0)
were zero then x would be a nonconstant monic factor of the irreducible polynomial q(x), which would mean
that x would have to equal q(x), so the equation q(α) = 0 would give α = 0, contradicting our assumption
that α is nonzero. Thus, the constant term a0 = q(0) is nonzero, and thus invertible in K. We now put

β = −
∑d
i=1 a

−1
0 aiα

i−1 ∈ R. The equation
∑d
i=0 aiα

i = 0 can then be rearranged to give αβ = 1, so β is the
required inverse to α in R. �

Proposition 5.12. [prop-subfield-join]
Suppose we have fields K,L,M,N with K ⊆ L ⊆ N and K ⊆M ⊆ N , where [L : K] <∞ and [M : K] <∞.
Put

LM = {x ∈M | x = a1b1 + · · ·+ arbr for some a1, . . . , ar ∈ L and b1, . . . , br ∈M}.
Then LM is a subfield of N , and it is the smallest subfield that contains both L and M . Moreover, we have
[LM : K] ≤ [L : K][M : K] <∞.

Proof. For any b ∈ L we can write b = b.1 with b ∈ L and 1 ∈ M , so b ∈ LM . This means that L ⊆ LM ,
and similarly M ⊆ LM . In particular, this means that LM contains 0 and 1.

It is clear by definition that LM is closed under addition. If we have an element x =
∑
i aibi ∈ LM then

−x =
∑
i(−ai)bi which also lies in LM . It follows that LM is also closed under subtraction. Now suppose

we have another element y =
∑
j cjdj ∈ LM , with cj ∈ L and dj ∈ M . We can thus write xy as a finite

sum of terms (aicj)(bidj), where aicj ∈ L and bidj ∈M . It follows that xy ∈ LM . We now see that LM is
a subring of N , but it is not yet clear that it is closed under taking inverses.

Now choose a basis e1, . . . , ep for L over K, and a basis f1, . . . , fq for M over K. Note that p = [L : K]
and q = [M : K]. Let V be the span over K of the elements eifj . Any element v ∈ V can be written as a
sum of terms vijeifj with vij ∈ K, so vijei ∈ L and fj ∈ M , so v ∈ LM . Conversely, if a ∈ L and b ∈ M
we can write a =

∑
i xiei and b =

∑
j yjfj for some elements xi, yj ∈ K. It follows that ab =

∑
ij xiyjeifj ,

with xiyj ∈ K. This means that ab ∈ V , and any element of LM is a sum of terms like ab, so it also lies in
V . This proves that LM = V , so dimK(LM) ≤ pq = [L : K][M : K]. In particular, we see that LM is a
subring of N of finite dimension over K, so Proposition 5.11 tells us that it is actually a subfield.

We have already seen that LM contains both L and M . Let F be any other subfield of N that contains
both L and M . Consider an element x =

∑
i aibi ∈ LM . We then have ai ∈ L ⊆ F and bj ∈M ⊆ F and F

is closed under multiplication and addition so we must have x ∈ F . This proves that LM ⊆ F , so LM is
the smallest subfield of N that contains both L and M . �

Definition 5.13. [defn-split]
Suppose we have a field K, an extension field L, and a monic polynomial f(x) ∈ K[x] of degree d. We say

that f(x) splits over L if there is a list α1, . . . , αd of elements of L such that f(x) =
∏d
i=1(x − αi). If the

elements αi are all different, we say that f(x) splits properly over L. Similarly, if we have a homomorphism
ψ : K →M , we say that f(x) is (properly) split by ψ if (ψ•f)(x) splits (properly) in M .

Remark 5.14. [rem-distinct-roots]
If K has characteristic zero and f(x) is irreducible in K[x] and f(x) splits over L, we see from Proposition 4.42
that the splitting is automatically proper.

Remark 5.15. [rem-fta-split]
Corollary 4.33 can now be rephrased as saying that every monic polynomial in C[x] actually splits over C.
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We will also use a slightly sharper concept:

Definition 5.16. [defn-splitting-field]
Suppose we have a field K, an extension field L, and a monic polynomial f(x) ∈ K[x] of degree d. We say
that L is a splitting field for f(x) (or a minimal splitting field, if emphasis is necessary) if f(x) splits in L,
and L is generated over K by the roots of f(x). Similarly, we say that a homomorphism ψ : K → M is a
(minimal) splitting homomorphism for f(x) if (ψ•f)(x) splits in M , and M is generated over ψ(K) by the
roots of (ψ•f)(x).

Proposition 5.17. [prop-construct-splitting]
Suppose that f(x) is a monic polynomial of degree d in K[x]. Then f(x) has a splitting field of degree at
most d! over K.

Proof. We will argue by induction on d. If d = 0 then f(x) = 1, which splits in K as a product of no
factors. If d = 1 then f(x) must have the form f(x) = x − α for some α ∈ K, so again f(x) is already
split in K. For the general case, Remark 5.4 tells us that there is an extension L ⊆ K with [L : K] ≤ d,
and an element αd ∈ L with f(αd) = 0. It follows by Proposition 4.28 that there is a monic polynomial
g(x) ∈ L[x] of degree d− 1 such that f(x) = g(x)(x−αd). By induction we may assume that there is a field

M ⊇ L with [M : L] ≤ (d− 1)!, and a splitting g(x) =
∏d−1
i=1 (x− αi) in M [x]. This in turn gives a splitting

f(x) =
∏d
i=1(x− αi) in M [x], and [M : K] = [M : L][L : K] ≤ (d− 1)!× d = d! as required. �

Proposition 5.18. [prop-split-factor]

Suppose we have a splitting f(x) =
∏d
i=1(x− αi) in K[x], and also a factorisation f(x) = g(x)h(x) in K[x]

(where g(x) and h(x) are monic). Then there is a subset I ⊆ {1, . . . , d} such that g(x) =
∏
i∈I(x− αi) and

h(x) =
∏
i 6∈I(x− αi).

Proof. Proposition 4.26 says that g(x) and h(x) can be written as products of irreducible elements, and by
combining these we get an expression for f(x) as a product of irreducible elements. On the other hand, the

equation f(x) =
∏d
i=1(x − αi) also factors f(x) as a product of irreducible elements, and Proposition 4.26

implies that there is a unique such factorisation up to order. It follows that g(x) must be the product of
some subset of the terms (x− αi), and h(x) must be the product of the remaining terms. �

Remark 5.19. [rem-split-factor]
In the case where the elements αi are all different, the proof can be simplified. We can then take I =
{i | g(αi) = 0}, and J = {i | h(αi) = 0}. Note that for all i we have g(αi)h(αi) = f(αi) = 0, so either
g(αi) = 0 or h(αi) = 0. This means that I ∪ J = {1, . . . , d}, and so |I| + |J | = d + |I ∩ J |. On the other
hand, g(x) has |I| distinct roots, so deg(g(x)) ≥ |I|. Similarly deg(h(x)) ≥ |J |, and so

d = deg(f(x)) = deg(g(x)h(x)) = deg(g(x)) + deg(h(x)) ≥ |I|+ |J | = d+ |I ∩ J |.
The only way this can be consistent is if I ∩ J = ∅ and deg(g(x)) = |I| and deg(h(x)) = |J |. It follows in
turn that g(x) =

∏
i∈I(x− αi) and h(x) =

∏
j∈J(x− αj) =

∏
j 6∈I(x− αj) as claimed.

Proposition 5.20. [prop-proper-splitting]
Let K be a field of characteristic zero. Suppose that f(x) is a monic polynomial in K[x], and that L ⊇ K is
a splitting field for f(x). Then there is a polynomial g(x) ∈ K[x] such that g(x) splits properly in L and has
the same roots in L as f(x). In particular, L is also a splitting field for g(x).

Proof. Proposition 4.26 tells us that f(x) can be written in the form

f(x) = p1(x)n1 · · · pr(x)nr ,

where p1(x), . . . , pr(x) are distinct monic irreducible polynomials in K[x], and n1, . . . , nr > 0. Put g(x) =
p1(x) · · · pr(x). This divides f(x) and therefore splits over L by Proposition 5.18. If g(α) = 0 then pi(α) = 0
for some i, so f(α) = 0. Conversely, if f(α) = 0 then pi(α)ni = 0 for some i, and so pi(α) = 0, so g(α) = 0.
Thus g(x) has the same roots in L as f(x). All that is left is to show that g(x) splits properly, so it has
no repeated roots. If i 6= j then pi(x) and pj(x) are distinct monic irreducibles, so their greatest common
divisor must be 1, so we have a(x)pi(x) + b(x)pj(x) = 1 for some a(x), b(x) ∈ K[x]. If pi(α) = 0 then we
can substitute x = α to get b(α)pj(α) = 1, so pj(α) 6= 0. This means that the roots of pi(x) and pj(x)
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are disjoint, so it will suffice to show that pi(x) has no repeated roots. As pi(x) is irreducible and K has
characteristic zero, this follows from Proposition 4.42. �

Exercises

Exercise 5.1. [ex-splitting-misc-i]
Find the splitting fields for the following polynomials over Q.

f0(x) = x2 − 2x+ 1 f1(x) = x4 − 5x2 + 6

f2(x) = x2 − x+ 1 f3(x) = x3 − 2

f4(x) = x4 − 4x2 + 1 f5(x) = x4 − 2

f6(x) = x6 − 1 f7(x) = x6 − 8

Exercise 5.2. [ex-splitting-misc-ii]
Determine the degree over Q of the splitting fields of the following polynomials:

(a) x4 + 1;
(b) x4 + x2 + 1 (note that this is reducible);
(c) x6 + 1 (and so is this);
(d) x6 + x3 + 1.

Exercise 5.3. [ex-transcendental]
Suppose that α ∈ L ⊃ K and that α is transcendental over K. Let K(x) be the field of rational functions
over K (as in Example 1.4). Show that there is an isomorphism φ : K(x)→ K(α) with φ(x) = α.

Exercise 5.4. [ex-cayley]
Suppose we have a field K, an extension field L such that d = [L : K] < ∞, and an element α ∈ L. By
applying the Cayley-Hamilton theorem to a suitable K-linear endomorphism of L, give another proof that
α is algebraic over K.

Exercise 5.5. [ex-Q-bar]
Let Q denote the set of all numbers α ∈ C such that α is algebraic over Q (as in Remark 5.7).

(a) For α ∈ C, show that the following are equivalent:
(i) α ∈ Q

(ii) [Q(α) : Q] <∞
(iii) There exists a subfield K ⊆ C with α ∈ K and [K : Q] <∞.

(b) Show that Q is a subfield of C.
(c) Show that if α ∈ C and α is algebraic over Q then α ∈ Q.
(d) Deduce that Q is algebraically closed.

(You should use part (a) to help you with (b) and (c).)

Exercise 5.6. [ex-F-sixteen]
We have seen that there is a field F4 = F2(α), where α has minimal polynomial t2 + t+ 1 over F2. You may
assume that there is also a field F16 = F2(β), where β has minimal polynomial t4 + t3 + t2 + t+ 1 over F2.

(a) Write down a basis for F4 over F2, and list the four elements of F4.
(b) Write down a basis for F16 over F2, and list the sixteen elements of F16.
(c) Check that β5 = 1.
(d) There are precisely two homomorphisms from F4 to F16. Find them.
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6. Extending homomorphisms

Definition 6.1. [defn-E]
Suppose we have fields K, L and M and homomorphisms φ : K → L and ψ : K →M . We write E(φ, ψ) for
the set of homomorphisms θ : L→ M with θφ = ψ. The fields and homomorphisms mentioned here can be
displayed as follows:

L
θ // M

K

φ

``@@@@@@@ ψ

>>||||||||

We also put G(φ) = E(φ, φ).
In particular, suppose we have a field F with subfields K, L and M such that K ⊆ L∩M . We then have

inclusion maps incLK : K → L and incmK : K →M , and we write

EK(L,M) = E(incLK , incMK ) = {θ : L→M | θ|K = 1K}.
We also write G(L/K) for EK(L,L).

Remark 6.2. [rem-E-empty]
Because deg(θφ) = deg(θ) deg(φ) ≥ deg(φ), we see that E(φ, ψ) can only be nonempty when deg(φ) ≤
deg(ψ).

Proposition 6.3. [prop-galois-group]
If deg(φ) <∞ then G(φ) is a group under composition. In alternative notation, if [L : K] <∞ then G(L/K)
is a group under composition. (These groups are called Galois groups.)

Proof. First, if θ, η ∈ G(φ) then θφ = φ and ηφ = φ so (θη)φ = θ(ηφ) = θφ = φ, so θη ∈ G(φ).

L
η // L

θ // L

K

φ

``@@@@@@@
φ

OO

φ

??~~~~~~~

Next, the identity map 1L lies in G(φ) and serves as a two-sided identity element for composition. Finally,
if deg(φ) <∞ and θ ∈ G(φ) then we can cancel deg(φ) in the identity deg(φ) = deg(θφ) = deg(θ) deg(φ) to
see that deg(θ) = 1. It follows from Proposition 2.25 that θ is an isomorphism. We can compose both sides
of the identity φ = θφ with θ−1 to see that θ−1φ = φ, so θ−1 ∈ G(φ) and serves there as an inverse for θ. �

It turns out to be important to understand the size of the sets E(φ, ψ). The most basic fact is as follows:

Proposition 6.4. [prop-E-bound]
For any φ and ψ as above, we have |E(φ, ψ)| ≤ deg(φ).

After some preliminaries, we will give two different proofs, each of which introduces new concepts that
will be useful later.

The following result (or a minor variant) is often called Dedekind’s Lemma:

Proposition 6.5. [prop-dedekind]
Let L and M be fields, let θ1, . . . , θn : L → M be distinct homomorphisms, and let b1, . . . , bn be elements of
M . Suppose that for all a ∈ K we have

∑n
i=1 biθi(a) = 0. Then b1 = b2 = . . . = bn = 0.

Proof. We will argue by induction on n. If n = 1 then we have b1θ1(a) = 0 for all a ∈ K, and we can
take a = 1 to see that b1 = 0; this starts the induction. Now suppose that n > 1. Fix some t ∈ L, and
put ci = bi(θi(t) − θn(t)), so cn = 0. We claim that

∑n−1
i=1 ciθi(a) = 0 for all a ∈ L. Indeed, the relation∑n

i=1 biθi(a) = 0 is valid for all a ∈ L, so it works for ta in place of a, which give
∑n
i=1 biθi(t)θi(a) = 0. On

the other hand, we can just multiply the relation
∑n
i=1 biθi(a) = 0 by θn(t) to get

∑n
i=1 biθn(t)θi(a) = 0,

and then subtract this from the previous relation to get
∑n−1
i=1 ciθi(a) = 0 as claimed. We deduce from the

induction hypothesis that c1 = · · · = cn−1 = 0, so bi(θi(t)− θn(t)) = 0 for all i < n (and all t ∈ L, because
t was arbitrary). By assumption the homomorphisms θi are all different, so for each i < n we can choose
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ti ∈ L with θi(ti) 6= θn(ti). We can then take t = ti in the relation bi(θi(t)− θn(t)) = 0 to get bi = 0. This
shows that b1 = · · · = bn−1 = 0, so the relation

∑n
i=1 biθi(a) reduces to bnθn(a) = 0 for all a. Now take

a = 1 to see that bn = 0 as well. �

First proof of Proposition 6.4. Let e1, . . . , em be a basis for L over φ(K) (so m = deg(φ)). Let θ1, . . . , θn be
the distinct elements of E(φ, ψ), so θiφ = ψ : K →M . Define v1, . . . , vn ∈Mm by vi = (θi(e1), . . . , θi(em)).
We claim that these n vectors are linearly independent over M . To see this, consider a linear relation
b1v1 + · · ·+ bnvn = 0 (with b1, . . . , bn ∈ M). This means that

∑n
i=1 biθi(ej) = 0 for all j. Now consider an

arbitrary element a ∈ L. As the elements ej give a basis for L over φ(K), we can write a =
∑m
j=1 φ(xj)ej for

some x1, . . . , xm ∈ K. We can then apply θi to this, recalling that θiφ = ψ, to get θi(a) =
∑m
j=1 ψ(xj)θi(ej).

It follows that
n∑
i=1

biθi(a) =

n∑
i=1

m∑
j=1

biψ(xj)θi(ej) =

m∑
j=1

(
ψ(xj)

n∑
i=1

biθi(ej)

)
= 0.

Proposition 6.5 therefore tells us that b1 = · · · = bn = 0. We deduce that the vectors v1, . . . , vn in Mm are
linearly independent as claimed. The length of any linearly independent list is at most the dimension of the
containing space, so we have n ≤ m, or in other words |E(φ, ψ)| ≤ deg(φ). �

We next discuss a different approach, which starts by discusing the case where φ has a primitive element,
and then extends this by induction.

Lemma 6.6. [lem-E-bound]
Suppose we have φ and ψ as above, and that α is a algebraic primitive element for φ, with minimal polynomial
q(x) = min(α, φ) ∈ K[x] say. Then E(φ, ψ) bijects with the set of roots of (ψ•q)(x) in M , and |E(φ, ψ)| ≤
deg(q(x)) = deg(φ).

Proof. Let d be the degree of q(x), or equivalently the degree of the homomorphism φ. Let F be the set of
roots of (ψ•q)(x) in M , so Corollary 4.30 tells us that |F | ≤ d.

We can write q(x) in the form q(x) = a0+a1x+· · ·+adxd, where ad = 1 because q(x) is monic. By definition
we have (φ•q)(α) = 0, or equivalently

∑
i φ(ai)α

i = 0. Suppose that θ ∈ E(φ, ψ), so θφ = ψ : K → M . We
can then apply θ to the above equation to get

(ψ•q)(θ(α)) =
∑
i

ψ(ai)θ(α)i = θ(
∑
i

aiα
i) = θ(0) = 0,

so θ(α) ∈ F . We can thus define a map P : E(φ, ψ)→ F by P (θ) = θ(α).
Now suppose we have two elements θ0, θ1 ∈ E(φ, ψ) with P (θ0) = P (θ1), so θ0(α) = θ1(α) = β say. It

follows from Corollary 5.9 that every element σ ∈ L can be written in the form σ =
∑d−1
j=0 φ(bj)α

j , for some

elements bj ∈ K. Using θi(φ(b)) = ψ(b) and θi(α) = β we deduce that θ0(σ) =
∑
j ψ(bj)β

j = θ1(σ). As σ
was arbitrary this means that θ0 = θ1, so we see that P is injective.

Finally, consider a general element β ∈ F , so β is a root of (ψ•q)(x). We can then define a homomorphism
λ : K[x]→M by λ(f(x)) = (ψ•f)(β), or more explicitly

λ(
∑
i

bix
i) =

∑
i

ψ(bi)β
i.

We then have λ(q(x)) = 0, so λ(K[x].q(x)) = 0. Proposition 3.10 therefore gives us a homomorphism

λ : K[x]/(K[x].q(x))→M,

which we can compose with the inverse of the isomorphism χ : K[x]/(K[x].q(x))→ L to get a homomorphism
θ = λ◦χ−1 : L→M which clearly satisfies P (θ) = β. This means that P is also surjective, so it is a bijection,
so |E(φ, ψ)| = |F | ≤ d. �

Proposition 6.7. [prop-E-comp]
Suppose we have homomorphisms

L
ζ←− N ξ←− K ψ−→M.

Then |E(ζξ, ψ)| =
∑
θ∈E(ξ,ψ) |E(ζ, θ)|.
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Proof. Let F be the set of pairs (θ, η) such that θ ∈ E(ξ, ψ) and η ∈ E(ζ, θ). It is clear that |F | =∑
θ∈E(ξ,ψ) |E(ζ, θ)|, so it will suffice to show that F bijects with E(ζξ, ψ).

If η ∈ E(ζξ, ψ) then ηζξ = ψ, so the homomorphism θ = ηζ : N → M satisfies θξ = ψ, so θ ∈ E(ξ, φ).
From the definition θ = ηζ we also see that η ∈ E(ζ, θ), so (θ, η) ∈ F . We can thus define P : E(ξζ, ψ)→ F
by P (η) = (ηζ, η), and this is clearly a bijection with P−1(η) = (ηζ, η).

The following diagram may help to follow the argument:

K

ψ

��

ξ // N
ζ //

θ
��

L

η

��
M

1
// M

1
// M.

�

Proof of Proposition 6.4. If deg(φ) =∞ then there is nothing to prove, so we may assume that deg(φ) <∞.
We will argue by induction on deg(φ). If deg(φ) = 1 then φ is an isomorphism (by Proposition 2.25) and so
|E(φ, ψ)| = |{ψφ−1}| = 1 as required. Now consider the general case, where deg(φ) = k > 1 say, and assume
inductively that the proposition is valid for all homomorphisms of degree less than k. Put K ′ = φ(K). As
φ is not an isomorphism, we have K ′ < L, so we can choose α ∈ L \K ′. If K ′(α) = L then the claim holds
by Lemma 6.6. Otherwise, let ζ be the inclusion K ′(α) → L, and let ξ be φ regarded as a homomorphism
K → K ′(α), so ζξ = φ. Proposition 6.7 then gives

|E(φ, ψ)| = |E(ζξ, ψ)| =
∑

θ∈E(ξ,ψ)

|E(ζ, θ)|.

As α 6∈ K ′ andK ′(α) 6= L we see that deg(ζ),deg(ξ) > 1, but deg(ζ) deg(ξ) = deg(φ) = k, so deg(ζ),deg(ξ) <
k. We can thus apply the induction hypothesis to see that |E(ξ, ψ)| ≤ deg(ξ) and |E(ζ, θ)| ≤ deg(ζ). Feeding
this into the above equation gives

|E(φ, ψ)| ≤
∑

θ∈E(ξ,ψ)

deg(ζ) = |E(ξ, ψ)|deg(ζ) ≤ deg(ξ) deg(ζ) = deg(φ)

as required. �

Definition 6.8. [defn-normal]
Let ψ : K → M be an extension of finite degree. We say that ψ is normal if it has the following property:
for every irreducible polynomial f(x) ∈ K[x] such that (ψ•f)(x) has a root, f(x) is properly split by ψ.

Lemma 6.9. [lem-splitting-ext]
Suppose we have a field K, a monic polynomial f(x) ∈ K[x], and a proper splitting field L for f(x). Then
|G(L/K)| = d = [L : K].

Proof. We have a splitting f(x) =
∏r
i=1(x− αi) in L[x], with all the roots αi being different. Put K0 = K,

and Ki = Ki−1(αi) for i > 0, so K0 ⊆ K1 ⊆ · · · ⊆ Kr. Moreover, Kr is a subfield of L that contains K and
all the roots αi, so it must be all of L. Put di = [Ki : Ki−1], so d =

∏r
i=1 di. The claim is that there are

precisely d different homomorphisms θ : L→ L with θ|K = 1. More generally, we claim that the number of

homomorphisms θ : Ki → L with θ|K = 1 is precisely
∏i
j=1 dj . This is true for i = 0 (where the product

has no terms and so is equal to one). It will thus be enough to prove the following induction step: given
θ : Ki−1 → L with θ|K = 1, there are precisely di ways to extend it to a homomorphism θ′ : Ki → L. To see
this, put gi(x) = min(αi,Ki−1), which is a polynomial of degree di. Lemma 6.6 tells us that the extensions
of θ biject with the roots of (θ•gi)(x), so it will be enough to show that that polynomial is properly split.
Note that f(x) ∈ K[x] ⊆ Ki−1[x] and note that f(αi) = 0, so f(x) must be divisible in Ki−1[x] by gi(x),
say f(x) = gi(x)hi(x). We now apply θ• to this equation, noting that θ•f = f because f(x) ∈ K[x] and
θ|K = 1. We find that (θ•g)(x)(θ•h)(x) = f(x), so Proposition 5.18 tells us that (θ•g)(x) is properly split
as required. �

Remark 6.10. [rem-splitting-ext]
Suppose that K has characteristic zero, and that L is a (not necessarily proper) splitting field for some monic
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polynomial f(x) ∈ K[x]. Remark 5.19 tells us that L is a proper splitting field for some polynomial g(x)
that divides f(x), and we can apply the above lemma to g(x) to see that |G(L/K)| = [L : K] again.

Proposition 6.11. [prop-normal]
Let ψ : K →M be a homomorphism of finite degree. Then the following are equivalent:

(a) For every field L and homomorphism φ : K → L, we have either |E(φ, ψ)| = 0 or |E(φ, ψ)| = deg(φ).
(b) |G(ψ)| = deg(ψ).
(c) ψ is normal.
(d) ψ is a proper splitting extension for some polynomial f(x) ∈ K[x].

Proof. First suppose that (a) holds. Recall that G(ψ) = E(ψ,ψ), and this set clearly contains the identity
map 1M , so it is nonempty. It follows by (a) that we must have |G(ψ)| = deg(ψ), so (b) holds.

Conversely, suppose that (b) holds. Suppose we have a homomorphism φ : K → L such that E(φ, ψ) 6= ∅,
so we can choose θ ∈ E(φ, ψ), so θφ = ψ : K → M . It follows from our assumptions and Proposition 6.7
that

deg(φ) deg(θ) = deg(ψ) = |E(ψ,ψ)| = |E(θφ, ψ)|

=
∑

λ∈E(φ,ψ)

|E(θ, λ)| ≤
∑

λ∈E(φ,ψ)

deg(θ) = |E(φ, ψ)|deg(θ).

This can be rearranged to give |E(φ, ψ)| ≥ deg(φ), and Proposition 6.4 gives the reverse inequality, so (b)
holds. We now see that (a) and (b) are equivalent.

Now suppose that (a) and (b) hold, and consider (c). Suppose we have an irreducible polynomial f(x) ∈
K[x], of degree d. Put L = K[x]/(K[x].f(x)) as in Proposition 5.3, so L is a field equipped with an obvious
homomorphism φ : K → L of degree d. We let α denote the image of x in L, which is a primitive element for
φ, with minimal polynomial f(x). We see from Lemma 6.6 that the number of roots of (ψ•f)(x) is |E(φ, ψ)|,
which is either 0 or d by (b). Thus, if there is at least one root then there are d distinct roots, say β1, . . . , βd.

It follows by Proposition 4.29 that (ψ•f)(x) =
∏d
i=1(x− βi), so (ψ•f)(x) is split as required.

Now suppose that (c) holds, so ψ is normal. Choose a basis α1, . . . , αd for M over ψ(K), and put
fi(x) = min(αi, ψ) and f(x) =

∏
i fi(x). Then (ψ•fi)(x) has a root αi and ψ is normal so (ψ•fi)(x) must be

split. It follows that (ψ•f)(x) is also split, and the roots include the elements αi, so they certainly generate
M . Thus (d) holds.

Finally, Lemma 6.9 shows that (d) implies (b), completing the cycle. �

Remark 6.12. [rem-normal-not-transitive]
Suppose we have fields K ⊆ L ⊆M , where L is normal over K, and M is normal over L. It need not be the

case that L is normal over K. For an example (which will be revisited as Example 7.6), take α =
√

3 +
√

7

and consider the chain Q ⊆ Q(
√

7) ⊆ Q(α). Here Q(
√

7) is a splitting field for x2− 7 over Q(
√

7), and Q(α)

is a splitting field for x2− 3−
√

7 over Q(
√

7), so both these extensions are normal. However, we claim that
Q(α) is not normal over Q. Indeed, α is a root of the polynomial f(x) = x4 − 6x2 + 2, which is irreducible

over Q by Eisenstein’s criterion at the prime 2. The element β =
√

3−
√

7 is another root of f(x) in R. We

will show in Example 7.6 that β 6∈ Q(α) (a key point being that αβ =
√

2). It follows that f(x) does not
split in Q(α)[x], and thus that Q(α) is not normal over Q, as claimed.

Corollary 6.13. [cor-normal-closure]
Let ξ : K → N be a homomorphism of finite degree. Then there is a field M and a homomorphism η : N →M
such that ηξ is normal.

Proof. Choose a basis e1, . . . , en for N over ξ(K). Put fi(t) = min(ei, ξ) and f(t) =
∏
i fi(t) ∈ K[t]. Let

η : N → M be a splitting homomorphism for (ξ•f)(t) (which is possible by Proposition 5.17). Let M ′ be
the subfield of M generated by ηξ(K) together with the roots of the polynomial g(t) = ((ηξ)•f)(t). As
(ξ•fi)(ei) = 0 we see that g(η(ei)) = 0, and the elements ei generate L over ξ(K) so the elements η(ei)
generate η(L) over ηξ(K), so η(L) ⊆M ′. Moreover, as η is a splitting homomorphism for (ξ•f)(t) we know
that the roots of g(t) generate M over η(L). It follows that M = M ′, so ηξ is a splitting homomorphism for
f(t). It follows that ηξ is normal as claimed. �
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Proposition 6.14. [prop-top-normal]

Let K
ξ−→ N

η−→M be homomorphisms such that ηξ is normal. Then:

(a) η is also normal.
(b) Suppose we have a homomorphism ζ : N → L such that E(ζξ, ηξ) 6= ∅ (and so |E(ζξ, ηξ)| =

deg(ζξ) = deg(ζ) deg(ξ)). Then also E(ζ, η) 6= ∅ (and so |E(ζ, η)| = deg(ζ)).

Proof. We start with the second statement. Let ξ, η and ζ be as in (b). We apply Lemma 6.7 (with ψ = ηξ)
to see that

deg(ζ) deg(ξ) = |E(ζξ, ηξ)| =
∑

θ∈E(ξ,ηξ)

|E(ζ, θ)|.

The number of terms in the sum is |E(ξ, ηξ)| ≤ deg(ξ), and each term |E(ζ, θ)| is at most deg(ζ). Thus,
the only way that the sum can be equal to deg(ζ) deg(ξ) is if all these inequalities are actually equalities,
so |E(ξ, ηξ)| = deg(ξ) and |E(ζ, θ)| = deg(ζ) for all θ ∈ E(ξ, ηξ). Recall here that θ ∈ E(ξ, ηξ) just means
that θξ = ηξ, so certainly η ∈ E(ξ, ηξ). We can thus take θ = η in the previous statement to see that
|E(ζ, η)| = deg(ζ) as claimed (so in particular E(ζ, η) 6= ∅).

We now deduce that η is normal. Consider ζ : N → L such that E(ζ, η) 6= ∅. This means that there
exists σ : L → M with σζ = η. It follows that σζξ = ηξ, so σ ∈ E(ζξ, ηξ), so we can apply (b) to see that
|E(ζ, η)| = deg(ζ). By Proposition 6.11(a), this means that η is normal.

The homomorphisms considered above can be displayed as follows:

L
σ // M

N

ζ

``@@@@@@@ η,θ

>>||||||||

K

ξ

OO

�

Corollary 6.15. [cor-top-normal-a]

Let K
ξ−→ N

η−→M be homomorphisms such that ηξ is normal, and let ζ : N →M be a homomorphism such
that ζξ = ηξ. Then η is normal, and there exists σ : M →M with σζ = η.

Proof. This is a special case of part (b) of the proposition, where L = M and ζξ = ηξ. In this context,
the homomorphism 1M is an element of E(ζξ, ηξ), so E(ζξ, ηξ) 6= ∅. The proposition then tells us that
E(ζ, η) 6= ∅, so we can choose σ ∈ E(ζ, ξ), which means precisely that σζ = η as claimed. �

Corollary 6.16. [cor-top-normal-b]
Suppose we have a chain of finite extension K ⊆ N ⊆ M such that M is normal over K. Then M is also
normal over N . Moreover, for any homomorphism ζ : N →M such that ζ|K = 1K , there is an automorphism
σ of M such that σ|N = ζ. Also, if σ′ is any other automorphism of M with σ′|N = ζ then σ′ = στ for
some τ ∈ G(M/N).

Proof. The first claim is a special case of the previous corollary, where ξ : K → N and η : N →M are just the
inclusion maps. Now suppose we have another automorphism σ′ with σ′|N = ζ. Put τ = σ−1σ′ : M → M ,
so σ′ = στ . If a ∈ N then σ′(a) = ζ(a) = σ(a) and we can apply σ−1 to this equation to see that τ(a) = a.
This shows that τ ∈ G(M/N) as claimed. �

We next discuss the action of Galois groups on sets of roots. Suppose we have a field extension K ⊆ L,
and a polynomial f ∈ K[x]. Put R = {α ∈ L | f(α) = 0}, the (finite) set of roots of f in L. We write ΣR
for the set of permutations of R, or in other words the set of bijective functions σ : R→ R.

It is more usual to discuss the group Σn of permutations of the finite set N = {1, . . . , n}, but but it is no
harder to consider permutations of an arbitrary finite set, as we do here. For example, suppose we have a set
R = {α, β, γ} of size three. We then have a transposition τ = (α β), defined by τ(α) = β and τ(β) = α and
τ(γ) = γ. We also have a three-cycle ρ = (α β γ), defined by ρ(α) = β and ρ(β) = γ and ρ(γ) = α. The full
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group ΣR consists of the identity permutation, the three-cycles ρ and ρ−1 = (γ β α), and the transpositions
τ = (α β), (β γ) and (γ α). In general, if |R| = n then ΣR is isomorphic to Σn. To see this, we choose a
numbering of the elements of R, say R = {α1, . . . , αn}. Then for any σ ∈ ΣR we must have σ(αi) = ασ(i)
for some index σ(i). It is easy to see that σ is then a permutation of {1, . . . , n}, and the correspondence
σ ↔ σ gives an isomorphism ΣR ' Σn.

Proposition 6.17. [prop-root-perms]
Let R be the set of roots in L of a polynomial f(x) ∈ K[x], with K ≤ L.

(a) If σ ∈ G(L/K) and α ∈ R then σ(α) ∈ R. Thus, there is a homomorphism G(L/K)→ ΣR given by
σ 7→ σ|R.

(b) If L is a splitting field for f(x) then this homomorphism is injective, so G(L/K) can be regarded as
a subgroup of ΣR.

(c) If f(x) is irreducible then for all α, β ∈ R there exists σ ∈ G(L/K) such that σ(α) = β. In other
words, the group G(L/K) acts transitively on R.

Proof. (a) We can write f(x) =
∑d
i=0 aix

i, where ai ∈ K. Suppose that α ∈ R, so
∑d
i=0 aiα

i = f(α) =

0. We can apply σ to this to get
∑d
i=0 σ(ai)σ(α)i = σ(0) = 0. However, we have σ ∈ G(L/K)

so σ|K = 1K , and ai ∈ K so σ(ai) = ai. We therefore have
∑d
i=0 aiσ(α)i = 0, or in other words

f(σ(α)) = 0, so σ(α) ∈ R as claimed. We can therefore restrict σ to give a map σ|R : R → R. Now
G(L/K) is a group, so we have an inverse element σ−1 ∈ G(L/K), which we can also restrict to get
another map σ−1|R : R→ R. This is easily seen to be inverse to σ|R, so σ|R is a bijection and thus
an element of ΣR. It is also clear that restriction is compatible with composition and thus that the
map σ 7→ σ|R is a homomorphism G(L/K)→ ΣR.

(b) Now suppose that L is a splitting field for f(x), so L is generated over K by R, so the only field L′

with K ∪ R ⊆ L′ ⊆ L is L itself. Put H = {σ ∈ G(L/K) | σ|R = 1R}, which is the kernel of our
homomorphism G(L/K)→ ΣR. Consider the subfield

LH = {a ∈ L | σ(a) = a for all σ ∈ H}
(as in Proposition 1.31). Clearly R ⊆ LH by the definition of H. Moreover, all elements of G(L/K)
act as the identity on K (by the definition of G(L/K)) so K ⊆ LH . As L is generated over K by
R, we must have LH = L. This means that for all σ ∈ H we have σ(a) = a for all a ∈ L, so σ = 1L.
This shows that H = {1L}, so our homomorphism G(L/K)→ ΣR has trivial kernel and is therefore
injective.

(c) Now suppose that f(x) is irreducible, so min(α,K) = f(x) for all α ∈ R. Consider a pair of roots
α, β ∈ R. Note that α is a primitive element for K(α) and that β is a root of min(α,K). It therefore
follows from Lemma 6.6 that there is a unique homomorphism θ : K(α) → L with θ|K = 1K and
θ(α) = β. Corollary 6.16 (applied to the chain K ⊆ K(α) ⊆ L) now tells us that there is an
automorphism σ of L such that σ|K(α) = θ, and in particular σ(α) = θ(α) = β as required.

�

Remark 6.18. [rem-generic-galois]
If L is a splitting field for a randomly generated polynomial f(x) ∈ K[x] (for an infinite field K), the most
common situation is that the map G(L/K) → ΣR is an isomorphism. However, we will mostly consider
special cases where the Galois group is smaller than ΣR, as these tend to have a more interesting structure.

Exercises

Exercise 6.1. [ex-abelian-transitive]
Let A be an abelian subgroup of Σn that acts transitively on the set N = {1, 2, . . . , n}. Show that if σ ∈ A
and σ(i) = i for some i ∈ N , then σ is the identity. (In other words, the action is free.) Deduce that |A| = n.

Exercise 6.2. [ex-root-sqrt]
Consider a monic polynomial f(x) ∈ Q[x] of degree d > 1.

(a) Show that if f(x2) is irreducible, then so is f(x).
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(b) Give an example where f(x) is irreducible but f(x2) is not.
(c) Suppose that f(x2) is irreducible. Let K be the splitting field of f(x) in C, and let L be the splitting

field of f(x2). How much can you say about the relationship between K and L, and the corresponding
Galois groups?

Exercise 6.3. [ex-sqrt-chain]

Consider the field K = Q(

√
111 +

√
11 +

√
1111). This can be considered as the top of a chain of extensions

Q = K0 ⊂ Q(
√

1111) = K1 ⊂ Q(

√
11 +

√
1111) = K2 ⊂ Q(

√
111 +

√
11 +

√
1111) = K3 = K.

(a) Analyse all the field homomorphisms φ1 : K1 → R.
(b) For each such homomorphism, analyse the possible extensions φ2 : K2 → R.
(c) For each such extensions, analyse the possible extensions φ3 : K3 → R.
(d) Deduce the value of |EQ(K,R)| (and observe that it is less than [K : Q], as we proved in lectures).
(e) Check in a similar way that |EQ(K,C)| = [K : Q].

Exercise 6.4. [ex-dedekind-direct]
Put L = Q(

√
p,
√
q) where p and q are distinct primes. There are homomorphisms θ0, . . . , θ3 : L → L given

by

θ0(
√
p) =

√
p θ1(

√
p) =

√
p θ2(

√
p) = −√p θ3(

√
p) = −√p

θ0(
√
q) =

√
q θ1(

√
q) = −√q θ2(

√
q) =

√
q θ3(

√
q) = −√q

Dedekind’s Lemma tells us that if b0, . . . , b3 ∈ L with
∑
i biθi = 0 then we must have b0 = b1 = b2 = b3 = 0.

Give a more direct proof of this fact.

Exercise 6.5. [ex-basis-misc-i]
Put α = 21/4 ∈ R and K = Q(α, i) ⊆ C. Then K is spanned over Q(i) by 1, α, α2, α3, but it is not completely
clear that these are linearly independent. We can check this and prove some other facts as follows.

(a) Prove that [Q(α) : Q] = 4.
(b) Prove that [K : Q(α)] = 2, and that [Q(i) : Q] = 2.
(c) Deduce that [K : Q(i)] = 4.
(d) Prove that K is normal over Q(i), and that G(K/Q(i)) is cyclic of order 4.

Exercise 6.6. [ex-which-normal-cyclic]
Which of the following extensions are normal? When they are normal, say whether the Galois groups are
cyclic or not.

(a) K = Q, L = K(e2πi/5)
(b) K = Q(e2πi/5), L = Q(e2πi/25)

(c) K = Q, L = K( 5
√

12)

(d) K = Q(e2πi/5), L = K( 5
√

3)

7. Some extensions of small degree

Proposition 7.1. [prop-quadratic]
Let K be a field of characteristic not equal to two, and let L be an extension of K of degree two.

(a) There is an element α ∈ L \K such that L = K(α) and α2 ∈ K.
(b) The element α has the following uniqueness property: if L = K(β) for some other element β ∈ L\K

with β2 ∈ K, then β = qα for some q ∈ K.
(c) There is an automorphism σ : L→ L that acts as the identity on K and satisfies σ(α) = −α.
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(d) We have σ2 = 1 and G(L/K) = {1, σ} ' C2.

Proof. First choose any element λ ∈ L \K. We claim that 1 and λ are linearly independent over K. To see
this, consider a linear relation a.1 + bλ = 0 with a, b ∈ K. If b 6= 0 we can rearrange to get λ = −ab−1 ∈ K,
contrary to assumption. We therefore have b = 0 so the original relation reduces to a = 0 as required. As
dimK(L) = 2 this means that 1, λ is a basis for L over K. We can therefore write −λ2 in terms of this
basis, say as −λ2 = bλ + c, or equivalently λ2 + bλ + c = 0. Next, as K does not have characteristic two
we know that 2 is invertible in K so we can put α = λ − b/2 ∈ L and a = b2/4 − c ∈ K. We find that
α2 = λ2 − bλ+ b2/4 = b2/4− c = a. By the same logic as for λ we also see that 1, α is a basis for L and so
L = K(α), proving (a).

Now suppose we have another element β ∈ L \ K with β2 ∈ K. We can write β = p + qα for some
p, q ∈ K. As β 6∈ K we have q 6= 0. This gives β2 = (p2 + q2a) + 2pqα, which is assumed to lie in K, so we
must have 2pq = 0. As q 6= 0 and 2 is invertible this gives p = 0 and thus β = qα, proving (b).

Next, as 1, α is a basis, we can certainly define a K-linear map σ : L → L by σ(x + yα) = x − yα. This
clearly satisfies σ(σ(x + yα)) = σ(x − yα) = x + yα, so σ2 = 1. It also has σ(0) = 0 and σ(1) = 1. Now
consider elements µ = u+ vα and ν = x+ yα in L. We have

µν = (ux+ vya) + (vx+ uy)α

σ(µν) = (ux+ vya)− (vx+ uy)α

σ(µ)σ(ν) = (u− vα)(x− yα) = (ux+ vya)− (vx+ uy)α = σ(µν).

It follows that σ is an automorphism. Now let τ be any other automorphism of L with τ |K = 1. We can
apply τ to the equation α2− a = 0 to get τ(α)2− a = 0, or in other words τ(α)2−α2 = 0, or in other words
(τ(α) − α)(τ(α) + α) = 0, so either τ(α) = α or τ(α) = −α. In the first case we have τ = 1, and in the
second case we have τ = σ. It follows that G(L/K) = {1, σ} as claimed. �

Proposition 7.2. [prop-biquadratic]
Let p and q be distinct prime numbers, put B = {1,√p,√q,√pq} ⊂ R, and let K be the span of B over Q.

(a) The set B is linearly independent over Q, so it gives a basis for K, and [K : Q] = 4.
(b) K is a splitting field for the polynomial (x2 − p)(x2 − q) ∈ Q[x].
(c) There are automorphisms σ and τ of K given by

σ(w + x
√
p+ y

√
q + z

√
pq) = w − x√p+ y

√
q − z√pq

τ(w + x
√
p+ y

√
q + z

√
pq) = w + x

√
p− y√q − z√pq.

(d) We have σ2 = τ2 = 1 and στ = τσ, and G(K/Q) = {1, σ, τ, στ} ' C2 × C2.

Proof. For part (a), consider a nontrivial linear relation w + x
√
p + y

√
q + z

√
pq = 0. Here w, x, y, z ∈ Q,

but after multiplying through by a suitable integer we can clear the denominators and so assume that
w, x, y, z ∈ Z. We can then divide through by any common factor and thus assume that gcd(w, x, y, z) = 1.
Now rearrange the relation as w + x

√
p = −(y + z

√
p)
√
q and square both sides to get

(w2 + px2) + 2wx
√
p = (y2 + pz2)q + 2yzq

√
p.

We know that 1 and
√
p are linearly independent over Q, so we conclude that

wx = yzq

w2 + px2 = (y2 + pz2)q.

From the first of these we see that either w or x is divisible by q. In either case we can feed this fact into
the second equation to see that w2 and x2 are both divisible by q, so w and x are both divisible by q, say
w = qw and x = qx. We can substitute these in the previous equations and cancel common factors to get

yz = wxq

y2 + pz2 = (w2 + px2)q.

The same logic now tells us that y and z are both divisible by q, contradicting the assumption that
gcd(w, x, y, z) = 1. It follows that there can be no such linear relation, which proves (a).

38



For (b), the main point to check is that K is actually a subfield of R. To see this, write e0 = 1, e1 =
√
p,

e2 =
√
q and e3 =

√
pq. By a straightforward check of the 16 possible cases, we see that eiej is always a

rational multiple of ek for some k (for example e1e3 = pe2). In particular, we have eiej ∈ K. Now suppose

we have two elements x, y ∈ K, say x =
∑3
i=0 xiei and y =

∑3
j=0 yjej . Then xy =

∑
i,j xiyjeiej with

xiyj ∈ Q and eiej ∈ K, and K is a vector space over Q, so xy ∈ K. We therefore see that K is a subring
of R. As K is finite-dimensional we can use Proposition 5.11 to see that K is a subfield of R. It is clearly
generated by the roots of the polynomial

f(x) = (x2 − p)(x2 − q) = (x−√p)(x+
√
p)(x−√q)(x+

√
q),

so it is a splitting field for f(x).
Next, we can regard K as a degree two extension of Q(

√
q) obtained by adjoining a square root of p.

Proposition 7.1 therefore gives us an automorphism σ of K that acts as the identity on Q(
√
q), and this is

clearly described by the formula stated above. Similarly, we obtain the automorphism τ by regarding K as
Q(
√
p)(
√
q) rather than Q(

√
q)(
√
p). This proves (c).

Now let θ be an arbitrary automorphism of K (which automatically acts as the identity on Q). We must

then have θ(
√
p)2 = θ(

√
p2) = θ(p) = p, so θ(

√
p) = ±√p. Similarly we have θ(

√
q) = ±√q, and it follows

by inspection that there is a unique automorphism φ ∈ {1, σ, τ, στ} that has the same effect on
√
p and

√
q

as θ. This means that the automorphism ψ = φ−1θ has ψ(
√
p) =

√
p and ψ(

√
q) =

√
q, and therefore also

ψ(
√
pq) = ψ(

√
p)ψ(
√
q) =

√
pq. As B is a basis for K over Q and ψ acts as the identity on B, we see that

ψ = 1, and so θ = φ. This proves (d). �

We next consider two different cubic equations for which the answers work out quite neatly. In Section 12
we will see that general cubics are conceptually not too different, although the formulae are typically less
tidy.

Example 7.3. [eg-nice-cubic]
We will construct and study a splitting field for the polynomial f(x) = x3 − 3x − 3 ∈ Q[x]. This is an

Eisentstein polynomial for the prime 3, so it is irreducible over Q. We start by noting that (3 +
√

5)/2 is

a positive real number, with inverse (3−
√

5)/2. We let β denote the real cube root of (3 +
√

5)/2, so that

β−1 is the real cube root of (3 −
√

5)/2. Then put ω = (
√
−3 − 1)/2 ∈ C, so ω3 = 1 and ω2 + ω + 1 = 0.

Finally, put αi = ωiβ + 1/(ωiβ) for i = 0, 1, 2. We claim that these are roots of f(x). Indeed, we have

α3
i = (ωiβ)3 + 3(ωiβ)2/(ωiβ) + 3ωiβ/(ωiβ)2 + 1/(ωiβ)3

= β3 + β−3 + 3(ωiβ + ω−iβ−1)

= (3 +
√

5)/2 + (3−
√

5)/2 + 3αi = 3 + 3αi,

which rearranges to give f(αi) = 0 as claimed. We also note that α0 is real, whereas α1 and α2 are non-real
and are complex conjugates of each other. It follows that we have three distinct roots of f(x), and thus that
f(x) = (x − α0)(x − α1)(x − α2), so the splitting field is generated by α0, α1 and α2. We write K for this
splitting field.

Next, note that ω (the complex conjugate of ω) is ω−1, and so α1 = α2 and α2 = α1, whereas α0 = α0

because α0 is real. This means that conjugation permutes the roots αi and so preserves K. We thus have
an automorphism σ : K → K given by σ(a) = a for all a ∈ K.

We also claim that there is an automorphism ρ of K with ρ(α0) = α1 and ρ(α1) = α2 and ρ(α2) = α0.
Indeed, part (c) of Proposition 6.17 tells us that there is an automorphism λ such that λ(α0) = α1. We know
that λ permutes the set R = {α0, α1, α2} of roots of f(x), so it must either be the three-cycle (α0 α1 α2)
or the transposition (α0 α1). In the first case, we can just take ρ = λ; in the second, we can take ρ = λσ.
It is now easy to check that the set {1, ρ, ρ2, σ, ρσ, ρ2σ} gives all six permutations of R. It follows by
Proposition 6.17 that the Galois group G(L/K) is the full group ΣR ' Σ3.

Example 7.4. [eg-special-cubic]
Consider the polynomial f(x) = x3 + x2 − 2x − 1. We first claim that this is irreducible over Q. Indeed,
if it were reducible we would have f(x) = g(x)h(x) for some monic polynomials g(x), h(x) ∈ Q[x] with
deg(g(x)) = 1 and deg(h(x)) = 2. Proposition 4.21 would then tell us that g(x), h(x) ∈ Z[x]. This would
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mean that g(x) = x−a for some a ∈ Z, and thus f(a) = 0. However, we have f(2m) = 2(4m3 +2m2−m)−1
and f(2m+ 1) = 2(4m3 + 8m2 + 3m)− 1 so f(a) is odd for all a ∈ Z, which is a contradiction.

Now put

ζ = exp(2πi/7) = cos(2π/7) + i sin(2π/7)

α = ζ + ζ−1 = 2 cos(2π/7)

β = ζ2 + ζ−2 = 2 cos(4π/7)

γ = ζ4 + ζ−4 = 2 cos(8π/7).

We claim that α, β and γ are roots of f(x). To see this, we start with the observation that ζ7 = 1, so
ζ4 = ζ−3, so

(ζ − 1)(ζ−3 + ζ−2 + ζ−1 + 1 + ζ + ζ2 + ζ3) = ζ4 − ζ−3 = 0,

but ζ − 1 6= 0, so
ζ−3 + ζ−2 + ζ−1 + 1 + ζ + ζ2 + ζ3 = 0.

On the other hand,

α3 = ζ−3 + 3ζ−1 + 3ζ + ζ3

α2 = ζ−2 + 2 + ζ2

−2α = −2ζ−1 − 2ζ

−1 = −1.

If we add together the left hand sides we get f(α), and if we add together the right hand sides we get∑3
i=−3 ζ

i = 0, so f(α) = 0. By essentially the same calculation we also have

f(β) =

3∑
i=−3

ζ2i = ζ−6 + ζ−4 + ζ−2 + 1 + ζ2 + ζ4 + ζ6.

We can rewrite the right hand side using ζ6 = ζ−1 and ζ4 = ζ−3 (so ζ−6 = ζ and ζ−4 = ζ3). After reordering

the terms we just get
∑3
i=−3 ζ

i again, which is zero. This shows that f(β) = 0, and similarly f(γ) = 0. This
gives three distinct roots for the cubic polynomial f(x), so we have

f(x) = (x− α)(x− β)(x− γ).

Next, we observe that

α2 − 2 = (ζ−2 + 2 + ζ2)− 2 = ζ−2 + ζ2 = β

β2 − 2 = (ζ−4 + 2 + ζ4)− 2 = ζ−4 + ζ4 = γ

γ2 − 2 = (ζ−8 + 2 + ζ8)− 2 = ζ−8 + ζ8 = ζ−1 + ζ = α.

The first of these shows that β ∈ Q(α), and so Q(β) ⊆ Q(α). We can also use the other equations to see
that Q(α) ⊆ Q(γ) ⊆ Q(β) ⊆ Q(α), so

Q(α) = Q(β) = Q(γ) = Q(α, β, γ).

It follows that Q(α) is a splitting field for f(x).
Next, Proposition 6.17 tells us that there is an automorphism σ of Q(α) with σ(α) = β. Now σ is a

homomorphism and β = α2 − 2 so

σ(β) = σ(α2 − 2) = σ(α)2 − 2 = β2 − 2 = γ.

By a similar argument we have σ(γ) = γ2 − 2 = α, so σ corresponds to the three-cycle (α β γ). We also
know that |G(Q(α)/Q)| = [Q(α) : Q] = 3, and it follows that G(Q(α)/Q) = {1, σ, σ2} ' C3.

Example 7.5. [eg-cyclic-quartic]
Consider the polynomial f(x) = x4 − 10x2 + 20, which is irreducible over Q by Eisenstein’s criterion at
the prime 5. This is a quadratic function of x2, so by the usual formula it vanishes when x2 = (10 ±√

100− 4× 20)/2 = 5 ±
√

5 (and both of these values are positive real numbers). The roots of f(x) are

therefore α, β, −α and −β where α =
√

5 +
√

5 and β =
√

5−
√

5. It is a special feature of this example
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that β can be expressed in terms of α. To see this, note that α2 = 5 +
√

5 and so α4 = 30 + 10
√

5. Then
put β′ = 1

2α
3 − 3α and note that

αβ′ = 1
2α

4 − 3α2 = 15 + 5
√

5− 15− 3
√

5 = 2
√

5

αβ =

√
(5 +

√
5)(5−

√
5) =

√
52 −

√
5
2

=
√

25− 5 = 2
√

5.

This shows that αβ′ = αβ, so β = β′ = 1
2α

3 − α ∈ Q(α). This shows that all roots of f(x) lie in Q(α),
so Q(α) is a splitting field for f(x) over Q. By Proposition 6.17 there is an automorphism σ of Q(α) with
σ(α) = β. It follows that

σ(
√

5) = σ(α2 − 5) = σ(α)2 − 5 = β2 − 5 = −
√

5.

We now apply σ to the equation αβ = 2
√

5 to get βσ(β) = −2
√

5. We can then divide this by the

original equation αβ = 2
√

5 to get σ(β)/α = −1, so σ(β) = −α. Moreover, as σ is a homomorphism
we have σ(−a) = −σ(a) for all a, so σ(−α) = −β and σ(−β) = α. This shows that σ corresponds
to the four-cycle (α β − α − β). It follows that the automorphisms {1, σ, σ2, σ3} are all different, but
|G(Q(α)/Q)| = [Q(α) : Q] = 4, so we have

G(Q(α)/Q) = {1, σ, σ2, σ3} ' C4.

Example 7.6. [eg-even-quartic]

Consider the polynomial f(x) = x4 − 6x2 + 2 = (x2 − 3 −
√

7)(x2 − 3 +
√

7), which is irreducible over

Q, by Eisenstein’s criterion at the prime 2. The roots are α, −α, β and −β, where α =
√

3 +
√

7 and

β =
√

3−
√

7. Let K be the splitting field, which is generated by α and β. Note that this contains the
elements

√
7 = α2 − 3 and

√
2 = αβ. We can draw the set R of roots in a square as follows:

α β

−β −α

We claim that G(L/Q) can be identified with the group D8 of rotations and reflections of this square. Indeed,
we can define a permutation µ = (α − α)(β − β) ∈ ΣR, and we put H = {σ ∈ ΣR | σµσ−1 = µ}. One
can see that H is a proper subgroup of ΣR containing D8, so |H| is divisible by |D8| = 8 and strictly
less than |ΣR| = 24, so |H| = 8 and H = D8. Next, if σ ∈ G(K/Q) then σ satisfies σ(−a) = −σ(a) for
all a ∈ K, so we have σµ = µσ, so σ ∈ H = D8. It follows that G(K/Q) is a subgroup of D8 of order
equal to [K : Q], so it will suffice to check that [K : Q] = 8. As f(x) is irreducible we certainly have

[Q(β) : Q] = [Q(α) : Q] = deg(f(x)) = 4 and K = Q(α)(β) with β2 = 3 −
√

7 ∈ Q(
√

7) ⊆ Q(α), so
[K : Q(α)] is either 1 (if β ∈ Q(α)) or 2 (if β 6∈ Q(α)). It would be an odd coincidence if β were already in
Q(α) and the reader may wish to take it on trust that this is not the case. However, for completeness we
will give a proof below. Assuming this, we have [K : Q] = [K : Q(α)][Q(α) : Q] = 8 as required.

For the proof that β 6∈ Q(α), we first observe that [Q(β) : Q] = 4 > 2 = [Q(
√

7) : Q], so β 6∈ Q(
√

7).

Similarly, we have α 6∈ Q(
√

7). We also claim that β/α 6∈ Q(
√

7). Indeed, if it were we could multiply by

α2 = 3 +
√

7 ∈ Q(
√

7) to see that
√

2 = αβ ∈ Q(
√

7), which would contradict the case (p, q) = (2, 7) of
Proposition 7.2. Now suppose (for a contradiction) that β ∈ Q(α). We can then write β = u+ vα for some

u, v ∈ Q(
√

7). As β 6∈ Q(
√

7) we must have v 6= 0, and as β/α 6∈ Q(
√

7) we must have u 6= 0. We can now

square the relation β = u + vα and rearrange to get α = (β2 − u2 − v2α2)/(2uv). As u, v, α2, β2 ∈ Q(
√

7)

this gives α ∈ Q(
√

7), which is the required contradiction.

For a randomly chosen polynomial of degree d, it will usually work out that the Galois group of the
splitting field is the whole permutation group Σd. However, in any given case, it may not be so easy to verify
this. We will now consider some examples where it is not too hard to verify this.

Lemma 7.7. [lem-all-perms]
Let p be a prime, and let G be a subgroup of Σp. Suppose that

(a) G contains at least one transposition.
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(b) For all i, j ∈ {1, . . . , n} there exists σ ∈ G with σ(i) = j. (In other words, G is transitive.)

Then G is all of Σp.

Proof. Put P = {1, . . . , p}, and introduce a relation on P by i ∼ j if i = j or (i j) ∈ G. It is clear that
i ∼ i, and that i ∼ j if and only if j ∼ i. In other words, the relation is reflexive and symmetric. We
claim that it is also transitive. To see this, suppose that i ∼ j and j ∼ k. If either i = j or j = k it is
immediate that i ∼ k. Otherwise, we must have (i j) ∈ G and (j k) ∈ G. As G is a subgroup it follows that
(j k)(i j)(j k) ∈ G, but that composite is equal to (i k), so we see that i ∼ k as required. This means that
∼ is an equivalence relation, so we can divide P into equivalence classes. Next, we claim that if σ ∈ G and
i ∼ j then σ(i) ∼ σ(j). Indeed, this is clear if i = j. Moreover, if i 6= j we must have (i j) ∈ G, and it
follows that (σ(i) σ(j)) = σ(i j)σ−1 ∈ G, so σ(i) ∼ σ(j) as claimed. We can also apply the same argument
using σ−1 to deduce that converse implication, that if σ(i) ∼ σ(j) then i ∼ j. Using this we see that the
equivalence class of i has the same size as the equivalence class of σ(i). By transitivity, for any j ∈ P we can
choose σ ∈ G with σ(i) = j, and using this we see all the equivalence classes have the same size, say m. If
there are n equivalence classes this means that mn = p. As G contains a transposition we see that there is
at least one equivalence class of size larger than one, so m > 1. As p is prime we must thus have m = p and
n = 1. This means that the whole of P is a single equivalence class, so for all i 6= j in P we have (i j) ∈ G.
On the other hand, it is well known that every permutation can be written as a product of transpositions,
so G is all of Σp as claimed. �

Corollary 7.8. [cor-all-perms]
Let p be a prime, and let f(x) be an irreducible polynomial in Q[x] that has precisely p− 2 real roots. Then
the Galois group of the splitting field is all of Σp.

Proof. As f(x) is irreducible it has no repeated roots, so there are precisely p distinct roots altogether. We
can number them as α1, . . . , αp with α1 and α2 being non-real and α3, . . . , αp being real. We can take the
complex conjugate of the equation f(α1) = 0 to see that f(α1) = 0, so α1 is a non-real root different from
α1, so it must be α2. It follows from this that complex conjugation gives an automorphism of the splitting
field K = Q(α1, . . . , αp), which exchanges α1 and α2, and fixes αk for k > 2. This means that the Galois
group G contains the transposition (1 2), and it is transitive by Proposition 6.17(c). The claim now follows
from Lemma 7.7. �

Example 7.9. [eg-generic-quintic]
Consider the quintic f(x) = x5 − 6x + 3, which is irreducible by Eisenstein’s criterion at the prime three.
Using Maple or a graphing calculator we see that there are precisely three real roots, at approximately
x ' −1.67, x ' 0.51 and x ' 1.40. For a more rigorous argument, we note that f(−2) = −17 < 0 and
f(0) = 3 > 0 and f(1) = −2 < 0 and f(2) = 23 > 0, so the Intermediate Value Theorem tells us that there is
at least one root between −2 and 0, and another between 0 and 1, and another between 1 and 2. Moreover,
Rolle’s theorem tells us that between any two roots of f(x) there is at least one root of f ′(x) = 5x4− 6, but
f ′(x) has only two real roots (namely x = ±(6/5)1/4 ' ±1.0466), so f(x) can only have three real roots.
This verifies the hypotheses of Corollary 7.8, so we see that the Galois group of the splitting field of f(x) is
all of Σ5.

Exercises

Exercise 7.1. [ex-two-roots-basis]

Give a basis for Q(
√

2,
√

3) over Q. Express the element 1/(2 +
√

2 +
√

3) as a linear combination of your
basis elements.

Exercise 7.2. [ex-three-five]

Show directly that Q(
√

3,
√

5) = Q(
√

3 +
√

5).

Exercise 7.3. [ex-biquadratic]
Let p and q be primes with p < q. You may assume (as shown in the notes) that the list 1,

√
p,
√
q,
√
pq is
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linearly independent over Q. Put

f(x) = x4 − 2(p+ q)x2 + (p− q)2

g(x) = x4 − (p+ q)x2 + pq.

Show that f(x) is the minimal polynomial of
√
p +
√
q over Q (so in particular it is irreducible). Find all

the roots of f(x). Show that g(x) is reducible, and has the same splitting field as f(x).

Exercise 7.4. [ex-galois-i]

Put L = Q( 3
√

3,
√
−3). Prove that this is normal over Q, and describe the group G(L/Q).

Exercise 7.5. [ex-galois-ii]

Find all automorphisms of the field L = Q( 3
√

3, i). Deduce that L is normal over Q( 3
√

3), but not over Q.

Exercise 7.6. [ex-galois-iii]

Put L = Q( 4
√

3, i). Find all the automorphisms of L, and show that L is normal over Q.

Exercise 7.7. [ex-galois-iv]
Consider the polynomial f(x) = x4 + x2 + 4. This is irreducible over Q; you can either prove that, or just
assume it and continue with the rest of the question. Put

α =

√
−1

2
+

1

2

√
−15.

(a) Show that the roots of f(x) are ±α and ± 2
α , so Q(α) is a splitting field for f(x).

(b) Compute G(Q(α)/Q). What well-known group is it?

Exercise 7.8. [ex-galois-v]

Put f(x) = x4 + 8x2 − 2 ∈ Q[x], and α =
√

3
√

2− 4, and M = Q(α,
√
−2).

(a) Show that f(x) is irreducible over Q.
(b) Show that f(x) has roots ±α,±

√
−2/α, so that M is a splitting field for f(x).

(c) Show that Q(α) = M ∩ R 6= M , and deduce that [M : Q] = 8.
(d) Show that there exist automorphisms φ, ψ ∈ G(M/Q) such that φ has order 4, ψ has order 2, and

G(M/Q) = 〈φ, ψ〉.
(e) Write ψφψ−1 in the form φiψj . To what well-known group is G(M/Q) isomorphic?

8. Cyclotomic extensions

Definition 8.1. [defn-cyclotomic]
For any n > 0 we put

µn = {z ∈ C | zn = 1} = {exp(2πik/n) | k = 0, 1, . . . , n− 1}.

If z ∈ µn for some n, then the order of z is the smallest d > 0 for which zd = 1; this is a divisor of n. We
write µ×n for the subset of µn consisting of numbers of order precisely d. We also define

ϕn(t) =
∏
z∈µ×n

(t− z) ∈ C[t],

and call this the n’th cyclotomic polynomial. We write Q(µn) for the subfield of C generated by µ×n , and call
this the n’th cyclotomic field. This is evidently a splitting field for ϕn(t).
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Remark 8.2. [rem-cyclotomic]
If ξ = exp(2πik/n) ∈ µn, then ξ = ζk1 , where ζ1 = exp(2πi/n) ∈ µ×n . By definition we have ζ1 ∈ Q(µn) and
Q(µn) is a subfield so it is closed under multiplication, so ζk1 = ξ ∈ Q(µn). This shows that Q(µn) does
indeed contain µn as suggested by the notation.

Proposition 8.3. [prop-cyclotomic-product]
The polynomial ϕn(t) is actually in Z[t], and satisfies

tn − 1 =
∏
d|n

ϕd(t).

Proof. Firstly, for each divisor d of n, we note that µ×d ⊆ µd ⊆ µn. Every element z ∈ µn lies in precisely

one of the sets µ×d , so we see that∏
z∈µn

(t− z) =
∏
d|n

∏
z∈µ×d

(t− z) =
∏
d|n

ϕd(t).

On the other hand, the elements of µn are precisely the roots of xn − 1, and there are n of them, so we see
from Proposition 4.29 that tn − 1 =

∏
z∈µn

(t− z) =
∏
d|n ϕd(t) as claimed.

We will now prove by induction that ϕn(t) ∈ Z[t] for all n. To start the induction, note that µ×1 = {1}
so ϕ1(t) = t − 1 ∈ Z[t]. Now suppose that ϕd(t) ∈ Z[t] for all d < n. Let f(t) be the product of all the
polynomials ϕd(t) where d|n and d < n. From the above we then see that tn− 1 = f(t)ϕn(t). Moreover, the
induction hypothesis implies that f(t) ∈ Z[t] ⊆ Q[t], and it is visible that tn − 1 ∈ Z[t] ⊆ Q[t]. We therefore
see from Corollary 4.6 that ϕn(t) ∈ Q[t]. As f(t) and ϕn(t) are monic and f(t)ϕn(t) ∈ Z[t] it then follows
from Proposition 4.21 that ϕn(t) ∈ Z[t]. �

Example 8.4. [eg-cyclotomic-p]
We claim that when p is prime we have ϕp(t) = 1 + t + · · · + tp−1. Indeed, as the only divisors of p are 1
and p, the proposition tells us that tp− 1 = ϕ1(t)ϕp(t). It is clear from the definitions that ϕ1(t) = t− 1, so
ϕp(t) = (tp − 1)/(t− 1), which is 1 + t+ · · ·+ tp−1 by the standard geometric progression formula.

Example 8.5. [eg-cyclotomic]
One can also check that

ϕ1(t) = t− 1

ϕ2(t) = t+ 1

ϕ3(t) = t2 + t+ 1

ϕ4(t) = t2 + 1

ϕ5(t) = t4 + t3 + t2 + t+ 1

ϕ6(t) = t2 − t+ 1

ϕ7(t) = t6 + t5 + t4 + t3 + t2 + t+ 1

ϕ8(t) = t4 + 1

ϕ9(t) = t6 + t3 + 1

ϕ10(t) = t4 − t3 + t2 − t+ 1.

To see this, let ψ1(t), . . . , ψ10(t) be the polynomials listed above, so the claim is that ϕn(t) = ψn(t) for
n = 1, . . . , 10. One can check directly that for these n we have tn − 1 =

∏
d|n ψd(t), and for all n we have

tn − 1 =
∏
d|n ϕd(t). If we know that ϕd(t) = ψd(t) for all d < n, one can easily deduce from this that

ϕn(t) = ψn(t). It therefore follows inductively that ϕn(t) = ψn(t) for n ≤ 10 as claimed.
To explain the case n = 6 in more detail, note that

ψ1(t)ψ2(t)ψ3(t)ψ6(t) = (t− 1)(t+ 1)(t2 + t+ 1)(t2 − t+ 1)

= (t2 − 1)(t4 + t2 + 1) = t6 − 1.
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On the other hand, Proposition 8.3 tells us that ϕ1(t)ϕ2(t)ϕ3(t)ϕ6(t) = t6 − 1. It is clear that ϕ1(t) =
t− 1 = ψ1(t), and using Example 8.4 we see that ϕ2(t) = ψ2(t) and ϕ3(t) = ψ3(t). We can therefore cancel
the factor ϕ1(t)ϕ2(t)ϕ3(t) = ψ1(t)ψ2(t)ψ3(t) in the equation

ϕ1(t)ϕ2(t)ϕ3(t)ϕ4(t) = t6 − 1 = ψ1(t)ψ2(t)ψ3(t)ψ4(t)

to see that ϕ4(t) = ψ4(t) as claimed.

Proposition 8.6. [prop-phi-irreducible]
The polynomial ϕn(t) is irreducible over Q.

The proof will follow after some preliminary results.

Lemma 8.7. [lem-F-additive]
If p is prime then (x+ y)p = xp + yp (mod p), and np = n (mod p) for all n ∈ Z.

Proof. First, we have the binomial expansion

(x+ y)p =

p∑
k=0

(
p
k

)
xkyp−k = xp + yp +

p−1∑
k=1

(
p
k

)
xkyp−k.

It will therefore be enough to show that

(
p
k

)
= 0 (mod p) for 0 < k < p. From the definitions we have

k!(p − k)!

(
p
k

)
= p!, which is divisible by p. This means that p must divide k! or (p − k)! or

(
p
k

)
.

However, as k < p and k! = 1.2.3 · · · k we see that k! is not divisible by p. Moreover, (p − k)! is also not

divisible by p, for the same reason. It follows that p must divide

(
p
k

)
, and we deduce that (x+y)p = xp+yp

(mod p) as claimed.
Now suppose that np = n (mod p). By taking x = n and y = 1 in our previous congruence we obtain

(n + 1)p = np + 1p = n + 1 (mod p). It follows by induction that np = n (mod p) for all n ∈ N. We also
have np+ (−n)p = (n+ (−n))p = 0p = 0 (mod p), so (−n)p = −(np) = −n (mod p) for all n ∈ N. It follows
that mp = m (mod p) for all m ∈ Z. �

Corollary 8.8. [cor-F-additive]
If g(t) ∈ Z[t] then g(tp) = g(t)p (mod p).

Proof. We can write g(t) =
∑d
i=0 ait

i with ai ∈ Z. The lemma tells us that the p’th power operation

commutes with addition modulo p, so g(t)p =
∑d
i=0 a

p
i t
ip (mod p). The lemma also tells us that api = ai

(mod p), so g(t)p =
∑d
i=0 ait

ip (mod p), and this is just the same as g(tp). �

Lemma 8.9. [lem-zeta-p]
Let ζ be an element of µ×n , and put f(t) = min(ζ,Q). Let p be a prime that does not divide n. Then
f(ζp) = 0.

Proof. As ζ is a root of tn − 1 we see that f(t) divides tn − 1, say tn − 1 = f(t)g(t) for some (necessarily
monic) polynomial g(t) ∈ Q[t]. We see from Proposition 4.21 that in fact f(t), g(t) ∈ Z[t].

Next, we can use the equation ζn = 1 to see that (ζp)n− 1 = 0, or equivalently f(ζp)g(ζp) = 0. If we can
show that g(ζp) 6= 0 then we conclude that f(ζp) = 0 as required.

We therefore assume that g(ζp) = 0, and try to derive a contradiction. Note that g(tp) is a polynomial in
Z[t] that is zero when t = ζ. It therefore follows from the definition of f(t) = min(ζ,Q) that g(tp) is divisible
by f(t), say g(tp) = f(t)h(t). We can again use Proposition 4.21 to see that h(t) ∈ Z[t].

We next need to work temporarily modulo p. For any polynomial m(t) ∈ Z[t], we will write m(t) for
the image of m(t) in Fp[t]. The equation g(tp) = f(t)h(t) in conjunction with Corollary 8.8 tells us that

g(t)p = f(t)h(t). Now let k(t) be any monic irreducible factor of f(t) in Fp[t]. We then see that k(t)

divides g(t)p, so (by irreducibility) it must divide g(t). It follows that k(t)2 divides f(t)g(t) = tn − 1, say
tn − 1 = k(t)2m(t) for some m(t) ∈ Fp[t]. We then take the algebraic derivative to see that

n tn−1 = 2k(t)k
′
(t)m(t) + k(t)2m′(t) = (2k

′
(t)m(t) + k(t)m′(t))k(t)
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so in particular k(t) divides n tn−1. Note here that n 6= 0 in Fp (because we assumed that p does not divide

n) and that k(t) was assumed to be monic and irreducible. It is clear from this that we must have k(t) = t,
so k(0) = 0. We can thus put t = 0 in the equation tn − 1 = k(t)2m(t) to get −1 = 0 (mod p), which is the
required contradiction. �

Corollary 8.10. [cor-cyclotomic-roots]
Let ζ be an element of µ×n , and put f(t) = min(ζ,Q). Let k be any integer that is coprime to n. Then
f(t) = min(ζk,Q) (and so f(ζk) = 0).

Proof. If k is prime, then the lemma tells us that f(ζk) = 0. It follows that min(ζk,Q) is a non-constant
monic divisor of the irreducible polynomial f(t), so it must just be equal to f(t) as required.

Now suppose that k = pq for some primes p and q (which cannot divide n, because k is coprime to n). By
the prime case (applied to ζ and p) we see that f(t) = min(ζp,Q). We can therefore apply the prime case
again to ζp and q to see that f(t) = min(ζpq,Q) = min(ζk,Q). In general, if k > 0 and k is coprime to n
then we can write k = p1p2 · · · pr for some primes p1, . . . , pr (not necessarily distinct) that do not divide n.
We then see that f(t) = min(ζk,Q) by an obvious extension of the argument for the case k = pq. Finally, if
k < 0 and (k, n) = 1 then we can choose j such that the number k′ = k + jn is positive (and still coprime

to n). We then see that f(t) = min(ζk
′
,Q) but ζk

′
= (ζn)jζk = ζk so f(t) = min(ζk,Q) as claimed. �

Proof of Proposition 8.6. Put ζ = exp(2πi/n) ∈ µ×n , and f(t) = min(ζ,Q). As ϕn(ζ) = 0 we see that f(t)
divides ϕn(t). On the other hand, the roots of ϕn(t) are precisely the elements of µ×n , or in other words the
powers ζk with 0 ≤ k < n and (k, n) = 1. Corollary 8.10 tells us that these are also roots of f(t), so ϕn(t)
divides f(t) by Proposition 4.29. As f(t) and ϕn(t) are monic polynomials that divide each other, we must
have ϕn(t) = f(t). As f(t) is irreducible by definition, we see that ϕn(t) is irreducible as claimed. �

Proposition 8.11. [prop-cyclotomic-galois]
For each k ∈ Z that is coprime to n there is a unique automorphism σk of Q(µn) such that σk(ζ) = ζk for
all ζ ∈ µn. Moreover, the rule k + nZ 7→ σk gives an isomorphism of groups (Z/nZ)× → G(Q(µn)/Q).

Proof. Put ζ1 = exp(2πi/n) ∈ µ×n ; we have seen that ϕn(x) = min(ζ1,Q). Now suppose we have k ∈ Z such
that (k, n) = 1. Then ζk1 ∈ µ×n , so ϕn(ζ1) = 0. It then follows from Proposition 6.17(c) that there is an
automorphism σk ∈ G(Q(µn)/Q) with σk(ζ1) = ζk1 . Any other element ζ ∈ µn has the form ζ = ζm1 for some
m, and as σk is a homomorphism we deduce that

σk(ζ) = σk(ζm1 ) = σk(ζ1)m = (ζk1 )m = (ζm1 )k = ζk.

Next, part (b) of Proposition 6.17 tells us that any automorphism of Q(µn) is determined by its effect on
the set µ×n of roots of ϕn(t). It follows that σk is the unique automorphism such that σk(ζ) = ζk for all
ζ ∈ µn. In particular, if j is another element of Z that is coprime to n, we see that

σj(σk(ζ)) = σj(ζ
k) = σj(ζ)k = ζjk = σjk(ζ).

It therefore follows from the above uniqueness statement that σjσk = σjk. Similarly, if j = k (mod n) then
ζj = ζk for all ζ ∈ µn so σj and σk give the same permutation of roots, so σj = σk. We now see that there
is a well-defined map S : (Z/nZ)× → G(Q(µn)/Q) given by S(k) = σk. If σk is the identity then we must

have ζk1 = ζ1, so ζk−11 = 1, so k = 1 (mod n). It follows that ker(S) = {1} and so S is injective. Finally,
suppose that τ ∈ G(Q(µn)/Q). We then see that τ(ζ1) must be a root of ϕn(t), and so τ(ζ1) = ζk1 for some
k that is coprime to n. Just as above we deduce that τ(ζ) = ζk for all ζ ∈ µn, and so τ = σk. This proves
that S is surjective and so is an isomorphism. �

We will state without proof the following result of Kronecker and Weber:

Theorem 8.12. [thm-kronecker-weber]
Let K be a subfield of C that is normal and of finite degree over Q, such that G(K/Q) is abelian. Then
K ⊆ Q(µn) for some n.

The proof uses ideas far beyond the scope of these notes. However, we will prove an interesting special
case.
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Proposition 8.13. [prop-root-p]
For any prime p > 2 we have

√
p ∈ Q(µ4p). More precisely, if ξ = exp(πi/(2p)) is the standard generator of

µ4p then

√
p =

(p−1)/2∏
k=1

(ξp−2k − ξp+2k) = ξ(p−1)
2/4

(p−1)/2∏
k=1

(1− ξ4k).

(Note here that (p− 1)/2 and (p− 1)2/4 are integers, because p is odd.)

Example 8.14. [eg-five]
Before discussing the general case we will look at the example where p = 5. There we have ξ = exp(πi/10)
and the claim is that √

5 = (ξ3 − ξ7)(ξ − ξ9) = ξ4(1− ξ4)(1− ξ8).

Put

λ = (ξ3 − ξ7)(ξ − ξ9)

µ = ξ4(1− ξ4)(1− ξ8),

so the claim is that λ = µ =
√
p. If we start with λ and extract a factor of ξ3 from the first bracket and a

factor of ξ from the second bracket then we end up with µ, so λ = µ as claimed. It will be convenient to
rewrite µ in terms of ζ = ξ4 = exp(2πi/5), which is a primitive 5th root of unity. This satisfies

(1 + ζ + ζ2 + ζ3 + ζ4)(1− ζ) = 1− ζ5 = 0

and 1− ζ 6= 0 so we must have 1 + ζ + ζ2 + ζ3 + ζ4 = 0.
Note that

µ = ζ(1− ζ)(1− ζ2) = ζ − ζ2 − ζ3 + ζ4.

If we square this and collect terms in the most obvious way, we get

µ2 = ζ2 + ζ4 + ζ6 + ζ8 − 2ζ3 − 2ζ4 + 2ζ5 + 2ζ5 − 2ζ6 − 2ζ7

= ζ2 − 2ζ3 − ζ4 + 4ζ5 − ζ6 − 2ζ7 + ζ8.

If we now use the identity ζ5 = 1 (so ζ6 = ζ and so on) we get

µ2 = ζ2 − 2ζ3 − ζ4 + 4− ζ − 2ζ2 + ζ3

= 4− ζ − ζ2 − ζ3 − ζ4.

Finally, we can combine this with the identity 1 + ζ + ζ2 + ζ3 + ζ4 = 0 to get µ2 = 5, so µ = ±
√

5. It is not
hard to check that the factors ξ3 − ξ7 and ξ − ξ9 are positive real numbers, so µ > 0, so µ =

√
5; we will

explain this in more detail when we discuss the general case.

Lemma 8.15. [lem-root-p-xi]

With p and ξ as above we have
∏p−1
k=1(1− ξ4k) = p.

Proof. The powers ξ4k for k = 0, . . . , p− 1 are precisely the p’th roots of unity, so we have

tp − 1 =

p−1∏
k=0

(t− ξ4k).

The k = 0 term on the right hand side is just t − 1. We can move this to the left hand side and use the
standard geometric progression formula to get

1 + t+ · · ·+ tp−1 =
tp − 1

t− 1
=

p−1∏
k=1

(t− ξ4k).

Now set t = 1. On the left hand side we have p terms which all become 1, and on the right we have∏p−1
k=1(1− ξ4k) so

∏p−1
k=1(1− ξ4k) = p as claimed. �

Corollary 8.16. [cor-norm]

We have |
∏(p−1)/2
k=1 (1− ξ4k)| = √p.
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Proof. Put κ =
∏(p−1)/2
k=1 (1 − ξ4k). We then have κ =

∏(p−1)/2
k=1 (1 − ξ−4k), and ξ4p = 1 so we can rewrite

ξ−4k as ξ4p−4k or as ξ4(p−k). Now, as k runs from 1 to (p−1)/2 we find that p−k runs through the numbers
from (p+ 1)/2 to p− 1 (in reverse order), so the numbers k and p− k together cover all the numbers from
1 to p− 1 (each number exactly once). Thus

κκ =

(p−1)/2∏
k=1

(1− ξ4k)

(p−1)/2∏
k=1

(1− ξ4(p−k)) =

p−1∏
j=1

(1− ξ4j) = p.

(The last step here is just the previous lemma.) On the other hand, we have κκ = |κ|2, so |κ| =
√
p as

claimed. �

Proof of Proposition 8.13. Put

λ =

(p−1)/2∏
k=1

(ξp−2k − ξp+2k)

µ = ξ(p−1)
2/4

(p−1)/2∏
k=1

(1− ξ4k),

so the claim is that λ = µ =
√
p. First, combine Corollary 8.16 with the fact that |ξ| = 1 to get

|µ| = |ξ|(p−1)
2/4

∣∣∣∣∣∣
(p−1)/2∏
k=1

(1− ξ4k)

∣∣∣∣∣∣ = 1(p−1)
2/4√p =

√
p.

Next, note that

ξp−2k(1− ξ4k) = ξp−2k − ξp+2k.

Take the product for k = 1, . . . , (p− 1)/2 to get

ξN
(p−1)/2∏
k=1

(1− ξ4k) = λ,

where N =
∑(p−1)/2
k=1 (p − 2k). This is the sum of (p − 1)/2 equally spaced terms from p − 2 down to 1, so

the average term is 1
2 ((p− 2) + 1) = (p− 1)/2 and the total is the number of terms times the average, which

gives N = (p− 1)2/4. Given this, the displayed equation tells us that µ = λ, so |λ| = |µ| = √p.
Next, note that ξp = i and

ξ2k = exp(kπi/p) = cos(kπ/p) + i sin(kπ/p)

ξ−2k = exp(−kπi/p) = cos(kπ/p)− i sin(kπ/p)

so

ξp−2k − ξp+2k = i(cos(kπ/p)− i sin(kπ/p))− i(cos(kπ/p) + i sin(kπ/p)) = 2 sin(kπ/p).

Moreover, when 1 ≤ k ≤ (p− 1)/2 we have 0 < kπ/p < π/2 so sin(kπ/p) > 0. It follows that λ is a positive
real number, so λ = |λ| = √p. �

Corollary 8.17. [cor-mquad-cyclotomic]
For any field of the form K = Q(

√
p1, . . . ,

√
pm) (where the pi are odd primes) there exists N such that

K ⊆ Q(µN ).

Proof. Put N = 4
∏
i pi. For each i we see that 4pi divides N and so

√
pi ∈ Q(µ4pi) ⊆ Q(µN ). It follows

that K ⊆ Q(µN ) as claimed. �

Exercises

Exercise 8.1. [ex-cyclotomic-twenty]
Find the cyclotomic polynomial ϕ20(x).
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Exercise 8.2. [ex-phi-CC]
What is ϕ200(x)?

Exercise 8.3. [ex-mu-seven]
Explicitly compute a polynomial f(t) ∈ Q[t] of degree six with e3πi/7+1 as a root. Prove that this polynomial
is irreducible over Q, using Eisenstein’s criterion.

Exercise 8.4. [ex-mu-fifteen]
Describe the automorphisms of Q(µ15). Find two cyclic subgroups A and B such that G(Q(µ15)/Q) = A×B.

Exercise 8.5. [ex-cyclotomic-real]
Let ζ be a primitive nth root of unity, where n ≥ 3, and write β = ζ + ζ−1.

(a) Show that ζ satisfies a quadratic equation over Q(β) and deduce that [Q(ζ) : Q(β)] ≤ 2.
(b) Show that Q(β) ⊂ R, and deduce that ζ 6∈ Q(β). Deduce that [Q(ζ) : Q(β)] = 2.
(c) Prove by induction that for all m, ζm + ζ−m ∈ Q(β).
(d) Express ζ5 + ζ−5 as a polynomial in β.

[Hint for (c) and (d): if ζm + ζ−m = pm(β), show that ζm+1 + ζ−m−1 = βpm(β)− pm−1(β).]

Exercise 8.6. [ex-shift-irr]
Show that if f(t) ∈ K[t] and a ∈ K and the polynomial g(t) = f(t + a) is irreducible, then f(t) itself is
also irreducible. Apply this together with Eisenstein’s criterion to give an alternative proof that ϕp(t) is
irreducible (for any prime p).

Exercise 8.7. [ex-phi-two-power]

Prove that ϕ2k+1(t) = t2
k

+ 1.

Exercise 8.8. [ex-phi-families]

(a) Prove that ζ is a primitive mth root of unity if and only if ζ is a primitive mth root of unity. Deduce
that if m > 2 then ϕn(x) has even degree.

(b) Let n ≥ 6 be even, but not divisible by 4. Prove that ζ is a primitive nth root of 1 if and only if −ζ
is a primitive (n/2)th root of 1. Deduce that ϕn(x) = ϕn/2(−x).

(c) Suppose that n is divisible by p2 for some prime p. Show that ζ is a primitive nth root of 1 if and
only if ζp is a primitive (n/p)th root of 1. Deduce that ϕn(x) = ϕn/p(x

p).

(d) Recall that ϕ1(x) = x−1, and that ϕp(x) = 1+x+· · ·+xp−1 when p is prime. How many cyclotomic
polynomials can you calculate using these facts together with (b) and (c)?

(e) For small n one observes that all coefficients in ϕn(x) are 0, 1 or −1, but this pattern does not persist
for ever. Let N be the smallest number such that ϕN (x) has a coefficient not in {0, 1,−1}. What
do (b) and (c) tell you about N?

(f) Use (e) to find N , with help from Maple if necessary. (Start by entering with(numtheory):; then
you can use the notation cyclotomic(n,x) for ϕn(x).)

Exercise 8.9. [ex-phi-pq]
Let p and q be distinct odd primes, and consider the power series

f(x) =

q−1∑
i=0

p−1∑
j=0

∞∑
k=0

(xip+jq+kpq − x1+ip+jq+kpq).

Prove that f(x) = ϕpq(x) (so in particular, enough terms must cancel to make f(x) a polynomial).
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Exercise 8.10. [ex-fifth-root]
Let ζ be a primitive 5th root of unity, and let α denote the real 5th root of 2. You are given that Q(ζ, α) is
the splitting field of x5 − 2 over Q and that [Q(ζ, α) : Q] = 20.

• Specify the elements of Gal(Q(ζ, α)/Q) by writing down how they act on ζ and on α.
• Show that there exist automorphisms φ, ψ ∈ Gal(Q(ζ, α)/Q) such that φ has order 4, ψ has order

5, and Gal(Q(ζ, α)/Q) = 〈φ, ψ〉.
• Write φψφ−1 in the form φiψj .
• Recall that if β = ζ + 1

ζ , then Q(β) = Q(
√

5). Under the Galois correspondence, what should be the

order of the corresponding subgroup Gal(Q(ζ, α)/Q(β))?
• Show that the group Gal(Q(ζ, α)/Q(β)) is 〈φ2, ψ〉.

Exercise 8.11. [ex-forty-two]
Let L be the splitting field of x7 − 3 over Q. You know that [L : Q] = 42. Calculate the elements of
Gal(L/Q). Find ψ, φ ∈ Gal(L/Q) which satisfy:

• ψ has order 7, φ has order 6
• φψφ−1 = ψ3

• Gal(L/Q) = 〈φ, ψ〉

9. Finite fields

We now divert temporarily from our main focus on fields of characteristic zero, and instead discuss finite
fields. It turns out that the relevant theory is quite closely related to that of cyclotomic fields.

Theorem 9.1. [thm-finite-fields]

(a) There is a finite field of order n if and only if n = pr for some prime p and r > 0.
(b) If K is a field of order pr then K has characteristic p, and K× ' Cpr−1. Moreover, the function

σ(a) = ap defines an automorphism of K, called the Frobenius automorphism.
(c) If K and L are fields of the same order then they are isomorphic.
(d) If |L| = prs then the set K = {a ∈ L | apr = a} is a subfield of L, and is the unique subfield of order

pr. Moreover, this procedure gives all the subfields of L.
(e) If K and L are as above, then L is normal over K, and G(L/K) is cyclic of order s, generated by

σr.

The proof will be given at the end of this section; it will consist of collecting together a number of smaller
results that we will prove separately.

We first discuss a few examples.

Example 9.2. [eg-finite-misc]
We have already seen the fields Fp = Z/pZ for p prime, and Example 1.11 exhibited a field F4 of order
four. Now suppose that p > 2, and consider the ring Fp[i] of “mod p complex numbers”, as discussed in
Exercise 1.2. The elements of Fp[i] have the form a+ bi, with a, b ∈ Fp, and the multiplication rule is

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

We saw in Exercise 1.2 that F3[i] is a field (of order 9) but that F2[i] and F5[i] are not fields. More generally,
we will see in Proposition 9.14 that Fp[i] is a field (of order p2) if and only if p = 3 (mod 4).

Lemma 9.3. [lem-finite-field-order]
Let K be a finite field. Then K has characteristic p > 0 for some prime p, and |K| = pr for some r > 0.

Proof. As K is finite, the elements n.1 (for n ∈ N) cannot all be different. It follows that there exist integers
n < m with n.1 = m.1, so (m − n).1 = 0. It follows (see Definition 1.9) that char(K) > 0, and so char(K)
is a prime p by Proposition 1.10. It therefore follows from Proposition 1.32 that K contains a copy of Fp.
Note that the whole of K is certainly a finite spanning set for K over Fp, so K is finite-dimensional over Fp,
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with dimension r say. This means that K ' Frp and so |K| = pr. As 1 6= 0 in K (by one of the field axioms)
we have |K| > 1 and so r > 0. �

Lemma 9.4. [prop-frobenius-exists]
Let K be a finite field of order pr. Then the function σ(a) = ap defines an automorphism of K.

Proof. It is clear that σ(0) = 0 and σ(1) = 1 and σ(ab) = σ(a)σ(b). We also see from Lemma 8.7 that
σ(a + b) = σ(a) + σ(b). This means that σ is a homomorphism from K to K. Now suppose that K =
{a1, . . . , apr}. We see from Proposition 1.29 that σ is injective, so the pr elements σ(a1), . . . , σ(apr ) are all
different, so between them they must cover all the pr elements of K. This means that σ is also surjective,
so it is an isomorphism as required. �

Remark 9.5. [rem-frobenius-powers]
We observe that

σ(a) = ap

σ2(a) = σ(σ(a)) = (ap)p = ap×p = ap
2

σ3(a) = σ(σ2(a)) = (ap
2

)p = ap
2×p = ap

3

σ4(a) = σ(σ3(a)) = (ap
3

)p = ap
3×p = ap

4

and so on; in general, σr(a) = ap
r

.

Lemma 9.6. [lem-cyclotomic-coprime]
Suppose that p is prime and r > 0 and put q = pr. If f(x), g(x) ∈ Fp[x] and xq − x is divisible by f(x)g(x),
then f(x) and g(x) are coprime.

Proof. We have x− xq = f(x)g(x)h(x) for some h. Taking derivatives gives

1− qxq−1 = f ′(x)g(x)h(x) + f(x)g′(x)h(x) + f(x)g(x)h′(x).

The left hand side is just 1, because we are working mod p. We can rewrite the right hand side in terms of
the polynomials a(x) = g′(x)h(x) + g(x)h′(x) and b(x) = f ′(x)h(x) to get

1 = a(x)f(x) + b(x)g(x),

showing that f(x) and g(x) are coprime. �

Lemma 9.7. [lem-Fq-exists]
Suppose again that p is prime and r > 0 and q = pr. Let f(x) ∈ Fp[x] be an irreducible factor of the mod p
reduction of ϕq−1(x), and put K = Fp[x]/f(x). Then K is a field with |K| = q, and K× is cyclic of order
q − 1.

Proof. We write α for the image of x in K, so f(α) = 0. As f(x) is irreducible, we see from Corollary 4.25
that K is a field and K = Fp(α). If f(x) has degree s we also see from Proposition 5.2 that K ' Fsp as vector

spaces over Fp, so in particular |K| = ps. As f(x) | ϕq−1(x) | xq−1 − 1 | xq − x, we see that αq = α. Here

q = pr and so one checks that σr(t) = tp
r

= tq, so we see that σr(α) = α. Now put K ′ = {a ∈ K | σr(a) = a}.
We see from Proposition 1.31 that K ′ is a subfield of K = Fp(α), and it contains α so it must be all of K.
This means that every element in K is a root of the polynomial g(x) = xq − x. However, g(x) has degree q
and so cannot have more than q roots in any field. We must therefore have |K| ≤ q.

We next consider the order of α in K×. As explained above we have f(x) | xq−1 − 1 and so αq−1 = 1,
so the order of α divides q − 1. Write r for this order, and suppose (for a contradiction) that r < q − 1.
It then follows from Proposition 8.3 that xq−1 − 1 is divisible by (xr − 1)f(x), so Lemma 9.6 tells us that
xr − 1 and f(x) are coprime mod p. This means that there exist polynomials a(x), b(x) ∈ Fp[x] with
a(x)(xr−1) + b(x)f(x) = 1. We now put x = α, remembering that f(α) = 0 = αr−1, to get 0 = 1, which is
impossible. We must therefore have r = q − 1 instead, so the subgroup of K× generated by α is isomorphic
to Cq−1. On the other hand, we have shown that |K| ≤ q so |K×| ≤ q − 1. This can only be consistent if
K× = 〈α〉 ' Cq−1 as claimed. �
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Example 9.8. [eg-F-eight]
Put f(t) = 1 + t + t3 and g(t) = 1 + t2 + t3, considered as elements of F2[t]. By direct expansion and
Example 8.4 we see that

f(t)g(t) = 1 + t+ t2 + t3 + t4 + t5 + t6 = ϕ7(t) in F2[t].

We also claim that f(t) is irreducible over F2. Indeed, any nontrivial factorisation of f(t) would involve a
factor of degree one, which would give a root of f(t) in F2 = {0, 1}. However, we have f(0) = f(1) = 1 so
there is no such root. By the same argument we see that g(t) is also irreducible. It follows that there are
fields K = F2[α]/f(α) and L = F2[β]/g(β) of order 8.

We next claim that in K we have g(α3) = 0. Indeed, by construction we have f(α) = 0, and f(t) divides
t7 − 1, so α7 = 1, which implies α9 = α2. The relation f(α) = 0 can also be rewritten as α3 = 1 + α, which
squares to give α6 = 1 + α2. It follows that

g(α3) = 1 + α6 + α9 = 1 + (1 + α2) + α2 = 0

as claimed. This means that we can define a homomorphism λ : L→ K by λ(β) = α3. One can check that
this is actually an isomorphism, with λ−1(α) = β5.

Proposition 9.9. [prop-units-cyclic]
Let K be a field, and let U be a finite subgroup of K×. Then U is cyclic.

Proof. Put U [d] = {x ∈ U | xd = 1}. As a polynomial of degree d can have at most d roots, we see that
|U [d]| ≤ d for all d. The claim thus follows from Lemma 9.11 below. �

Lemma 9.10. [lem-cyclic-test-aux]
Let U be a finite abelian group of order n such that |U [d]| ≤ d for all d. Then |U [d]| = d whenever d divides
n.

Proof. We can define a group homomorphism α : U −→ U by α(x) = xn/d. We note that α(x)d = xn = 1,
so α(x) ∈ U [d], so |U [d]| ≥ | image(α)|. On the other hand, the First Isomorphism Theorem tells us
| image(α)| = |U |/| ker(α)|. Here |U | = n, and it is clear from the definitions that ker(α) = U [n/d], so
| ker(α)| ≤ n/d, so | image(α)| ≥ n/(n/d) = d. Putting this together gives |U [d]| ≥ d, but also |U [d]| ≤ d by
assumption, so |U [d]| = d as claimed. The groups and homomorphisms considered can be displayed in the
following diagram:

U [n/d] // //

��

U

α

��

// // U/U [n/d]

' α

��
1 // // U U [d]oooo image(α)oooo

�

Lemma 9.11. [lem-cyclic-test]
Let U be a finite abelian group such that |U [d]| ≤ d for all d. Then U is cyclic.

Proof. Put n = |U | and let C be a cyclic group of order n; we will compare U with C. Put

U〈d〉 = {x ∈ U | x has exact order d}.
Note that xd = 1 if and only if the exact order of x is a divisor of d. Using this together with Lemma 9.10
we see that d = |U [d]| =

∑
e|d |U〈e〉|, so

|U〈d〉| = d−
∑

e|d,e<d

|U〈e〉|.

Similarly, we have

|C〈d〉| = d−
∑

e|d,e<d

|C〈e〉|.

Note that |U〈1〉| = 1 = |C〈1〉|. If we know that |U〈e〉| = |C〈e〉| for all e < d, we can use the above two
displayed equations to see that |U〈d〉| = |C〈d〉| as well. It therefore follows by induction that |U〈d〉| = |C〈d〉|
for all d dividing n, and in particular that |U〈n〉| = |C〈n〉|. Now, any generator of C lies in C〈n〉, so
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|C〈n〉| > 0, so |U〈n〉| > 0. If x is any element of U〈n〉 then x generates a cyclic subgroup of U of order n,
which must therefore be U itself. Thus U is cyclic as claimed. �

Remark 9.12. [rem-classify]
We have chosen to give a proof that does not depend on the classification of finite abelian groups. Readers
who are familiar with that classification may prefer to proceed as follows. The general theory implies that
there is a unique sequence d1, . . . , dr of integers with dk > 0 and d1|d2| · · · |dr, such that U is isomorphic
to
∏r
k=1 Cdk . In particular, U is cyclic if and only if r = 1, so we must show that this is the case. As d1

divides dk for all k, we see that each cyclic factor Cdk contains a copy of Cd1 , and thus U [d1] ' Crd1 and
|U [d1]| = dr1. By assumption we have |U [d1]| ≤ d1, so we must have r = 1 as required.

Corollary 9.13. [cor-units-cyclic]
If K is a finite field of order q then K× is cyclic of order q − 1.

Proof. This is immediate from Proposition 9.9. �

We now pause to justify the claims made in Example 9.2.

Proposition 9.14. [prop-Fpi]
Let p be a prime. Then Fp[i] is a field if and only if p = 3 (mod 4).

Proof. We first dispose of the case p = 2. There p 6= 3 (mod 4), and the ring F2[i] = {0, 1, i, 1 + i} is not
a field because the element 1 + i has no inverse. From now on we assume that p is odd, so either p = 1
(mod 4) or p = 3 (mod 4). We will say that p is bad if Fp[i] is not a field. We must show that p is bad if
and only if p = 1 (mod 4).

We next claim that p is bad if and only if there is an element a ∈ Fp with a2 = −1. Indeed, if there exists
such an a then we have a+ i, a− i 6= 0 but (a+ i)(a− i) = a2 − i2 = (−1)− (−1) = 0 so Fp[i] is not a field,
so p is bad. On the other hand, if there is no such a then the polynomial f(x) = x2 + 1 has no roots in Fp[x]
and so is irreducible (because any nontrivial factor would have to have degree one). It therefore follows that
Fp[x]/f(x) is a field, which is easily seen to be isomorphic to Fp[i]; so p is good.

Next, Corollary 9.13 tells us that F×p is a cyclic group of order p − 1. If p is bad then there is an

element a with a2 = −1 so the subgroup generated by a is {1, a,−1,−a}, which has order 4. It follows by
Lagrange’s theorem that p− 1 is divisible by 4, so p = 1 (mod 4). Conversely, suppose that p = 1 (mod 4),
so (p− 1)/4 is an integer. Choose a generator b for the cyclic group F×p , and put a = b(p−1)/4. The powers

1, b, . . . , bp−2 are then distinct, so we see that a2 = b(p−1)/2 6= 1 but a4 = bp−1 = 1. This means that
(a2 + 1)(a2 − 1) = a4 − 1 = 0 but a2 − 1 6= 0 so a2 + 1 = 0, which implies that p is bad. �

Proposition 9.15. [prop-factor]
Let K be a finite field of order q = pr. Then

∏
α∈K(x− α) = xq − x.

Proof. We have |K×| = q − 1, so for all α ∈ K× we have αq−1 = 1. It follows that for all α ∈ K we have
αq−α = 0. Thus the elements of K give q distinct roots of xq−x, and it follows that xq−x =

∏
α(x−α). �

Proposition 9.16. [prop-unique]
Let K and L be fields of order q = pn. Then K ' L.

Proof. We have seen that K× is cyclic, generated by some element α, say. We then have a surjective
homomorphism ε : Fp[x] −→ K given by x 7→ α. Let f(x) be the minimal polynomial of α over Fp, or in other
words, the monic generator of ker(ε). Then α induces an isomorphism ε : Fp[x]/f(x) −→ K. Moreover, f(x)
is non-constant and divides xq − x, which factors in L[x] as

∏
β∈L(x− β). It follows that f(β) = 0 for some

β ∈ L. We can therefore define φ : Fp[x]/f(x) −→ L by φ(x) = β. Now the map ψ = φ ◦ ε−1 : K −→ L is a
homomorphism of fields, and so is injective. As |K| = |L| = q, it follows that ψ must be a bijection, and
thus an isomorphism. �

Proposition 9.17. [prop-finite-subfield]
Let L be a field of order prs. Then the subset K = {a ∈ L | apr = a} is a subfield of L, and is the unique
subfield of order pr. Moreover, we have [L : K] = s.
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Proof. Using Remark 9.5 we see that K = {a ∈ L | σr(a) = a} = L{σ
r}, which is a subfield by Proposi-

tion 1.31. Next, put fk(t) = tp
k − t, so that K is the set of roots of fr(t) in L, whereas frs(t) =

∏
α∈L(t−α).

We claim that fr(t) divides frs(t). To see this, consider the standard identity

um − 1 = (u− 1)(1 + u+ · · ·+ um−1) = (u− 1)

m−1∑
i=0

ui.

Put u = tp
r−1 and

m =
prs − 1

pr − 1
= 1 + ps + p2s + · · ·+ p(r−1)s ∈ N

so that um = tp
rs−1; we find that tp

rs−1−1 is divisible by tp
r−1−1, and we can multiply by t to see that frs(t)

is divisible by fr(t) as claimed. As frs(t) splits in L and has distinct roots, we see from Proposition 5.18
that fr(t) is also split and has distinct roots. This means that the number of roots of fr(t) is precisely equal
to its degree, so |K| = pr. Now if K ′ is any other subfield of order pr we can apply Proposition 9.15 to K ′

to see that K ′ is the set of roots of fr(t), so K ′ = K.
Finally, put t = [L : K] = dimK(L), which means that L is isomorphic to Kt as vector spaces over K.

We have |Kt| = |K|t = prt whereas |L| = prs; it follows that t = s as claimed. �

Corollary 9.18. [cor-finite-galois]
If K and L are as in Proposition 9.17 then L is normal over K and G(L/K) is cyclic of order s, generated
by σr.

Proof. First, we have seen that L is the set of roots of the polynomial frs(t) = tp
rs − t ∈ Fp[t] ⊆ K[t], so

it is the splitting field over K of that polynomial, so it is normal over K. It follows as in Lemma 6.9 that
|G(L/K)| = [L : K] = s. Next, we have seen that L× is cyclic, of order prs − 1. Choose an element β that
generates L×, so L× consists of the powers βi for 0 ≤ i < prs− 1 and these are all distinct. In particular, we

see that the powers σj(β) = βp
j

are all distinct for 0 ≤ j < rs, so the automorphisms σj are all different for
j in this range. On the other hand, we have seen that every element γ ∈ L has γp

rs

= γ and so σrs = 1. It
follows that σ generates a cyclic subgroup of G(L/Fp) of order precisely rs. Now let H be the set of powers
σrk for 0 ≤ k < s, so |H| = s. By the definition of K we have σr|K = 1K so every element of H acts as the
identity on K, so H ⊆ G(L/K), but |H| = s = |G(L/K)| so we must have G(L/K) = H as claimed. �

Exercises

Exercise 9.1. [ex-cyclic-five]
Show that there exists a finite field K such that K× contains a cyclic group of order 5, but that there is no
finite field K such that K× itself is cyclic of order 5.

Exercise 9.2. [ex-F-nine]
Factorise the polynomial ϕ8(t) = t4 + 1 in F3[t] (by trial and error, if necessary). Use this to construct two
different fields of order 9. Show explicitly that they are both isomorphic to F3[i] (and thus to each other).

Exercise 9.3. [ex-F-twentyfive]
Let K be the set of all matrices of the form

[
a+b b
2b a+b

]
with a, b ∈ F5. Prove that K is a field of order 25.

Exercise 9.4. [ex-cyclic-galois]
Let p be a prime. Prove that the Galois group G(Q(µp)/Q) is cyclic of order p− 1.

Exercise 9.5. [ex-seven-cubed]
Find a generator for the cyclic group F×7 . Deduce that t3 − 3 is irreducible in F7. This means that we can
construct F73 as F7[α]/(α3 − 3). Show that although α is a primitive element for F73 , it does not generate
F×73 .
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Exercise 9.6. [ex-factor-mod-five]
Show that the polynomial f(x) = x6 − 2 ∈ F5[x] can be written as f(x) = g1(x)g2(x)g3(x), where each
gi(x) is an irreducible quadratic polynomial. Show that if α is a root of gi(x) in some field K ⊃ F5, then α
generates a subgroup of K× whose order is either 8 or 24.

Exercise 9.7. [ex-Fpp]
Consider the polynomial f(x) = xp − x − 1 ∈ Fp[x], and suppose we have a finite field K = Fp(α) with

f(α) = 0. Prove that αp
k 6= α for 0 < k < p. Deduce that |K| = pp and that f(x) is irreducible over Fp.

Exercise 9.8. [ex-closed-infinite]
Prove that every algebraically closed field is infinite.

10. Multiquadratic extensions

We will next discuss another extended example, extending Proposition 7.2 and related to Corollary 8.17.
Let p1, . . . , pn be distinct prime numbers. For any subset T ⊆ {1, . . . , n}, put rT =

∏
i∈T
√
pi. For the

case where T is the empty set, this should be interpreted as r∅ = 1. We will allow ourselves to write r245
rather than r{2,4,5} and so on.

Let K(m) be the Q-linear span of all the numbers rT for T ⊆ {1, . . . ,m− 1}. For example:

• K(0) should be interpreted as Q.
• K(1) is the set of all real numbers that can be written as a∅ + a1

√
p1 for some rational numbers

a∅, a1 ∈ Q.
• K(2) is the set of all real numbers that can be written as

a∅ + a1
√
p1 + a2

√
p2 + a12

√
p1p2

for some rational numbers a∅, a1, a2, a12 ∈ Q.
• In general, K(m) could also be described as Q(

√
p1, . . . ,

√
pm).

We will call fields of this type multiquadratic extensions of Q.
Our main result in this section is as follows:

Theorem 10.1. [thm-mquad]

(a) K(m) is a subfield of R.
(b) The elements {rT | T ⊆ {1, . . . ,m}} form a basis for K(m) over Q (so K(m) has degree 2m over

Q).
(c) If u ∈ K(m) and u2 ∈ Q then u = uT rT for some T ⊆ {1, . . . ,m} and uT ∈ Q.

We pause to explore the meaning of this a little. Firstly, you can check that

2− 3
√

2 + 4
√

3−
√

2
√

3−
√

5 = 0.000004822873256233 . . . ' 0.

Could there be any “coincidental” relationship between square roots that holds exactly? Part (b) of the
theorem says that this is impossible. Next, suppose we have a nonzero real number a that can be expressed
in terms of the square roots of certain primes. The hardest part of part (a) of the Theorem tells us that 1/a
can also be expressed in terms of the square roots of the same primes. For example, if a is the small number
mentioned above,

a = 2− 3
√

2 + 4
√

3−
√

2
√

3−
√

5

it works out that

a−1 = 25918 + 18327
√

2 + 14964
√

3 + 10581
√

2
√

3 + 11591
√

5 + 8196
√

2
√

5 + 6692
√

3
√

5 + 4732
√

2
√

3
√

5.

We now prove some preliminary results, which will lead in to the proof of Theorem 10.1.
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Lemma 10.2. [lem-prod]
If T,U ⊆ {1, . . . ,m} then rT rU ∈ K(m). More precisely, if W = T ∩ U and V = (T ∪ U) \ W and
w =

∏
i∈W pi ∈ Q then rT rU = wrV .

Proof. If i ∈ W then
√
pi occurs in both rT and rU giving a factor of pi in rT rU . If i ∈ V then

√
pi

occurs either in rT or in rU but not both, giving a factor of
√
pi in rT rU . Thus, we have rT rU = wrV .

As K(m) was defined to be the Q-linear span of a set of elements including the element rV , it follows that
rT rU ∈ K(m). �

Lemma 10.3. [lem-mquad-subring]
K(m) is a subring of R.

Proof. We must show that K(m) contains 0 and 1 and that it is closed under addition, subtraction and
multiplication. Note that K(m) was defined as a span, so it is certainly a Q-linear subspace of R, so it
contains 0 and is closed under addition and subtraction and under multiplication by elements of Q. We can
think of 1 as r∅, so we also have 1 ∈ K(m). Now consider elements a, b ∈ K(m). From the definition of
K(m), we can write a =

∑
T aT rT and b =

∑
U bUrU for some numbers aT , bU ∈ Q. It follows that

ab =
∑
T,U

aT bUrT rU .

Here rT rU ∈ K(m) by Lemma 10.2, and aT bU is just a rational number, so aT bUrT rU ∈ K(m). Moreover,
K(m) is closed under addition, so

∑
T,U aT bUrT rU ∈ K(m), or in other words ab ∈ K(m). Thus K(m) is

closed under multiplication, as required. �

We could now use Proposition 5.11 to show that K(m) is a subfield of R. However, we will instead give
a more direct and elementary argument, which might be considered more illuminating.

Lemma 10.4. [lem-not-square]
Suppose that T ⊆ {1, . . . ,m− 1} and uT ∈ Q. Then (uT rT )2 6= pm.

Proof. Suppose that (uT rT )2 = pm; we will derive a contradiction. Clearly we must have uT 6= 0, so we can
write uT = ±u/v, where u and v are positive integers with no common factors. We then have

pm = (uT rT )2 = u2r2T /v
2 = u2v−2

∏
i∈T

pi,

so

pmv
2 = u2

∏
i∈T

pi.

This is now an equation in Z; it implies that pm divides u2
∏
T pi. By assumption the primes pi on the right

hand side are all different from pm, so pm must divide u instead. We can write u = pmw and rearrange to
get

v2 = pmw
2
∏
i∈T

pi.

Here the right hand side is divisible by pm, so the left hand side must be divisible by pm, so v must be
divisible by pm. This contradicts the fact that u and v have no common factors. �

Lemma 10.5. [lem-step]
Suppose that Theorem 10.1 holds for K(m−1), and that b, c ∈ K(m−1). Put a = b+c

√
pm and a′ = b−c√pm,

so a, a′ ∈ K(m). Then

• aa′ = b2 − c2pm ∈ K(m− 1)
• If aa′ = 0 then b = c = 0 and so a = 0.
• If aa′ 6= 0 then 1/a ∈ K(m).

Proof. It is simple algebra to check that aa′ = b2 − c2pm. As b, c ∈ K(m − 1) and pm ∈ Z it follows that
aa′ ∈ K(m − 1). Now suppose that aa′ = 0, so b2 = c2pm. Suppose that c is nonzero, so pm = (b/c)2. By
assumption K(m − 1) is a field, so the element u = b/c lies in K(m − 1), and u2 = pm ∈ Q. Part (c) of
Theorem 10.1 tells us that u = uT rT for some T ⊆ {1, . . . ,m−1} and uT ∈ Q, so (uT rT )2 = pm. Lemma 10.4
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tells us that this is impossible. This contradiction means that we must in fact have c = 0. We also have
b2 = c2pm, so it follows that b = 0 as well.

Now suppose instead that the element aa′ is nonzero. As K(m − 1) is a field and aa′ ∈ K(m − 1) it
follows that (aa′)−1 ∈ K(m− 1) ⊆ K(m). As K(m) is a subring of R and a′, (aa′)−1 ∈ K(m) it follows that
a′.(aa′)−1 ∈ K(m); but a′.(aa′)−1 = a−1, so a−1 ∈ K(m) as claimed. �

Proof of Theorem 10.1. We can assume by induction that the theorem holds for K(m − 1) (as the initial
case of K(0) is trivial).

(b) The elements rT span K(m) by definition, so we need only show that they are linearly independent.
Suppose we have rational numbers aT for all T ⊆ {1, . . . ,m}, giving an element a =

∑
T aT rT ∈

K(m). We must show that if a = 0, then the individual coefficients aT are all zero. We put

b =
∑

U⊆{1,...,m−1}

aUrU ∈ K(m− 1)

c =
∑

U⊆{1,...,m−1}

aU∪{m}rU ∈ K(m− 1)

so that a = b + c
√
pm. We then put a′ = b − c√pm as in Lemma 10.5. If a = 0 then certainly

aa′ = 0 so the Lemma tells us that b = c = 0. As b = 0 we have
∑
U⊆{1,...,m−1} aUrU = 0 but

the set {rU | U ⊆ {1, . . . ,m− 1}} is linearly independent by our inductive assumption, so we must
have aU = 0 for all U ⊆ {1, . . . ,m − 1}. By applying the same logic to c, we see that aU∪{m} is
also zero for all U ⊆ {1, . . . ,m− 1}. These two cases cover all the coefficients aT , so aT = 0 for all
T ⊆ {1, . . . ,m}, as required.

(a) We showed in Lemma 10.3 that K(m) is a subring of R, so all that is left is to show that if a ∈ K(m)
is nonzero then a−1 is also in K(m). We can write it as a = b+ c

√
pm and put a′ = b− c√pm, just

as before. If aa′ = 0 then Lemma 10.5 tells us that a = 0, contrary to assumption. Thus aa′ 6= 0
and the other part of Lemma 10.5 tells us that a−1 ∈ K(m), as required.

(c) Suppose that u ∈ K(m) and u2 = q ∈ Q. Just as above, we can write u = x + y
√
pm with

x, y ∈ K(m − 1). It follows that (x2 + pmy
2 − q) + 2xy

√
pm = u2 − q = 0. Here x2 + pmy

2 − q
and 2xy are in K(m− 1), and it follows easily from part (a) that {1,√pm} is a basis for K(m) over

K(m− 1). We must therefore have x2 + pmy
2 − q = 0 and 2xy = 0, so either x = 0 or y = 0.

Suppose that y = 0, so the equation x2 + pmy
2 − q = 0 reduces to u2 = x2 = q. This means that

u ∈ K(m− 1) and u2 ∈ Q, so part (c) of the theorem for K(m− 1) tells us that u = uT rT for some
T ⊆ {1, . . . ,m− 1} and uT ∈ Q, as required.

Suppose instead that x = 0, so y2 = q/pm with y ∈ K(m − 1) and y2 ∈ Q. It follows that
y = yT rT for some T ⊆ {1, . . . ,m− 1} and yT ∈ Q, so u = y

√
pm = yT rT∪{m}, which again has the

required form.

�

We next examine the Galois groups of multiquadratic extensions.

Proposition 10.6. [prop-mquad-galois]
For i = 1, . . . ,m there is an automorphism τi of K(m) with τi(

√
p1) = −√pi and τi(

√
pj) =

√
pj for

all j 6= i. Moreover, the full Galois group G(K(m)/Q) is the product of all the groups {1, τi} ' C2, so
G(K(m)/Q) ' Cm2 .

Proof. As the elements rT form a basis for K(m), we can certainly define a Q-linear map τi : K(m)→ K(m)
by

τi(rT ) =

{
−rT if i ∈ T
+rT if i 6∈ T.

Note that τi(0) = 0 and τi(1) = τi(r∅) = 1. Now consider a pair of basis elements rT , rU with rT rU = wrV
as in Lemma 10.2. We claim that τi(rT rU ) = τi(rT )τi(rU ). There are four cases to consider, depending on
whether i ∈ T or not, and whether i ∈ U or not; we leave details to the reader. Now consider arbitrary
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elements a, b ∈ K(m), say a =
∑
T aT rT and b =

∑
U bUrU with aT , bU ∈ Q. We then have

τi(ab) = τi

∑
T,U

aT bUrT rU

 =
∑
T,U

aT bUτi(rT rU ) =
∑
T,U

aT bUτi(rT )τi(rU )

=

(∑
T

aT τi(rT )

)(∑
U

bUτi(rU )

)
= τi(a)τi(b).

This proves that τi is a homomorphism from K(m) to itself. It is clear that τ2i (rT ) = rT for all T , so τ2i = 1.
Now suppose that i 6= j. We find that τiτj(rT ) is either +rT (if {i, j} ⊆ T or {i, j} ∩ T = ∅) or −rT (if
|{i, j} ∩ T | = 1). From this it is clear that τiτj = τjτi, so the elements τi generate a commutative subgroup
T ≤ G(K(m)/Q). For any sequence ε1, . . . , εm in {0, 1} we have an element σε = τ ε11 · · · τ εmm ∈ T . Note that
σε(
√
pi) is +

√
pi if εi = 0, and −√pi if εi = 1. Using this we see that if σε = σδ then ε = δ. We thus have

2m different elements of T ⊆ G(K(m)/Q). It follows using Proposition 6.11 that K(m) is normal over Q
and that T is the full Galois group. �

It will be proved as Theorem 11.12 that every field extension of finite degree has a primitive element. It
turns out that there is a nice explicit example of this for multiquadratic fields.

Proposition 10.7. [prop-mquad-primitive]
If θn =

∑n
i=1

√
pi then Q(θn) = K(n).

(I thank Jayanta Manoharmayum for this fact and its proof.)

Proof. This is clear for n = 1, so we may assume inductively that K(n− 1) = Q(θn−1). We have seen that
K(n) has degree 2n over Q, and Q ≤ Q(θn) ≤ K(n) so the degree of Q(θn) over Q must have the form 2m

for some m with 0 ≤ m ≤ n; we must show that m = n. Let the minimal polynomial of θn over Q be

f(t) =

2m∑
i=0

ait
i,

and put

g(t) =

2m∑
i=0

 ∑
2j≤2m−i

(
i+ 2j

2j

)
pjnai+2j

 ti

h(t) =

2m−1∑
i=0

 ∑
2j<2m−i

(
i+ 2j + 1

2j + 1

)
pjnai+2j+1

 ti.

By expanding out the relation f(θn−1 +
√
pn) = f(θn) = 0 we obtain g(θn−1) + h(θn−1)

√
pn = 0, with

g(θn−1), h(θn−1) ∈ K(n − 1). We have seen that {1,√pn} is a basis for K(n) over K(n − 1), so g(θn−1) =

h(θn−1) = 0. The coefficient of t2
m−1 in h(t) is 2m, so h is nonzero and has degree precisely 2m−1. It follows

that 2m − 1 must be at least as large as the degree of θn−1 over Q, which is 2n−1 by inductive assumption.
This gives m > n− 1 but we also had 0 ≤ m ≤ n, so m = n as required. �

11. The Galois correspondence

The following theorem is the main result of Galois theory.

Theorem 11.1. [thm-correspondence]
Let M be a normal extension of K, with Galois group G = G(M/K).

(a) For any subgroup H ≤ G, the set

L = MH = {a ∈M | σ(a) = a for all σ ∈ H}
is a subfield of M containing K, and M is normal over L with G(M/L) = H.

(b) For any subfield L ⊆ M containing K, the Galois group H = G(M/L) is a subgroup of G and we
have MH = L.
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(c) If L and H are as above, then L is a normal extension of K if and only if H is a normal subgroup
of G, and if so, then G(L/K) = G/H.

This will be proved in three parts, as Corollary 11.7, Proposition 11.8 and Proposition 11.11 below.

Remark 11.2. [rem-correspondence]
Let L be the set of all subfields L with K ⊆ L ⊆M . Let H be the set of all subgroups of G. We can define
Φ: L → H by Φ(L) = G(M/L), and we can define Ψ: H → L by Ψ(H) = MH . Parts (a) and (b) of the
theorem can be rephrased as saying that Φ and Ψ are inverse to each other, so both are bijections.

Remark 11.3. [rem-finite-galois]
Suppose that K = Fp, so that M is also finite, of order pn say. Then G = G(M/K) is cyclic of order n,
generated by the Frobenius automorphism σ : a 7→ ap. For each divisor d of n we have a cyclic subgroup of G
of order d generated by σn/d, and these are all the subgroups of G. Given this, all the claims in Theorem 11.1
follow easily from Theorem 9.1. The same is true with just a little more work if M is finite and K is any
subfield of M .

Example 11.4. [eg-even-quartic-galois]

Consider again the field K = Q(α, β), where α =
√

3 +
√

7 and β =
√

3−
√

7, as in Example 7.6. We will

make the Galois correspondence explicit in this case. First note that α2 − 3 = 3 − β2 =
√

7 and αβ =
√

2.

It follows using this that (α+ β)2 = α2 + β2 + 2αβ = 6 + 2
√

2, and α+ β > 0 so α+ β =
√

6 + 2
√

2. In the

same way we also see that α− β =
√

6− 2
√

2. We also note that α2 − β2 = 2
√

7, and we can divide this by
the equation αβ =

√
2 to get α/β − β/α =

√
14.

The subgroups of D8 (other than {1} and D8 itself) can be listed as follows:

A0 = {1, (α − β)(−α β)}
A1 = {1, (α − α)}
A2 = {1, (α β)(−α − β)}
A3 = {1, (β − β)}
Z = {1, (α − α)(β − β)}
B0 = A0A2 ' C2

2

B1 = A1A3 ' C2
2

C4 = subgroup generated by (α − β − α β).

We can display the subgroups and subfields in the following diagram:

8

4

2

1

D8

C4B0 B1

A0 A1A2 A3Z

{1}

Q

Q(
√

14)Q(
√

2) Q(
√

7)

Q(α− β) Q(β)Q(α+ β) Q(α)Q(
√

2,
√

7)

K

The first lattice shows all the subgroups, with the smaller groups towards the top. The orders of the groups
are shown at the left. Arrows indicate inclusions between subgroups, so they point downwards. For each
subgroup H shown on the left, we display the field KH in the corresponding place on the right. As the
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Galois correspondence is order-reversing, the largest fields appear at the top and the inclusion arrows point
upwards.

For example, consider the group C4. We observed above that
√

14 = α/β − β/α. Let ρ be the generator
of C4. This sends α to −β and β to α. It therefore sends α/β − β/α to (−β)/α − α/(−β), which is the

same as α/β − β/α. In other words, we have ρ(
√

14) =
√

14, so
√

14 ∈ KC4 . On the other hand, we always
have [K : KH ] = |H| and so [KH : Q] = 8/|H|, so in particular [KC4 : Q] = 2. Similarly, it is clear that α is
fixed by A3, so Q(α) ⊆ KA3 , and [Q(α) : Q] = 4 = [KA3 : Q], so we must have KA3 = Q(α). All the other
subgroups can be handled in the same way.

Lemma 11.5. [lem-correspondence-a]
Let H be any subgroup of G; then H ≤ G(M/MH) and |G(M/MH)| = [M : MH ] ≥ |H|.

Proof. By definition we have

MH = {a ∈M | σ(a) = a for all σ ∈ H}
G(M/MH) = {σ : M →M | σ(a) = a for all a ∈MH}.

If σ ∈ H then σ(a) = a for all a ∈ MH by the very definition of MH , so σ ∈ G(M/MH). This shows that
H ≤ G(M/MH), and so |H| ≤ |G(M/MH)|. Next, as M is normal over K we see from Proposition 6.14
that it is normal over any intermediate field, such as MH . We therefore see from Proposition 6.11 that
[M : MH ] = |G(M/MH)| ≥ |H| as claimed. �

Lemma 11.6. [lem-V-zero]
Let H be any subgroup of G, and let e1, . . . , en be a basis for M over MH (so [M : MH ] = n). Put

V = {b = (b1, . . . , bn) ∈Mn |
n∑
i=1

biσ(ei) = 0 for all σ ∈ H}.

Then V = 0.

Proof. We first note some properties of V .

(a) V is clearly a vector subspace of Mn.
(b) If b ∈ V then we can take σ = 1 in the definition to see that

∑
i biei = 0.

(c) We next claim that V ∩ (MH)n = {0}. Indeed, if b ∈ V ∩ (MH)n then the relation
∑
i biei = 0 above

is an MH -linear relation between the elements ei, which by assumption are linearly independent over
MH ; so we must have b1 = · · · = bn = 0.

(d) Suppose that (b1, . . . , bn) ∈ V and τ ∈ H; we claim that (τ(b1), . . . , τ(bn)) ∈ V also. Indeed, we have∑
i biσ(ei) = 0 for all σ, and as σ is arbitrary we can replace it by τ−1σ to see that

∑
i biτ

−1σ(ei) = 0.
We then apply τ to this equation to obtain

∑
i τ(bi)σ(ei) = 0, which proves the claim.

Next, for any vector b ∈ V , we define the size of b to be the number of nonzero entries. We must show
that for r > 0 there are no elements of size r, which we do by induction on r.

Consider an element b ∈ V of size one, so there is an index i with bi 6= 0, and all other entries are zero.
Fact (b) above therefore reduces to biei = 0. As ei is a basis element it is nonzero, and bi 6= 0 by assumption,
so we have a contradiction. Thus, there are no elements in V of size one, which starts the induction.

Now suppose that r > 0, and we have shown already that there are no elements in V of size s for all
0 < s < r. Consider an element b ∈ V of size r. We can then choose i such that bi 6= 0, and after replacing b
by b/bi we may assume that bi = 1. Now fix τ ∈ H and put ck = bk − τ(bk), so c ∈ V by facts (d) and (a).
We clearly have ci = 0, and also cj = 0 whenever bj = 0; so the size of c is strictly less than that of b. By our
induction hypothesis we must therefore have c = 0. This means that bk = τ(bk) for all k, but τ was arbitrary
so bk ∈ MH . This means that b ∈ V ∩ (MH)n so b = 0 by fact (c). This contradicts the assumption that b
has size r, and so completes the induction step. �

Corollary 11.7. [cor-correspondence-a]
For any subgroup H ≤ G we have [M : MH ] = |H| and G(M/MH) = H.

Proof. Choose e1, . . . , en as in the lemma, and list the elements of H as τ1, . . . , τm. Define wi ∈ Mm (for
1 ≤ i ≤ n) by wi = (τ1(ei), . . . , τm(ei)). It is then clear that V = {b ∈Mn |

∑
i biwi = 0}, so the lemma tells
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us that the vectors w1, . . . , wn are linearly independent. The length of any linearly independent list is at most
the dimension of the containing space, so we have n ≤ m, or in other words [M : MH ] ≤ |H|. Lemma 11.5
gives the reverse inequality, so [M : MH ] = |H|. The same lemma also tells us that H ≤ G(M/MH) and
these two groups have the same order (namely [M : MH ]) so H = G(M/MH). �

Proposition 11.8. [prop-correspondence-b]
Let M be a normal extension of K, with Galois group G = G(M/K), and let L be a field with K ≤ L ≤M .
Put H = G(M/L). Then H is a subgroup of G and [M : L] = |H| and L = MH .

Proof. Proposition 6.14 tells us that M is normal over L, and so we see from Proposition 6.11 that |H| =
|G(M/L)| = [M : L]. Next, recall that by definition we have

G = {σ : M →M | σ(a) = a for all a ∈ K}
H = {σ : M →M | σ(a) = a for all a ∈ L ⊇ K}

MH = {a ∈M | σ(a) = a for all σ ∈ H}.

It is clear from this that H is a subgroup of G. It is also tautological that L ⊆MH : if a ∈ L then σ(a) = a
for all σ ∈ H by the very definition of H, so certainly a ∈ MH . We therefore have |H| = [M : L] = [M :
MH ][MH : L]. On the other hand, Lemma 11.5 tells us that [M : MH ] ≥ |H|. The only way this can be
consistent is if [M : MH ] = |H| and [MH : L] = 1, so MH = L. �

Proposition 11.9. [prop-correspondence-conj]
Suppose that K ≤ L ≤M and τ ∈ G. Then K ≤ τ(L) ≤M and G(M/τ(L)) = τG(M/L)τ−1.

Proof. As τ is an automorphism of M we have τ(M) = M , and as τ |K = 1K we have τ(K) = K. We
can therefore apply τ to the inclusions K ⊆ L ⊆ M to see that K ⊆ τ(L) ⊆ M . We thus have groups
H = G(M/L) and H ′ = G(M/τ(L)). If σ ∈ H and a′ ∈ τ(L) then a′ = τ(a) for some a ∈ L, which means
that σ(a) = a, so τστ−1(a′) = τσ(a) = τ(a) = a′. This shows that τστ−1 ∈ G(M/τ(L)) = H ′. As σ ∈ H
was arbitrary we have τHτ−1 ⊆ H ′. Conversely, suppose that σ′ ∈ H ′. Put σ = τ−1σ′τ , so σ′ = τστ−1. If
a ∈ L then τ(a) ∈ τ(L), and σ′|τ(L) = 1 so σ′τ(a) = τ(a), so σ(a) = τ−1σ′τ(a) = τ−1τ(a) = a. This shows

that σ ∈ H, so σ′ = τστ−1 ∈ τHτ−1 as required. �

We next study the set EK(L,M) = {θ : L→M | θ|K = 1K} (as in Definition 6.1).

Proposition 11.10. [prop-correspondence-cosets]
Let L and H be related as in Theorem 11.1. Then there is a bijection G/H → EK(L,M) given by σH 7→ σ|L.

Proof. First, if σH = σ′H then σ′ = στ for some τ ∈ H = G(M/L), so τ |L = 1L, so for a ∈ L we have
σ′(a) = σ(τ(a)) = σ(a), so σ′|L = σ|L. This means that there is a well-defined map f : G/H → EK(L,M)
given by f(σH) = σ|L. It follows easily from Corollary 6.16 that this is injective. Moreover, as M is normal
over K we have

|EK(L,M)| = [L : K] =
[M : K]

[M : L]
=
|G|
|H|

= |G/H|.

It follows that f must actually be a bijection. �

Proposition 11.11. [prop-correspondence-c]
Let L and H be related as in Theorem 11.1. Then then L is a normal extension of K if and only if H is a
normal subgroup of G, and if so, then G(L/K) = G/H.

Proof. First suppose that H is a normal subgroup. Consider an element ζ ∈ EK(L,M). By the previous
proposition we can choose σ ∈ G such that σ|L = ζ, and so ζ(L) = σ(L). It follows by Proposition 11.9 that
G(M/ζ(L)) = σHσ−1, which is the same as H because H is normal. Next, Proposition 11.8 (applied to ζ(L))
tells us that ζ(L) = MG(M/ζ(L)) = MH = L. Thus, we can regard ζ as an element of G(L/K). We deduce
that G(L/K) = EK(L,M). As M is normal over K we have |EK(L,M)| = [L : K], so |G(L/K)| = [L : K],
which implies that L is normal over K (by Proposition 6.11). Proposition 11.10 now also gives us an
isomorphism G/H → G(L/K). �

We conclude this section by proving the following result:
61



Theorem 11.12 (Theorem of the Primitive Element). [thm-primitive]
Any extension φ : K → L of finite degree has a primitive element.

Proof. First suppose that K (and therefore L) is finite. We then know that L× is cyclic, so we can choose
a generator, say α. This is clearly a primitive element for φ. For the rest of the proof we may therefore
assume that K is infinite.

Corollary 6.13 tells us that there exists a homomorphism ψ : L → M of finite degree such that ψφ is
normal. After adjusting notation slightly, we can assume that K ⊆ L ⊆ M and that M is normal over K.
Now Theorem 11.1 tels us that the fields between K and M biject with the subgroups of the finite group
G(M/K), so there are only finitely many such fields.

Now choose α ∈ L such that [K(α) : K] is as large as possible. We claim that K(α) is actually equal to
L. If not, we can choose β ∈ L such that β 6∈ K(α). For each of the infinitely many elements t ∈ K, we
have a field K(α+ tβ) with K ⊆ K(α+ tβ) ⊆M . As there are only finitely many fields between K and M ,
there must exist elements t 6= u with K(α+ tβ) = K(α+ uβ) = N say. We now have t− u ∈ K× and so

β =
(α+ tβ)− (α+ uβ)

t− u
∈ N,

and thus α = (α+ tβ)− tβ ∈ N . This means that K(α, β) ⊆ N , so the field N = K(α+ tβ) is strictly larger
than K(α). As α was chosen so that [K(α) : K] is as large as possible, this is a contradiction. We must
therefore have K(α) = L as claimed. �

Remark 11.13. [rem-mquad-primitive]
We can now revisit Proposition 10.7. There we had a field K(n) and an element θn =

∑n
i=1

√
pi ∈ K(n).

Part (b) of Theorem 11.1 tells us that Q(θn) = K(n)H for some subgroup H ≤ G(K(n)/Q). Using Propo-
sition 10.6 we see that θn is not fixed by any nontrivial element of G(K(n)/Q), which means that H = {1}
and so Q(θn) = K(n), just as we proved more directly before.

Exercises

Exercise 11.1. [ex-H-cap-K]
Let L be a Galois extension of K, with Galois group G, and let H and K be subgroups of G. Prove that
LHLK = LH∩K .

Exercise 11.2. [ex-vier]
Let K be a field of characteristic zero, and suppose that L is a normal extension of K such that G(L/K) is
isomorphic to C2 × C2. Show that there exist α, β ∈ L such that α2, β2 ∈ K and {1, α, β, αβ} is a basis for
L over K. Describe the lattice of subgroups of G(L/K), and the corresponding lattice of fields between K
and L.

Exercise 11.3. [ex-golden]
Put

ζ = e2πi/5

α = ζ + ζ−1 = 2 cos(2π/5)

β = ζ − ζ−1 = 2i sin(2π/5).

Given that ζ4 + ζ3 + ζ2 + ζ + 1 = 0, show that α = (−1 +
√

5)/2, and deduce that
√

5 ∈ Q(ζ). Then check

that β2 = α2 − 4, and thus that β =
√
−(1 +

√
5)/2.

Draw the subfield and subgroup lattices for the field extension Q(ζ)/Q.

Exercise 11.4. [ex-mu-eleven]
Put ζ = e2πi/11 and K = Q(ζ) = Q(µ11). Recall that the corresponding cyclotomic polynomial is

ϕ11(x) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1,
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and that the roots of this are ζ, ζ2, . . . , ζ10 = ζ−1. Define

β = ζ + ζ−1 = 2 cos(2π/11)

γ = ζ + ζ3 + ζ4 + ζ5 + ζ9.

(a) Explain why β satisfies a quintic equation over Q, and write it down.
(b) Expand γ2 in powers of ζ, and hence deduce that γ2 + γ + 3 = 0. Show that Q(

√
−11) ⊆ Q(ζ).

(c) Use the general theory of cyclotomic extensions to find the structure of G(K/Q), and draw its lattice
of subgroups.

(d) Using the earlier parts of the question, draw the subfield lattice.

Exercise 11.5. [ex-two-group]
Let G be a finite group of order 2r for some r. It is a standard fact from group theory that one can find
subgroups

{1} = H0 < H1 < · · · < Hr−1 < Hr = G

such that |Hi| = 2i for all i, and Hi is normal in G. Now suppose that G is the Galois group of some normal
extension L/K. What can we deduce about the structure of L?

12. Cubics

In this section we will work with cubic polynomials over Q, for convenience. Not much would change if
we instead considered cubics over an arbitrary field K (although there would be some special features if the
characteristic of K was 2 or 3).

Consider a polynomial f(x) = x3 + ax2 + bx+ c with a, b, c ∈ Q. If f(x) is reducible then it must factor
as g(x)h(x) with deg(g(x)) = 1 and deg(h(x)) = 2. It is then easy to understand the roots of g(x) and h(x),
and this determines the roots of f(x). From now on we will ignore this case and assume instead that f(x) is
irreducible over Q. We can factor this over C as f(x) = (x−α)(x−β)(x−γ) say. Moreover, Proposition 4.42
assures us that α, β and γ are all distinct, so the set R = {α, β, γ} has size three. By expanding out the
relation

x3 + ax2 + bx+ c = (x− α)(x− β)(x− γ)

we find that

a = −(α+ β + γ)

b = αβ + βγ + γα

c = −αβγ.
Now put K = Q(α, β, γ), which is the splitting field of f(x). Put G = G(K/Q), which can be considered

as a subgroup of ΣR ' Σ3.
The subgroups of ΣR can be enumerated as follows.

(a) There is the trivial subgroup, of order one.
(b) There are three different transpositions, namely (α β), (β γ) and (γ α). For each transposition τ ,

the set {1, τ} is a subgroup of ΣR of order two.
(c) The set AR = {1, (α β γ), (γ β α)} is a subgroup of order 3, isomorphic to C3.
(d) The full group ΣR has order 6.

It is straightforward to check that this gives all possible subgroups of ΣR. We also know from Proposition 6.17
that the subgroup G acts transitively: for any pair of elements in R, there is an element σ ∈ G that sends
one to the other. It is easy to check that the subgroups of order 1 or 2 do not have this property. We must
therefore have G = AR or G = ΣR. To distinguish between these cases we introduce the element

δ = (α− β)(β − γ)(γ − α)

and the element ∆ = δ2, which is known as the discriminant of f(x).

Proposition 12.1. [prop-cubic]
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(a) If σ ∈ G then σ(δ) = sgn(σ)δ, where sgn(σ) denotes the signature of the corresponding permutation.
(b) We also have ∆ ∈ Q, so σ(∆) = ∆ for all σ ∈ G.
(c) If δ ∈ Q (or equivalently, ∆ is a square in Q) then G = AR ' C3, and K = Q(α).
(d) Suppose instead that δ 6∈ Q. Then G = ΣR, and K = Q(δ, α), and KAR = Q(δ).

Proof. (a) Suppose that σ acts on R as the transposition (α β). We then have

σ(δ) = σ((α− β)(β − γ)(γ − α)) = (β − α)(α− γ)(γ − β) = −(α− β)(β − γ)(γ − α) = −δ.

Similarly, if σ = (β γ) or σ = (γ α) we see that σ(δ) = −δ. Now suppose instead that σ acts as the
3-cycle (α β γ). We then have

σ(δ) = (β − γ)(γ − α)(α− β) = δ.

If σ = (γ β α) we also have σ(δ) = δ, by a very similar argument. This covers all possible
permutations (except for the identity, which is trivial) and so proves claim (a).

(b) For all σ ∈ G we have σ(δ) = ±δ, and so σ(∆) = σ(δ2) = σ(δ)2 = (±δ)2 = δ2 = ∆. This proves that
∆ ∈ KG, which is just Q by Theorem 11.1.

(c) Suppose that δ ∈ Q. It follows that for all σ ∈ G = G(K/Q) we must have σ(δ) = δ, which is only
consistent with (a) if G ⊆ AR. We also saw previously (using transitivity) that G must either be AR
or ΣR, so now we see that G = AR. In particular we have |G| = 3 and so [K : Q] = 3, but as f(x)
is irreducible we also have [Q(α) : Q] = 3, so it must be that K = Q(α).

(d) Suppose instead that δ 6∈ Q = KG, so there must exist σ ∈ G with σ(δ) 6= δ. We then see from (a)
that σ gives an odd permutation of R, and that σ(δ) = −δ. This means that we cannot have G = AR,
so we must have G = ΣR instead. This means in particular that [K : Q] = |G| = 6. Consider the
field K ′ = Q(δ, α) ⊆ K. We then see that [K ′ : Q] divides [K : Q] = 6, so [K ′ : Q] ∈ {1, 2, 3, 6}.
On the other hand, as Q ⊆ Q(δ) ⊆ K ′ and Q ⊆ Q(α) ⊆ K ′ we see that [K ′ : Q] is divisible by
both [Q(δ) : Q] = 2 and [Q(α) : Q] = 3. It follows that [K ′ : Q] = 6, and thus that K ′ = K. It
is also clear from (a) that Q(δ) ⊆ KAR and [KAR : Q] = |G/AR| = |ΣR/AR| = 2 = [Q(δ) : Q] so
KAR = Q(δ) as claimed.

�

We will now explore the Galois correspondence in the case where G(K/Q) = ΣR. Put

A = {1, (β γ)} B = {1, (γ α)} C = {1, (α β)}

The lattice of subgroups is then as shown on the left below, and the corresponding lattice of subfields is as
shown on the right.

6

3

2

1

Σ3

C3

A B C

{1}

Q

Q(δ)

Q(α) Q(β) Q(γ)

K
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Remark 12.2. [rem-disc-formula]
One can in fact show that

∆(α, β, γ) = a2b2 − 4a3c− 4b3 + 18abc− 27c2

= −det


1 0 3 0 0
a 1 2a 3 0
b a b 2a 3
c b 0 b 2a
0 c 0 0 b

 .
It would be long, but essentially straightforward, to check this by hand. Alternatively, one can just enter
the following in Maple:

a := - alpha - beta - gamma;

b := alpha * beta + beta * gamma + gamma * alpha;

c := - alpha * beta * gamma;

delta := (alpha-beta) * (beta - gamma) * (gamma - alpha);

M := <<1|0|3|0|0>,<a|1|2*a|3|0>,<b|a|b|2*a|3>,<c|b|0|b|2*a>,<0|c|0|0|b>>;

expand(delta^2 - (a^2*b^2-4*a^3*c-4*b^3+18*a*b*c-27*c^2));

expand(LinearAlgebra[Determinant](M) + delta^2);

There is also a more conceptual argument using the determinant formula, which we will not explain here,
except to mention that the first two columns contain the coefficients of f(t) and the last three columns
contain the coefficients of f ′(t). The determinant formula can be generalised to cover polynomials of any
degree, not just cubics.

Remark 12.3. In the case where a = 0, the formula reduces to ∆ = −4b3 − 27c2. One can always reduce
to this case: if f(x) = x3 + ax2 + bx + c, then f(x − a/3) = x3 + Bx + C, where B = b − a2/3 and
C = 2a3/27− ab/3 + c.

We next explain how to find the roots α, β and γ in terms of the coefficients of f(x). Traditionally this
is usually done by starting with some preliminary steps that simplify the algebra but obscure some of the
symmetry. Here we will assume that the algebra can be handled by a system such as Maple or Mathematica,
so we will bypass these preliminary steps.

First, we define ∆ = a2b2 − 4a3c− 4b3 + 18abc− 27c2. If this is zero then f(x) must be reducible, and so
must have a root in Q. We will ignore this case from now on, and assume that ∆ 6= 0. We will also assume
for the moment that b 6= a2/3; the significance of this will appear later.

Let δ be one of the square roots of ∆. For definiteness, we choose δ > 0 if ∆ > 0, and we take δ to be a
positive multiple of i if ∆ < 0. Then put

m = (9ab− 2a3 − 27c+ 3
√
−3δ)/2

n = (9ab− 2a3 − 27c− 3
√
−3δ)/2.

We find (with computer assistance if necessary) that

m+ n = 9ab− 2a3 − 27c

mn = ((9ab− 2a3 − 27c)2 + 27∆)/4 = (a2 − 3b)3.

In particular, as we have assumed that b 6= a2/3 we see that mn 6= 0 and so m,n 6= 0. Now let µ be any
cube root of m. (If ∆ > 0 then m lies in the upper half plane and we can take µ to be the unique cube root
with 0 < arg(µ) < π/3; if ∆ < 0 then m is real and we can take µ to be the unique real cube root of m.)
Now put ν = (a2 − 3b)/µ and observe (using the above formula for mn) that ν is a cube root of n. We now
have

µ3 + ν3 = 9ab− 2a3 − 27c

µν = a2 − 3b.
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Now consider the number ω = e2πi/3 = (
√

3i− 1)/2, so that ω3 = 1 and ω2 = ω = ω−1 = −1− ω. It is easy
to check that the above equations will still hold if we replace (µ, ν) by (ωµ, ων) or (ωµ, ων). Finally, we put

α = (µ+ ν − a)/3

β = (ωµ+ ων − a)/3

γ = (ωµ+ ων − a)/3.

We claim that these are the roots of f(x). To see this, we note by direct expansion that

f(α) = f((µ+ ν − a)/3) = (µ3 + ν3 + 2a3 − 9ab+ 27c)/27 + (µν + 3b− a2)(µ+ ν)/9.

However, we saw above that µ3 + ν3 + 2a3 − 9ab + 27c = 0 and µν + 3b − a2 = 0, so it follows that
f(α) = 0. We can now replace (µ, ν) by (ωµ, ων) and argue in the same way to see that f(β) = 0, and
similarly f(γ) = 0. If we can show that α, β and γ are distinct, it will follow from Proposition 4.29 that
f(x) = (x− α)(x− β)(x− γ) as expected.

To check for distinctness, first note that µ3 − ν3 = m − n = 3
√
−3δ 6= 0, which implies that µ 6= ν, so

µ− ν 6= 0. We also have

β − γ = (ω − ω)(µ− ν)/3 =
√
−3(µ− ν)/3 6= 0,

so β 6= γ. One can show that α 6= β and α 6= γ in a similar way.
This completes our discussion of the general case where b 6= a2/3. We conclude by discussing briefly the

special case where b = a2/3. Here we find that ∆ = −(a3 − 27c)2/27, so δ = ±(a3 − 27c)/(3
√
−3). We also

have mn = 0, so either m or n is zero. On the other hand, we have m−n = 3
√
−3δ 6= 0, so m and n are not

both zero. If m 6= 0 then we proceed exactly as before, noting that ν = (a2 − 3b)/µ = 0. If m = 0 then we
instead define ν to be the standard cube root of n and put µ = 0, and then the rest of the argument works
as previously.

Exercises

Exercise 12.1. [ex-classify-cubics]
Show that the cubics g0(x) = x3 − 3x + 1 and g1(x) = x3 + 3x + 1 are irreducible, and find their Galois
groups.

Exercise 12.2. [ex-cyclic-cubic]
Let q be a rational number, and put r = 1 + q + q2. Consider the polynomials

f(x) = x3 − (3x− 2q − 1)r

g(x) = x3 + 3qx2 − 3(q + 1)x− (4q3 + 6q2 + 6q + 1)

s(x) = x2 + qx− 2r.

Check (with assistance from Maple if necessary) that f(s(x)) = f(x)g(x). For the rest of the exercise we
will assume that q has been chosen so that f(x) is irreducible.

Now suppose we have a field L and an element α ∈ L with f(α) = 0. Show that s(α) is also a root of f(x)
in Q(α), and is different from α. Deduce that Q(α) is a splitting field for f(x) over Q, and that G(Q(α)/Q)
is cyclic of order 3.

Exercise 12.3. [ex-inv-sq-sum]
Suppose that the polynomial f(x) = x3 + ux2 + vx+ w hs three distinct roots, namely α, β and γ. Give a
formula for

p =
1

α2
+

1

β2
+

1

γ2

in terms of u, v and w.
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Exercise 12.4. [ex-vandermonde]
Suppose f(x) = x3 +ax+ b. If f has roots α, β and γ, then recall that its discriminant ∆(f) is (α−β)2(α−
γ)2(β − γ)2. Let M denote the matrix

M =

 1 1 1
α β γ
α2 β2 γ2

 .

(a) Define δ(f) = (α− β)(β − γ)(γ − α). Show that δ(f) = det(M).
(b) Thus ∆(f) = δ(f)2. Given that det(M) = det(MT ), deduce that ∆(f) = det(MMT ).
(c) Write Si = αi + βi + γi. Show that

MMT =

S0 S1 S2

S1 S2 S3

S2 S3 S4

 .

(d) Clearly S0 = 3 and S1 = 0 (as S1 is the sum of the roots, which is zero as the coefficient of x2 in f
is zero). Show that S2 = −2a by an explicit computation.

(e) As α, β and γ are roots of f , we have

α3 + aα+ b = 0

β3 + aβ + b = 0

γ3 + aγ + b = 0.

By summing these three, find S3 in terms of S0 and S1. Similarly, multiplying these equations by
α, β and γ respectively, find S4 in terms of S1 and S2. Compute the values of S3 and S4 in terms
of a and b.

(f) Combining all the above, show that ∆(f) = −(4a3 + 27b2).

13. Quartics

Let f(x) be an irreducible quartic over Q, with roots R = {α, β, γ, δ} say. Let K = Q(α, β, γ, δ) be the
splitting field, and let G = G(K/Q) be the Galois group. This is then a transitive subgroup of ΣR. Our first
task will be to classify such subgroups.

First note that |ΣR| = 4! = 24. The elements can be listed as follows.

• The identity element has order 1.
• There are six transpositions ((α;β), (α γ), (α δ), (β γ), (β δ) and (γ δ)), each of order 2.
• There are three transposition pairs, which again have order 2:

τ1 = (α β)(γ δ)

τ2 = (α γ)(β δ)

τ3 = (α δ)(β γ).

• There are eight three-cycles, each of order three.
• There are six four-cycles, each of order 4.

One crucial fact is as follows:

Proposition 13.1. [prop-vier]
The set V = {1, τ1, τ2, τ3} is a normal subgroup of ΣR, isomorphic to C2 × C2. It is also transitive. For
each σ ∈ ΣR there is a unique permutation σ ∈ Σ3 such that στiσ

−1 = τσ(i) for all i. Moreover, the rule
π(σ) = σ defines a surjective homomorphism of groups π : ΣR → Σ3, with kernel V .

Remark 13.2. [rem-resolvent]
This connection between ΣR and Σ3 allows us to relate cubics to quartics. More precisely, we will later write
down a cubic polynomial h(x) ∈ Q[x] (called the resolvent cubic of f(x)) such that KG∩V is a splitting field
for h(x). The full field K can then be obtained by adjoining at most two square roots to KG∩V .
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Before the proof, we will give a sample calculation with π. Consider the three-cycle σ = (α β γ), so
σ−1 = (γ β α). We have

στ1σ
−1 = (α β γ)(α β)(γ δ)(γ β α) = (α δ)(β γ) = τ3

στ2σ
−1 = (α β γ)(α γ)(β δ)(γ β α) = (α β)(γ δ) = τ1

στ3σ
−1 = (α β γ)(α δ)(β γ)(γ β α) = (α γ)(β δ) = τ2.

The first line shows that σ(1) = 3, the second that σ(2) = 1, and the third that σ(3) = 2. It follows that
σ = (1 3 2) ∈ Σ3.

Proof of Proposition 13.1. One can check directly that τ2i = 1 for all i and

τ1τ2 = τ2τ1 = τ3

τ2τ3 = τ3τ2 = τ1

τ3τ1 = τ1τ3 = τ2.

(More succinctly, the product of any two τ ’s is the third one.) This shows that V is a subgroup of ΣR. The
subgroups generated by τ1 and τ2 are cyclic of order 2, and V is the direct product of these subgroups, so
V ' C2 × C2.

Next, recall that any conjugate of a transposition pair is another transposition pair. More precisely, for
any σ ∈ ΣR and any transposition pair (κ λ)(µ ν) we have

σ(κ λ)(µ ν)σ−1 = (σ(κ) σ(λ))(σ(µ) σ(ν)).

As τ1, τ2 and τ3 are the only transposition pairs, we must have στiσ
−1 = τj for some j. We define σ(i) to

be this j, so στiσ
−1 = τσ(j). Now if we have another permutation ρ we find that

τρσ(i) = ρστi(ρσ)−1 = ρστiσ
−1ρ−1 = ρτσ(i)ρ

−1 = τρ(σ(i)),

so ρσ = ρ◦σ. In particular, we can take ρ = σ−1 and we find that ρ is an inverse for σ, so σ is a permutation
of {1, 2, 3}. In particular, we see from this that σV σ−1 = V , so V is a normal subgroup of ΣR. We can now
define π : ΣR → Σ3 by π(σ) = σ, and the relation ρσ = ρ ◦ σ tells us that this is a homomorphism.

Note that V is commutative, so if σ ∈ V then στiσ
−1 = τiσσ

−1 = τi, so σ is the identity. We therefore
have V ≤ ker(π).

Next, using the formula above for conjugating transposition pairs, we find that

(β γ)τ1(β γ)−1 = τ2 (γ δ)τ1(γ δ)−1 = τ1

(β γ)τ2(β γ)−1 = τ1 (γ δ)τ2(γ δ)−1 = τ3

(β γ)τ3(β γ)−1 = τ3 (γ δ)τ3(γ δ)−1 = τ2,

so π((β γ)) = (1 2) and π((γ δ)) = (2 3). Thus, the image of π is a subgroup of Σ3 containing (1 2) and
(2 3), but it is straightforward to check that the only such subgroup is Σ3 itself, so π is surjective. The First
Isomorphism Theorem for groups then gives ΣR/ ker(π) ' Σ3, so | ker(π)| = |ΣR|/|Σ3| = 24/6 = 4. On the
other hand, we also have V ≤ ker(π) and |V | = 4. We must therefore have ker(π) = V as claimed. �

We next explain in more detail the Galois-theoretic significance of V and π. We put

µ1 = 1
2 ((α+ β)− (γ + δ)) λ1 = µ2

1

µ2 = 1
2 ((α+ γ)− (β + δ)) λ2 = µ2

2

µ3 = 1
2 ((α+ δ)− (β + γ)) λ3 = µ2

3

K0 = Q(λ1, λ2, λ3) ⊆ K.

The factor of 1/2 is included for later convenience. Note that µ1 + µ2 = α− δ and µ1 − µ2 = β − γ. These
are nonzero so µ1 6= ±µ2, so λ1 6= λ2. We can do the same for µ1 ± µ3 and µ2 ± µ3 so we find that all the
numbers ±µi are distinct, and all the numbers λi are distinct.

Because the roots are grouped in µi the same way that they are in τi, we find that

σ(µi) = ±µσ(i) σ(λi) = λσ(i)
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for all σ ∈ G and i ∈ {1, 2, 3}. It follows that σ|K0 = 1K0 iff σ = 1 iff σ ∈ V ∩ G. This means that
V ∩G = G(K/K0) and so (by the Galois Correspondence) K0 = KV ∩G. As V ∩G is normal in G we deduce
that K0 is a Galois extension of Q with Galois group G/(V ∩ G) ' π(G) ≤ Σ3, and also K is Galois over
K0 with Galois group V ∩G.

To understand the extension K0/Q in more detail, consider the polynomial

g(x) = (x− λ1)(x− λ2)(x− λ3)

= x3 − (λ1 + λ2 + λ3)x2 + (λ1λ2 + λ2λ3 + λ3λ1)x− λ1λ2λ3.

As G permutes the elements λi and the coefficients of g are symmetric in these elements, we see that these
coefficients lie in KG = Q, so g(x) ∈ Q[x]. Thus g(x) is a cubic over Q (called the resolvent cubic for f(x))
and K0 is a splitting field for g(x). Later we will give formulae for the coefficients of g(x) in terms of the
coefficients of f(x). Once we know g(x) we can find the roots λi by the methods of Section 12. We can then
find µi = ±

√
λi. We also note that the element a = −(α+ β + γ + δ) is just the coefficient of x3 in f(x), so

we can find the roots of f(x) by the formulae

α = (+µ1 + µ2 + µ3)/2− a/4
β = (+µ1 − µ2 − µ3)/2− a/4
γ = (−µ1 + µ2 − µ3)/2− a/4
δ = (−µ1 − µ2 + µ3)/2− a/4.

The only issue here is to control the signs of the elements µi = ±
√
λi. Suppose that

f(x) = (x− α)(x− β)(x− γ)(x− δ) = x4 + ax3 + bx2 + cx+ d,

so that

a = −(α+ β + γ + δ)

b = αβ + αγ + αδ + βγ + βδ + γδ

c = −(αβγ + αβδ + αγδ + βγδ)

d = αβγδ.

One can check directly (perhaps with assistance from Maple) that

µ1µ2µ3 = (4ab− a3 − 8c)/8.

When solving the quartic, one can choose the signs of µ1 and µ2 arbitrarily, but one should then define
µ3 to be (4ab− a3− 8c)/(8µ1µ2) so that the above identity holds. It then works out that µ3 is a square root
of λ3, and the roots of f(x) can be found by the formulae displayed above.

The formulae simplify considerably if we assume that f(x) has no term in x3, so α+ β + γ + δ = 0. This
does not really lose any generality: if f(x) = x4 +ax3 + bx2 + cx+d then one can check that the polynomial
f(x − a/4) has no term in x3, and if we know the roots of f(x − a/4) we can just subtract a/3 to get the
roots of f(x).

If α+ β + γ + δ = 0 then we find that

µ1 = α+ β −µ1 = γ + δ λ1 = (α+ β)2 = (γ + δ)2

µ2 = α+ γ −µ2 = β + δ λ2 = (α+ γ)2 = (β + δ)2

µ3 = α+ δ −µ3 = β + γ λ3 = (α+ δ)2 = (β + γ)2

It follows that µ1µ2µ3 = −c. We can now expand out the definition of g(x) to obtain the following result:

Proposition 13.3. [prop-resolvent]
For a quartic polynomial of the form f(x) = x4 + bx2 + cx+ d, the resolvent cubic is given by

g(x) = x3 + 2bx2 + b2x− 4dx− c2. �

We now continue our investigation of which subgroups of ΣR can appear as Galois groups.
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Proposition 13.4. [prop-vier-converse]
Suppose that H is a transitive subgroup of ΣR such that |H| = 4, and that H contains no elements of order
4. Then H = V .

Proof. Suppose that σ ∈ H with σ 6= 1. By Lagrange’s Theorem the order of σ must divide |H| = 4,
but by assumption the order is not equal to 4, so the order must be two. This means that σ is either a
transposition or a transposition pair. Suppose that σ is a transposition; then there exists a root λ with
σ(λ) = λ. Put K = stabH(λ) = {ρ ∈ H | ρ(λ) = λ}, so {1, σ} ⊆ K, so |K| > 1, so |H|/|K| < 4. However,
the Orbit-Stabiliser Theorem tells us that |Hλ| = |H|/|K|, so |Hλ| < 4, so Hλ 6= R. This contradicts the
assumption that H is transitive. It follows that all nontrivial elements of H must actually be transposition
pairs, but there are only three transposition pairs in ΣR, so all of them must be in H, so H = V . �

Definition 13.5. [defn-Qi]
For i ∈ {1, 2, 3} we put Qi = {σ ∈ ΣR | σ(i) = i}.

Proposition 13.6. [prop-dihedral]
Qi is a dihedral group of order 8, and is transitive. Moreover, these are the only subgroups of order 8 in ΣR.

Proof. We first consider Q2. Let ρ be the four-cycle (α β γ δ). Note that ρ2 = (α γ)(β δ) = τ2, so
ρτ2ρ

−1 = τ2, so ρ(2) = 2, so ρ ∈ Q2. On the other hand, we have

ρτ1ρ
−1 = (ρ(α) ρ(β))(ρ(γ) ρ(δ)) = (β γ)(δ α) = τ3

ρτ3ρ
−1 = (ρ(α) ρ(δ))(ρ(β) ρ(γ)) = (β α)(γ δ) = τ1,

so ρ = (1 3). If σ ∈ Q2 then σ must either be the identity or (1 3). If σ = 1 then σ ∈ ker(π) = V . If
σ = (1 3) = ρ then we find that σρ−1 ∈ ker(π) = V , so σ ∈ V ρ. It follows that Q2 = V q V ρ, which has
order 8. One can also check that τ1ρτ

−1
1 = ρ−1, which mean that τ1 and ρ generate a group isomorphic to

D8, which must be all of Q2. As V is transitive and V ≤ Q2 we also see that Q2 is transitive. One can show
in the same way that Q1 and Q3 are also transitive and isomorphic to D8.

Now let H be an arbitrary subgroup of ΣR with |H| = 8. We then have subgroups π(H) ≤ Σ3 and
H∩V = ker(π : H → π(H)) ≤ V , and the First Isomorphism Theorem tells us that |H∩V ||π(H)| = |H| = 8.
Here |H ∩ V | must divide |V | = 4 and |π(H)| must divide |Σ3| = 6. The only possibility is |π(H)| = 2 and
|H ∩ V | = 4 = |V |. This means that H ∩ V = V (or in other words, that V ≤ H) and that π(H) = {1, σ}
for some transposition σ ∈ Σ3. If σ = (1 2) we see that H ≤ Q3, but |H| = 8 = |Q3| so H = Q3. Similarly,
if σ = (1 3) then H = Q2, and if σ = (2 3) then H = Q1. �

One can check directly that in any group isomorphic to D8 there is a unique cyclic subgroup of order 4.
We can thus do the following:

Definition 13.7. [defn-Pi]
We write Pi for the unique cyclic subgroup of order 4 in Qi.

Proposition 13.8. [prop-C-four]
The groups Pi are all different, and they are the only cyclic subgroups of order 4 in ΣR.

Proof. First, we have Qi = PiV , and the subgroups Qi are all different, so the subgroups Pi are all different.
Each Pi contains precisely two elements of order 4 (each inverse to the other). The elements of order 4 are
the four-cycles, and there are only six of them in ΣR. Thus, there cannot be any further cyclic subgroups of
order 4. �

Lemma 13.9. [lem-half-normal]
Let G be a finite group, and let H be a subgroup such that |G| = 2|H|. Then H is normal in G.

Proof. Put C = G \H, so |C| = |G| − |H| = |H|. Suppose that g ∈ G; we must show that gHg−1 = H. If
g ∈ H then this is clear. If g 6∈ H, then the left coset gH is disjoint from H and so is contained in C, but
|gH| = |H| = |C| so gH = C. Similarly, the right coset Hg is disjoint from H and has the same size as C
so it is equal to C. We now have gH = Hg and we can multiply on the right by g−1 to get gHg−1 = H as
required. �
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Proposition 13.10. [prop-alternating]
The only subgroup of ΣR of order 12 is the group AR of even permutations of R.

Proof. Suppose that |H| = 12. By the lemma, we see thatH is normal so we have a quotient groupG/H ' C2

and a quotient homomorphism q : G → G/H with kernel H. Let x denote the nontrivial element of G/H.
Recall that all the transpositions in ΣR are conjugate to each other. Thus, if H contains any transposition
then it must contain all of them, but the transpositions generate ΣR, so H = ΣR, contradicting the fact that
|H| = 12. It follows that for all transpositions σ we have q(σ) = x. Now if ρ is an even permutation then it
can bew written as a product of 2m transpositions, say, which gives q(ρ) = x2m = 1, so ρ ∈ H. This shows
that AR ≤ H but |AR| = 12 = |H| so H = AR. �

Proposition 13.11. [prop-transitive]
The transitive subgroups of ΣR are as follows: V, P1, P2, P3, Q1, Q2, Q3, AR and ΣR. Thus, the Galois group
G must be one of these groups.

Proof. Let H be a transitive subgroup of ΣR. As H is transitive, the orbit Hα is all of R, so |Hα| = 4.
Put K = stabH(α) = {σ ∈ H | σ(α) = α}. The Orbit-Stabiliser Theorem tells us that |Hα| = |H|/|K|,
so |H| = 4|K|, which is divisible by 4. On the other hand, Lagrange’s Theorem tells us that |H| divides
|ΣR| = 24. It follows that |H| ∈ {4, 8, 12, 24}. If |H| = 24 then clearly H = ΣR. If |H| = 12 then
Proposition 13.10 tells us that H = AR. If |H| = 8 then Proposition 13.6 tells us that H = Qi for some i.
If |H| = 4 and H contains an element of order 4 then H must be cyclic and Proposition 13.8 tells us that
H = Pi for some i. This just leaves the case where |H| = 4 but H has no element of order 4, in which case
Proposition 13.4 tells us that H = V . �

Remark 13.12. [rem-transitive]
The subgroups Pi are all conjugate to each other, so we can convert between them by just renaming the roots.
As the naming of the roots is arbitrary, it is not very meaningful to distingush between these subgroups.
The same applies to the subgroups Qi. Thus, we can say that the Galois group is always V , C4, D8, A4 or
Σ4. The inclusions between these subgroups can be displayed as follows:

Σ4

D8

>>||||||||
A4

``BBBBBBBB

C4

>>||||||||
V

>>||||||||

``BBBBBBBB

Remark 13.13. [rem-irr-resolvent]
Consider a quartic f(x) with resolvent g(x). If the Galois group of f(x) is H ≤ Σ4, then the Galois group of
g(x) is the image of H in Σ4/V ' Σ3, which we will call H. If g(x) is irreducible then H must be transitive,
and so must have order divisible by 3. It follows that |H| must be divisible by 3, and by inspecting the above
list of possibilities we see that either H = A4 and H = A3, or H = Σ4 and H = Σ3.

Exercises

Exercise 13.1. [ex-classify-quartics]
What are the Galois groups of the quartics f0(x) = x4 + 8x+ 12 and f1(x) = x4 + 8x− 12?

[Hint: You may assume that these are irreducible. Exercise 12.1 is relevant.]

Exercise 13.2. [ex-biquad-quartic]
You are given that a quartic polynomial f(x) has roots as follows:

α0 =
√

2 +
√

5 α1 =
√

2−
√

5 α2 = −
√

2 +
√

5 α3 = −
√

2−
√

5.

What is its discriminant? What is the Galois group?
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Exercise 13.3. [ex-quartic-discriminant]
Consider an irreducible quartic of the form f(x) = x4 + px + q, with roots α, β, γ, δ say. You may assume
that the discriminant is det(MMT ), where M is the 4 × 4 matrix analogous to the one in Exercise 12.4.
Show that this gives ∆(f(x)) = 256q3 − 27p4.

14. Cyclic extensions

In this section we will study normal extensions L/K for which the Galois group is cyclic.

Proposition 14.1. [prop-cyclic-ext]
Let K be a field of characteristic zero, and suppose that the polynomial xn − 1 is split in K.

(a) If L is a normal extension of K and G(L/K) is cyclic of order n, then there exists α ∈ K and β ∈ L
such that min(β,K) = xn − α and L = K(β). In other words, we have L = K(α1/n).

(b) Conversely, if L = K(β) for some β with βn = α ∈ K, then L is normal over K and the Galois
group G(L/K) is cyclic, with order dividing n. If the polynomial xn − α ∈ K[x] is irreducible, then
the order is precisely n.

The proof will follow after some preparatory results.
For K as in the proposition, we see that the group

µn = {a ∈ K | an = 1}

has order n. It is also cyclic by Proposition 9.9. We can thus choose a generator ζ ∈ µn. For r = 0, 1, . . . , n−1
we define a K-linear map εr : L→ L by

εr(a) = 1
n

n−1∑
i=0

ζ−irσi(a).

Lemma 14.2. [lem-sg-ep]
For all a ∈ L we have σ(εr(a)) = ζr εr(a).

Proof. We have σ|K = 1K by assumption and ζ ∈ K so σ(εr(a)) = n−1
∑n−1
i=0 ζ

−irσi+1(a). We can rewrite
this in terms of the index j = i+ 1 as

σ(εr(a)) = n−1
n∑
j=1

ζr−jrσj = ζr
n∑
j=1

ζ−jrσj .

Here ζrn = 1 = ζ0 and σn = 1 = σ0 so we can replace the j = n term by the j = 0 term to get
σ(εr(a)) = ζr

∑n−1
j=0 ζ

−rjσj(a) = ζεr(a) as claimed. �

Lemma 14.3. [lem-circle-powers]
For any t ∈ Z we have

1
n

n−1∑
i=0

ζit =

{
1 if t = 0 (mod n)

0 if t 6= 0 (mod n).

Proof. If t = 0 (mod n) then ζit = 1 for all i so we just have n−1
∑n−1
i=0 1 = 1 as claimed. In general, the

standard geometric progression argument shows that

(ζt − 1)

n−1∑
i=0

ζit = (ζt + ζ2t + · · ·+ ζnt)− (1 + ζt + · · ·+ ζ(n−1)t) = ζnt − 1 = 0.

If t 6= 0 (mod n) thn ζt − 1 6= 0 so we can divide by it (and then by n) to see that n−1
∑n−1
i=0 ζ

it = 0 as
claimed. �
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Proof of Proposition 14.1. (a) L be an extension with cyclic Galois group G = {1, σ, . . . , σn−1} ' Cn
as in the last two lemmas. Proposition 6.5 tells us that the map ε1 : L → L is nonzero. Choose
λ ∈ L such that φ(λ) 6= 0, and put β = ε1(λ) ∈ L×. By Lemma 14.2 we have σ(β) = ζβ, so
σ(βj) = σ(β)j = ζjβj . From this it follows that

σ2(βj) = σ(σ(βj)) = σ(ζjβj) = ζjσ(βj) = ζ2jβj .

By continuing in the same way (or, more formally, by induction) we see that σi(βj) = ζijβj for all
i, j ∈ Z. As ζn = 1, it follows that the element α = βn has σi(α) = α for all i. This means that α ∈
LG, but LG = K by the Galois Correspondence, so α ∈ K. We can now put f(x) = xn − α ∈ K[x],
and we see that f(β) = 0.

Next, we claim that

εr(β
j) =

{
βj if r = j (mod n)

0 otherwise.

Indeed, from the definition and the fact that σi(βj) = ζijβj we get

εr(β
j) = n−1

n−1∑
i=0

ζ−riσi(βj) = βjn−1
n−1∑
i=0

ζ(j−r)i,

so the claim follows from Lemma 14.3.
Next, we claim that the elements 1, β, . . . , βn−1 are linearly independent over K. To see this,

consider a linear relation
∑n−1
i=0 aiβ

i = 0, with ai ∈ K. We can apply εr to both sides of this
equation. On the right hand side we get zero, and on the left hand side most terms become zero,
but we have εr(arβ

r) = arβ
r. As β 6= 0 this gives ar = 0, but r was arbitrary so our linear

relation is the trivial one. We conclude that the list 1, β, . . . , βn−1 is indeed linearly independent,
or equivalently that β is not a root of any polynomial in K[x] of degree less than n. Thus, the
polynomial f(x) = xn − α must actually be the minimal polynomial of β over K.

(b) Conversely, suppose we have an extension L = K(β) such that the element α = βn lies in K. To avoid
trivialities we may assume that β 6= 0. Choose a generator ζ of the group µn = {a ∈ K | an = 1}. We

then see from the cyclotomic theory that xn− 1 =
∏n−1
k=0(x− ζk) and thus that xn−α = xn− βn =∏n−1

k=0(x− ζkβ). In particular we see that L is a splitting field for xn−α over K, so it is normal over
K. Next, for any σ ∈ G(L/K) we put λ(σ) = σ(β)/β. We can then apply σ to the equation βn = α
to see that σ(β)n = α, which implies that λ(σ)n = 1, so λ(σ) ∈ µn ⊆ K×. We claim that the map
λ : G(L/K)→ µn is actually a group homomorphism. Indeed, if τ is another element of G(L/K) we
have τ(λ(σ)) = λ(σ), because λ(σ) ∈ K. We can therefore apply τ to the equation σ(β) = λ(σ)β
to get τ(σ(β)) = λ(σ)τ(β) = λ(σ)λ(τ)β, which rearranges to give λ(τσ) = λ(τ)λ(σ) as required.
Next, we claim that λ is injective. Indeed, if λ(σ) = 1 then σ(β)/β = 1 so σ(β) = β, so σ acts as
the identity on K(β), but K(β) = L, so σ = 1 as required. It follows that λ gives an isomorphism
from G(L/K) to a subgroup of µn. We know from Proposition 9.9 that µn is cyclic, and it follows
that G(L/K) is cyclic as claimed. If xn − α is irreducible then G(L/K) acts transitively on the set
of roots, so for each ξ ∈ µn we can choose σ ∈ G(L/K) with σ(β) = ξβ, so λ(σ) = ξ. In this case
we see that λ is also surjective, so it is an isomorphism and therefore |G(L/K)| = n.

�

15. Extension by radicals

The roots of a quadratic polynomial f(x) = x2 + bx + c are of course given by (−b ±
√
b2 − 4c)/2.

To evaluate these, we need the ordinary algebraic operations of addition, subtraction, multiplication and
division, and we also need to find a square root. Similarly, to solve a cubic by the method described in
Section 12 we need algebraic operations, and we need to extract some square roots and some cube roots.
For quartics, we use the same type of operations to solve the resolvent cubic, and then we take some further
square roots as part of the process of finding roots of the original equation. More generally, we say that
a polynomial f(x) is solvable by radicals if all the roots can be found using only algebraic operations and
extraction of roots. It turns out that most quintics are not solvable by radicals, so there cannot be any
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general for solving quintics similar to that for quadratics, cubics and quartics. In this section we will develop
the theory necessary to prove this.

The main idea is as follows. We will define a property called solvability for finite groups. Roughly
speaking, a group is solvable if it can be broken up into cyclic groups. Proposition 14.1 tells us that cyclic
groups correspond to field extensions generated by taking an n’th root. It follows that for a polynomial
f(x), we can find the roots of f(x) by extracting roots if and only if the Galois group of the splitting field is
solvable. For a typical polynomial of degree d the Galois group will be Σd, and Σd is only solvable if d ≤ 4.
Thus, all polynomials of degree less than or equal to four are solvable by radicals, but most polynomials of
higher degree are not.

Definition 15.1. [defn-solvable]
Let G be a finite group. We say that G is solvable if there is a chain of subgroups {1} = G0 ≤ G1 ≤ · · · ≤
Gr = G such that Gi−1 is normal in Gi, and the quotient groups Gi/Gi−1 are all cyclic. Any such chain is
called a solvable series for G.

Remark 15.2. [rem-solvable-defn]
It is more standard to say that G is solvable if it has a chain as above in which the quotients Gi/Gi−1 are
abelian (not necessarily cyclic). We will see in Corollary 15.13 below that this is equivalent to our definition.

Definition 15.3. [defn-radical-extension]
Let K be a field, and let L be an extension of K of finite degree. We say that L is a radical extension if
there exist elements α1, . . . , αr ∈ L and integers n1, . . . , nr > 0 such that L = K(α1, . . . , αr) and αni

i ∈
K(α1, . . . , αi−1) for all i.

Definition 15.4. [defn-solvable-poly]
Let K be a field, and let f(x) be a monic polynomial in K[x]. We say that f(x) is solvable by radicals if
there exists a radical extension L/K such that f(x) splits in K[x].

Theorem 15.5. [thm-solvable-poly]
Suppose that K has characteristic zero. Let f(x) be a monic polynomial in f(x), and let N be a splitting
field for f(x). Then f(x) is solvable by radicals if and only if the Galois group G(N/K) is solvable.

One half of this will be proved as Proposition 15.15 below, and the converse half as Corollary 15.18. First,
however, we will give some examples and preliminary results about solvable groups.

Example 15.6. [eg-solvable-three]
Consider the group Σ3. The alternating subgroup A3 is cyclic of order 3, and the quotient Σ3/A3 is cyclic
of order 2. We thus have a series {1} < A3 < Σ3 proving that Σ3 is solvable.

Example 15.7. [eg-solvable-four]
Consider the group Σ4. Put C = {1, (1 2)(3 4)}, which is cyclic of order 2. In the notation of Section 13 we
then have a series

{1} < C < V < A4 < Σ4

with C/{1} ' V/C ' Σ4/A4 ' C2 and A4/V ' C3, which shows that Σ4 is solvable.

Example 15.8. [eg-An-unsolvable]
We will show later that Σn and An are not solvable if n > 4.

Example 15.9. [eg-order-solvable]
Let G be a group of order n. If n is prime then G is cyclic and therefore solvable. If n is a power of a prime,
then G is still solvable. We will not give the proof here but it is a standard exercise in the theory of groups
of prime power order. If n involves only two primes, then G is still solvable by a theorem of Burnside which
is often covered in advanced undergraduate courses on Representation Theory. More strikingly, if n is odd
then G is automatically solvable. This is a famous theorem of Feit and Thompson; the proof takes hundreds
of pages and is only accessible to specialists in finite group theory.

Proposition 15.10. [prop-abelian-solvable]
Any finite abelian group is solvable.
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Proof. Let G be a finite abelian group. Put G0 = {1} ≤ G. If G 6= G0, we choose an element a1 ∈ G \G0,
and let G1 be the subgroup generated by G0 together with a1. If G 6= G1, we choose an element a2 ∈ G\G1,
and let G2 be the subgroup generated by G1 together with a2. Continuing in this way, we get a chain of
subgroups

{1} = G0 < G1 < G2 < · · · ≤ G.

As G is finite and Gi is strictly bigger than Gi−1, we must eventually reach a stage where Gr = G. As
everything is abelian, all subgroups are normal, so we can form quotient groups Gi/Gi−1. As Gi is generated
by Gi−1 together with ai, we see that Gi/Gi−1 is generated by the coset aiGi−1 and so is cyclic. We therefore
have a solvable series for G. �

Proposition 15.11. [prop-subquotient]
Let G be a finite group, and let H be a normal subgroup. Put G = G/H and let π : G → G be the quotient
homomorphism, so π(g) = gH.

(a) If K is any subgroup of G such that H ⊆ K, then the set K = π(K) is a subgroup of G and is the
same as K/H. Moreover, we have K = {x ∈ G | π(x) ∈ K}.

(b) Conversely, if K is any subgroup of G then the set K = {x ∈ G | π(x) ∈ K} is a subgroup of G
containing H, and we have K = π(K) = K/H.

(c) If K and K are related as above, then K is normal in G if and only if K is normal in G. If so, then
there is an isomorphism G/K → G/K given by gK 7→ π(g)K.

Proof. (a) The identity element 1G lies in K, so the identity element 1G = π(1G) lies in K. Suppose we

have elements a, b ∈ K. By the definition of K, we can choose a, b ∈ K with a = π(a) and b = π(b).
As K is a subgroup, we have ab ∈ K and a−1 ∈ K. It follows that π(ab), π(a−1) ∈ K but π(ab) = a b
and π(a−1) = a−1, so a b ∈ K and a−1 ∈ K. This proves that K is a subgroup of G. The elements
are just the cosets xH for x ∈ K, which are the same as the elements of K/H; so K = K/H. Now
consider the set K ′ = {x ∈ G | π(x) ∈ K}; we claim that this is the same as K. If x ∈ K then
π(x) ∈ K by the definition of K, so x ∈ K ′ by the definition of K ′. Thus K ⊆ K ′. Conversely,
suppose that x ∈ K ′. Then π(x) ∈ K = π(K), so π(x) = π(y) for some y ∈ K. This means that
xH = yH, so x = yz for some z ∈ H. However, we have H ⊆ K by assumption, so y and z both lie
in K, so x ∈ K. This shows that K ′ ⊆ K, so in fact K ′ = K as claimed.

(b) Now let K be an arbitrary subgroup of G, and put K = {x ∈ G | π(x) ∈ K}. Clearly, if x ∈ H then
π(x) = 1G ∈ K, so x ∈ K. This proves that H ⊆ K, so in particular 1 ∈ K. Now suppose we have

alements a, b ∈ K. This means that the elements π(a) and π(b) lie in K, but K is a subgroup, so we
have π(a)π(b) ∈ K and π(a)−1 ∈ K. As π is a homomorphism we have π(ab) = π(a)π(b), which lies
in K, so ab ∈ K. Similarly we have π(a−1) = π(a)−1, which lies in K, so a−1 ∈ K. This shows that
K is a subgroup of G containing H. From the very definition of K we have π(K) ⊆ K. Conversely,
if u ∈ K ⊆ G = G/H then we must have u = xH = π(x) for some x ∈ G. Now π(x) ∈ K so by
the definition of K we have x ∈ K. This means that u ∈ π(K). We thus have K ⊆ π(K), and so
K = π(K) as claimed.

(c) Let K and K be related as discussed above. Suppose that K is normal in G. For any a ∈ G we can
choose a ∈ G with π(a) = a, and we note that aKa−1 = K because K is normal. We thus have

aKa−1 = π(a)π(K)π(a)−1 = π(aKa−1) = π(K) = K,

which proves that K is normal in G. Conversely, suppose that K is normal in G. Consider an element
a ∈ G, and the corresponding subgroup K ′ = aKa−1 ≤ G. Note that K ′ contains aHa−1, but
aHa−1 = H as H is normal. We can thus apply part (a) to K ′ as well as to K. The last claim in (a)
says that K ′ = {x | π(x) ∈ π(K ′)}, whereas K = {x | π(x) ∈ π(K)}. Now π(K ′) = π(a)Kπ(a)−1,
but this is just the same as K, because K is assumed to be normal. We thus have K = K ′, which
means that K is normal.
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Finally, suppose that K (and thus K) is normal, and define a homomorphism φ : G → G/K by
φ(x) = π(x)K. This is clearly surjective, and we have

ker(φ) = {x ∈ G | π(x)K = K}
= {x ∈ G | π(x) ∈ K} = K

(where we have again used the last part of (a)). The First Isomorphism Theorem therefore gives us
an induced isomorphism φ : G/K = G/ ker(φ)→ G/K, as claimed.

�

Proposition 15.12. [prop-solvable-layers]
Let G be a finite group.

(a) If G is solvable then every subgroup of G is solvable.
(b) If G is solvable, then for every normal subgroup H ≤ G, the quotient G/H is also solvable.
(c) If G has a normal subgroup H such that both H and G/H are solvable, then G is solvable.

Proof. (a) Suppose that G is solvable, so we have a solvable series G0 ≤ · · · ≤ Gr as in the definition. Let
H be a subgroup of G. Put Hi = H ∩Gi, which is a subgroup of H. Note that H0 = H ∩ {1} = {1}
and Hr = H ∩G = H. We can define a homomorphism πi : Hi → Gi/Gi−1 by πi(x) = xGi−1. The
kernel of this is the set of elements in Hi that also lie in Gi−1, so

ker(πi) = Hi ∩Gi−1 = H ∩Gi ∩Gi−1 = H ∩Gi−1 = Hi−1.

Thus, the First Isomorphism Theorem tells us that Hi−1 is normal in Hi and that Hi/Hi−1 is
isomorphic to πi(Hi). This is a subgroup of the cyclic group Gi/Gi−1, so is itself cyclic. Thus, the
subgroups Hi form a solvable series for H.

(b) Now suppose that H is normal, so we have a quotient group G = G/H and a quotient homomorphism
π : G→ G given by π(g) = gH. Put Gi = π(Gi), which is a subgroup of G. Note that G0 = π({1}) =
{1} and Gr = π(G) = G. As Gi−1 ⊆ Gi we have Gi−1 ⊆ Gi. We next claim that Gi−1 is normal
in Gi. Indeed, if a ∈ Gi and b ∈ Gi−1 then we must have a = π(x) and b = π(y) for some x ∈ Gi
and y ∈ Gi−1. This means that aba−1 = π(xyx−1), but Gi−1 is normal in Gi, so xyx−1 ∈ Gi−1, so
aba−1 ∈ π(Gi−1) = Gi−1 as claimed. Finally, we claim that Gi/Gi−1 is cyclic. To see this, choose
x ∈ Hi such that xHi−1 generates the cyclic group Hi/Hi−1, and put a = π(x)Gi−1 ∈ Gi/Gi−1.
Any other element b ∈ Gi/Gi−1 has the form b = π(y)Gi−1 for some y ∈ Hi. By our choice of x we
have y = xiz for some i ∈ Z and z ∈ Hi−1, and it follows that b = ai, as required. We have thus
constructed a solvable series for G.

(c) Now suppose instead that G is a finite group with a normal subgroup H, and that both H and the
quotient group G = G/H are solvable. Let π : G→ G be the quotient map. Choose solvable series

{1} = H0 ≤ H1 ≤ · · · ≤ Hr = H

{1} = G0 ≤ G1 ≤ · · · ≤ Gs = G.

For 1 ≤ j ≤ s we put Hr+j = {x ∈ G | π(x) ∈ Gj}. (For j = 0 the group Hr+j is already defined

and is equal to H, and in this case it is still true that Hr+j = {x ∈ G | π(x) ∈ Gj}.) This defines a
chain

{1} = H0 ≤ · · · ≤ Hr = H ≤ Hr+1 ≤ · · ·Hr+s = G,

and with the help of Proposition 15.11 we see that this is a solvable series for G.
�

Corollary 15.13. [cor-solvable-defn]
Let G be a finite group, and suppose that there is a chain

{1} = G0 ≤ G1 ≤ · · · ≤ Gr = G

such that Gi−1 is normal in Gi and Gi/Gi−1 is abelian for all i. Then G is solvable.
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Proof. Recall from Proposition 15.10 that all abelian groups are solvable, so Gi/Gi−1 is solvable for all i.
This means that G1 and G2/G1 are solvable, so G2 is solvable by Proposition 15.12(c). Now G2 and G3/G2

are solvable, so G3 is solvable by Proposition 15.12(c). Continuing in this way, we see that Gi is solvable for
all i. In particular, the group G = Gr is solvable as claimed. �

In Section 8 we analysed cyclotomic extensions of Q. In fact, most of what we said there can be adapted
to cover cyclotomic extensions of any field of characteristic zero. Our next result is one instance of that.

Proposition 15.14. [prop-cyclotomic-abelian]
Suppose we have a field K of characteristic zero and an extension L = K(ζ), where ζn = 1. Then L is
normal over K and G(L/K) is abelian.

Proof. Let d be the smallest positive integer such that ζd = 1. We then find that 1, ζ, . . . , ζd−1 are d distinct

roots of the polynomial xd − 1, so we have xd − 1 =
∏d−1
i=0 (x− ζi) in L[x]. This proves that L is a splitting

field for xd − 1 over K, so it is a normal extension of K. Next, for each σ ∈ G(L/K) we see that σ(ζ) is a
root of xd − 1, so σ(ζ) = ζλ(σ) say. Here λ(σ) is an integer that is well-defined modulo d, so we can regard
λ as a function G(L/K)→ Z/dZ. Note that

τ(σ(ζ)) = τ(ζλ(σ)) = τ(ζ)λ(σ) = ζλ(τ)λ(σ),

which means that λ(τσ) = λ(τ)λ(σ). In particular, we have λ(σ−1)λ(σ) = λ(1L) = 1, so λ(σ) is invertible in
Z/nZ, and we can regard λ as a group homomorphism G(L/K)→ (Z/nZ)×. We claim that this is injective.
Indeed, if λ(σ) = 1 then σ(ζ) = ζ, so σ acts as the identity on K(ζ), but K(ζ) = L, so σ = 1 as required. We
now see that G(L/K) is isomorphic to a subgroup of the abelian group (Z/nZ)×, so G(L/K) is abelian. �

Proposition 15.15. [prop-radicals-a]
Let K be a field of characteristic zero. Let L be a splitting field for a polynomial f(x) ∈ K[x], and suppose
that G(L/K) is solvable. Then f(x) is solvable by radicals.

Proof. Put n = [L : K], and let N be a splitting field for xn − 1 over L. This is also a splitting field for
(xn − 1)f(x) over K, so it is normal over K. Next, consider the composite

φ = (G(N/K(ζ))
include−−−−→ G(N/K)

restrict−−−−→ G(L/K)).

If σ is in the kernel then it acts as the identity on K(ζ) (because σ ∈ G(L/K)) and on L (as φ(σ) = 1) so it
acts as the identity on L(ζ) = N , so σ = 1. This means that φ is injective, so G(N/K(ζ)) is isomorphic to
a subgroup of G(L/K). This means that |G(N/K(ζ))| divides n, and also that G(N/K(ζ)) is solvable. We
can thus find a solvable series

{1} = H0 ≤ H1 ≤ · · · ≤ Hr = G(N/K(ζ)).

We put Ni = NHi , so that

N = N0 ⊇ N1 ⊇ · · · ⊇ Nr = K(ζ).

As Hi−1 is normal in Hi we see that Ni−1 is normal over Ni. The Galois group G(Ni−1/Ni) is isomorphic to
Hi/Hi−1, so it is cyclic, of order ni say. Here ni divides |Hr| which divides n, so xni −1 splits in K(ζ) ⊆ Ni.
We can thus use Proposition 14.1 to find αi−1 ∈ Ni−1 such that Ni−1 = Ni(αi−1) and αni

i−1 ∈ Ni. This
proves that N is a radical extension of K(ζ), which is clearly a radical extension of K. Thus L is contained
in a radical extension of K, as required. �

Lemma 15.16. [lem-normal-radical]
Let N be a radical extension of K. Then there is another extension M ⊇ N , an integer n > 0, and a chain
of subfields K ⊆M0 ⊆ · · · ⊆Mt = M such that:

(a) M is normal over K.

(b) M0 = K(ζ) for some ζ such that xn − 1 =
∏n−1
i=0 (x− ζi) in M0[x].

(c) For 0 < k ≤ t we have Mk = Mk−1(βk) for some βk such that βnk ∈Mk−1.

(In particular, M is again a radical extension of K.)
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Proof. As N is a radical extension of K, we can choose elements α1, . . . , αr and integers n1, . . . , nr as in
Definition 15.3. Put n = n1n2 · · ·nr, so αni is a power of αni

i and therefore lies in K(α1, . . . , αi−1). Put
fi(t) = min(αi,K) and f(t) = (tn − 1)

∏r
i=1 fi(t) ∈ K[t]. Let M be a splitting field for f(t) over N , so

K ⊆ N ⊆ M . Put µn = {a ∈ M | an = 1}. This is a subgroup of M×, and it has order n because xn − 1
splits in M [t]. It is also cyclic by Proposition 9.9. We choose a generator and call it ζ. Next, let Pi be the
subfield of M generated by the roots of xn − 1, f1(t), . . . , fi(t), so

K ⊆ K(ζ) = P0 ⊆ P1 ⊆ · · · ⊆ Pr = M.

Let the roots of fi(t) be γ1, . . . , γs, so Pi = Pi−1(γ1, . . . , γs). We claim that γnj ∈ Pi−1. Indeed, αi and γj
are both roots in M of the irreducible polynomial fi(t) ∈ K[t], so Proposition 6.17(c) tells us that there
is an automorphism σ ∈ G(M/K) with σ(αi) = γj . As αni ∈ K(α1, . . . , αi−1) ⊆ Pi−1, we deduce that
γnj = σ(αni ) ∈ σ(Pi−1). As Pi−1 is normal over K we have σ(Pi−1) = Pi−1, so γnj ∈ Pi−1 as required.

Now let the list β1, . . . , βt consist of the roots of f1(t), followed by the roots of f2(t), and so on. Put
Mk = K(ζ, β1, . . . , βk). It is now clear that these have the stated properties. �

Lemma 15.17. [lem-radicals-b]
In the situation of Lemma 15.16, the group G(M/K) is solvable.

Proof. By the Galois Correspondence, there are subgroups

G(M/K) ≥ H0 ≥ H1 ≥ · · · ≥ Ht = {1}
such that Mk = MHk for all k. As ζ ∈ M0 we see that the polynomial tn − βnk ∈ Mk−1[t] actually splits as∏n−1
i=0 (t−ζiβk) in Mk[t], so Mk is normal over Mk−1. It follows that Hk is normal in Hk−1, and the quotient

Hk−1/Hk can be identified with G(Mk/Mk−1), which is cyclic by Proposition 14.1. Similarly, as M0 is a
splitting field for tn − 1 over K we see that H0 is normal in G(M/K), and the quotient G(M/K)/H0 can
be identified with G(K(ζ)/K), which is abelian by Proposition 15.14. We can thus apply Corollary 15.13 to
see that G(M/K) is solvable, as claimed. �

Corollary 15.18. [cor-radicals-b]
Let K be a field of characteristic zero, and let f(x) be a monic polynomial over K. Suppose we have fields
K ⊆ L ⊆ N such L is a splitting field for K, and N is a radical extension of K. Then G(L/K) is solvable.

Proof. Choose M as in Lemma 15.16, so G(M/K) is solvable by the lemma. As L and M are both normal
over K, we have G(L/K) ' G(M/K)/G(M/L), which is solvable by Proposition 15.12(b). �

Proposition 15.19. [prop-An-simple]
If n ≥ 5 then the only normal subgroups of An are {1} and An itself.

The proof will be given after some preliminaries.

Lemma 15.20. [lem-commutator]
Let G be a group, and let H be a normal subgroup. Then for all g ∈ G and h ∈ H, the commutator
[g, h] = ghg−1h−1 lies in H.

Proof. As H is normal we see that ghg−1 ∈ H, and also h−1 ∈ H and H is closed under multiplication so
ghg−1h−1 ∈ H. �

Lemma 15.21. [lem-cycle-type]
Let σ and σ′ be permutations in An with the same cycle type, and suppose that there is an odd permutation
τ that commutes with σ. Then σ is conjugate to σ′ in An.

Proof. It is standard that the cycle type determines the conjugacy class in Σn, so there is a permutation
λ ∈ Σn with λσλ−1 = σ′. If λ is even then we are done. Otherwise, the permutation µ = λτ is even and we
have

µσµ−1 = λτστ−1λ−1 = λσττ−1λ−1 = λσλ−1 = σ′,

so again σ′ is conjugate in An to σ. �

Corollary 15.22. [cor-An-conjugacy]
If n ≥ 5 then all 3-cycles are conjugate in An, and all transposition pairs are conjugate in An.
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Proof. Any transposition pair σ = (a b)(c d) comutes with the odd permutation (a b). If ρ = (a b c) is a
3-cycle, then (as n ≥ 5) we can find a transposition (d e) that is disjoint from ρ, so again this gives an odd
permutation that commutes with ρ. �

Lemma 15.23. [lem-An-simple]
Let H be a normal subgroup of An (where n ≥ 5) and suppose that H contains either a 3-cycle or a
transposition pair. Then H = An.

Proof. If H contains one 3-cycle it contains all of them (by Corollary 15.22). One can then check that
[(1 2)(3 4), (1 2 3)] = (1 3)(2 4), so H also contains a transposition pair, and therefore (by the same
corollary) contains all transposition pairs.

Suppose instead we start by assuming that H contains a transposition pair, and thus contains all transpo-
sition pairs. One can then check that [(1 2 5), (1 2)(3 4)] = (1 5 2), so H contains a 3-cycle, and so contains
all 3-cycles.

Now let α and β be any two transpositions. Then αβ is either the identity (if α = β) or a 3-cycle (if α
and β overlap) or a transposition pair. In all cases, we have αβ ∈ H. Now let σ be any even permutation.
Then we can write σ as the product of an even number of transposition, and by grouping them in pairs, we
see that σ ∈ H. Thus H = An as claimed. �

Proof of Proposition 15.19. Let H be a nontrivial normal subgroup of An. Choose an element σ ∈ H with
σ 6= 1. We will consider various different cases depending on the cycle type of σ.

(a) Suppose that σ involves an r-cycle ρ = (a1 · · · ar) for some r > 3. Put τ = (a1 a2 a3). This
commutes with all the other cycles in σ, and it follows that [τ, σ] = [τ, ρ]. One can check directly
that [τ, ρ] = (a1 a2 a4), so H contains a 3-cycle, so H = An by Lemma 15.23.

(b) Now suppose that (a) does not hold, so σ involves only 3-cycles and transpositions. Suppose that
there is at least one transposition. As σ is even and 3-cycles are even, there must be an even number
of transpositions. We can thus write σ = ρω, where ρ = (a b)(c d) and ω is disjoint from ρ. Put
τ = (a b c); we then find that [τ, σ] = [τ, ρ] = (a b)(c d), so H contains a transposition pair. It
follows by Lemma 15.23 that H = An.

(c) Now suppose that neither (a) nor (b) holds, so σ is a product of 3-cycles. If σ is a single 3-cycle then
we can immediately use Lemma 15.23 to see that H = An. If there are at least two 3-cycles then we
can write σ = ρω, where ρ = (a b c)(d e f) and ω is disjoint from ρ. We then put τ = (a b d) and
check that

[τ, σ] = [τ, ρ] = (a b e c d).

We can thus apply case (a) to this 5-cycle to see that H = An again.

�

Corollary 15.24. [cor-not-solvable]
For n ≥ 5 the groups Σn and An are not solvable.

Proof. Suppose we have a solvable series 1 = H0 ≤ H1 ≤ · · · ≤ Hr−1 ≤ Hr = An. After eliminating any
repetitions, we may assume that these inclusions are strict, so 1 < H1 < · · · < Hr−1 < Hr = An. By the
definition of a solvable series, the group Hr−1 must be normal in An, and also Hr−1 < An, so we must
have Hr−1 = 1. This means that An = Hr/Hr−1, but Hr/Hr−1 is cyclic, so this is impossible. This means
that An is not solvable. As every subgroup of a solvable group is solvable, it follows that Σn is also not
solvable. �

We now see, as claimed previously, that polynomials of degree at least 5 are typically not solvable by
radicals.

Exercises
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Exercise 15.1. [ex-check-solvable]
Which of the following polynomials are solvable by radicals over Q?

f0(x) = 2x5 − 10x2 − 5x

f1(x) = 2x5 − 10x− 5

f2(x) = 2x6 − 10x2 − 5

f3(x) = 5x5 + 10x4 − 2

f4(x) = x5 − 405x+ 3

f5(x) = 4x10 − 40x6 − 20x5 + 100x2 + 100x+ 25.

Three of these polynomials have the same splitting field. Which are they?

Exercise 15.2. [ex-septic]
Prove that the polynomial f(x) = 30x7 − 70x6 − 42x5 + 105x4 − 21 is not solvable by radicals.

Exercise 15.3. [ex-affine-five]
In this question it will be convenient to think Σ5 as the group of permutations of the set F5 = {0, 1, 2, 3, 4}.
For a ∈ F×5 and b ∈ F5 we define ρab : F5 → F5 by ρab(u) = au+ b. We then put

U = {ρab | a ∈ F×5 , b ∈ F5.

(a) Prove that U is a subgroup of Σ5, which contains a normal cyclic subgroup of order 5, whose quotient
is cyclic of order 4.

(b) Suppose that H is some other subgroup of Σ5, and there is a cyclic subgroup C of order 5 that is
normal in H. Prove that H is conjugate to a subgroup of A.

(c) Prove that any transitive subgroup of Σ5 is either equal to Σ5, or equal to A5, or conjugate to a
subgroup of A.

Exercise 15.4. [ex-special-sextic]
Find an irreducible polynomial of degree 6 over Q with 4 real roots, but whose Galois group over Q is not
Σ6.
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Solutions

Exercise 1.1: The set K0 is not a field, because the element 1 ∈ K0 has no additive inverse in K0. The set
K1 is a commutative ring but not a field, because the nonzero element 2 ∈ K1 has no multiplicative inverse
in K1.

The set K2 (otherwise known as Q(
√

2)) is a field. Indeed, it is clearly closed under addition and contains
0 and 1. It is also closed under multiplication because for all a, b, c, d ∈ Q we have

(a+ b
√

2)(c+ d
√

2) = (ac+ 2bd) + (ad+ bc)
√

2

(and ac + 2bd, ad + bc ∈ Q). Finally, any nonzero element x ∈ Q(
√

2) has the form x = a + b
√

2 where at

least one of a and b are nonzero. A standard lemma tells us that
√

2 is irrational, and thus that a2 − 2b2

cannot be zero. It follows that the expression y = (a− b
√

2)/(a2 − 2b2) gives a well-defined element of K2,
and one checks directly that xy = 1, so y is a multiplicative inverse for x. This proves that K2 is a subfield
of C.

Next, K3 is just equal to R, so it is a field. The set K4 contains the element α = 21/3 but it does not
contain α2, so it is not closed under multiplication, so it is not a field (or even a ring). The set K4 is a
commutative ring, with the pair (1, 1) as the multiplicative identity. However, it is not a field. Indeed, the
element e = (1, 0) is nonzero but for any (a, b) ∈ K4 we have e.(a, b) = (a, 0) 6= (1, 1); this shows that e has
no multiplicative inverse. The set K6 = Z/6Z is a commutative ring but not a field, because the nonzero
element 2 has no inverse, as we see from the multiplication table modulo 6:

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

On the other hand, the ring Z/7Z is a field. Indeed, we have

12 = 2× 4 = 3× 5 = 62 = 1 (mod 7),

so in Z/7Z we have

1−1 = 1 2−1 = 4 3−1 = 5 4−1 = 2 5−1 = 3 6−1 = 6,

so every nonzero element has an inverse. (The real reason for the difference between K6 and K7 is that 7 is
prime and 6 is not.)

Exercise 1.2: We have F2[i] = {0, 1, i, 1 + i} and one can check directly that none of these elements is an
inverse for 1 + i, so F2[i] is not a field. Alternatively (1 + i)2 = 2i = 0 which would contradict Lemma 1.5 if
F2[i] were a field.

Similarly, in F5[i] we find that 2 + i and 2− i are nonzero but (2 + i)(2− i) = 5 = 0, so again F5[i] is not
a field.

Now consider F3[i], and put α = 1 + i. We find that

α0 = 1 α1 = 1 + i

α2 = −i α3 = 1− i
α4 = −1 α5 = −1− i
α6 = i α7 = −1 + i

α8 = 1.
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From this we see that every nonzero element of F3[i] is αk for some k ∈ {0, . . . , 7}, and that this has inverse
α8−k. This shows that F3[i] is a field.

Exercise 1.3: Let K be a subfield of Q(
√
p). This contains 1 and is closed under addition and subtraction,

so it must contain Z. For integers b > 0 we then deduce that b−1 ∈ K, and so a/b ∈ K for all a ∈ Z; this
shows that K contains Q. Suppose that K is not equal to Q; then K must contain some element α = u+v

√
p

with u, v ∈ Q and v 6= 0. As u ∈ Q ⊆ K and α ∈ K we see that the number v
√
p = α − u is also in K.

Similarly, we have v−1 ∈ K and so
√
p = v−1.(v

√
p) ∈ K. Finally, let x and y be arbitrary rational numbers;

then x, y,
√
p ∈ K, so x+ y

√
p ∈ K. This proves that K is all of Q(

√
p), as required.

Exercise 1.4: Put α = a1/n, so the field in question is K = Q(α) ⊆ R. Let σ : K → K be an automorphism,
and put ζ = σ(α)/α ∈ K ⊆ R. We can apply σ to the equation αn = a to get σ(α)n = a, and then divide
by the original equation to get ζn = 1. As ζ is real and n is odd, we see that ζ has the same sign as ζn,
but ζn = 1 > 0, so ζ > 0. We also have (ζ − 1)(1 + ζ + · · ·+ ζn−1) = ζn − 1 = 0, but all terms in the sum
1 + ζ + · · · + ζn−1 are strictly positive, so ζ = 1. This means that σ(α) = α, so σ acts as the identity on
Q(α) = K.

Exercise 1.5: We have F4 = {0, 1, α, α2} with α2 = α−1 = 1 + α. Any automorphism φ : F4 → F4 must
be a bijection and must satisfy φ(0) = 0 and φ(1) = 1, so either

(a) φ(α) = α and φ(α2) = α2; or
(b) φ(α) = α2 and φ(α2) = α.

In case (a) we see that φ is the identity. All that is left is to check that case (b) really does define an
automorphism, or equivalently that φ(x+ y) = φ(x) +φ(y) and φ(xy) = φ(x)φ(y) for all x, y ∈ F4. One way
to do this would be to just work through the sixteen possible pairs (x, y). More efficiently, we can note that
φ(x) = x2 for all x ∈ F4. (This is clear for x = 0 or x = 1 or x = α; for the case x = α2 we recall that α3 = 1
so (α2)2 = α4 = α3.α = α = φ(α2).) Given this, it is clear that φ(xy) = x2y2 = φ(x)φ(y) for all x and y.
We also have φ(x+ y) = (x+ y)2 = x2 + y2 + 2xy = φ(x) + φ(y) + 2xy, but we are working in characteristic
two so 2xy = 0 and so φ(x+ y) = φ(x) + φ(y) as required.

Exercise 1.6: This is very similar to Proposition 1.31. We have φ(0L) = 0M = ψ(0L), so 0L ∈ K.
Similarly, we have φ(1L) = 1M = ψ(1L), so 1L ∈ K. If a, b ∈ K then φ(a) = ψ(a) and φ(b) = ψ(b) so

φ(a+ b) = φ(a) + φ(b) = ψ(a) + ψ(b) = ψ(a+ b)

φ(a− b) = φ(a)− φ(b) = ψ(a)− ψ(b) = ψ(a− b)
φ(ab) = φ(a)φ(b) = ψ(a)ψ(b) = ψ(ab),

which shows that a + b, a − b, ab ∈ K. Finally, if a ∈ K× then we can apply Proposition 1.29(a) to both φ
and ψ to get

φ(a−1) = φ(a)−1 = ψ(a)−1 = ψ(a−1),

which shows that a−1 ∈ K. Thus, K is a subfield as claimed.

Exercise 1.7: Put R = K0 ×K1. We recall that this is the set of all pairs (a0, a1), where a0 ∈ K0 and
a1 ∈ K1. By hypothesis we are given an addition rule and a multiplication rule for elements of K0, and an
addition rule and a multiplication rule for elements of K1. We combine these in the obvious way to define
addition and multiplication in R:

(a0, a1) + (b0, b1) = (a0 + b0, a1 + b1)

(a0, a1)(b0, b1) = (a0b0, a1b1).
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The zero element of R is the pair (0, 0), and the unit element is (1, 1). Suppose we have three elements
a, b, c ∈ R, say a = (a0, a1) and b = (b0, b1) and c = (c0, c1). By the associativity rule in K0 we have
a0 + (b0 + c0) = (a0 + b0) + c0. By the associativity rule in K1 we have a1 + (b1 + c1) = (a1 + b1) + c1. It
follows that in R we have

a+ (b+ c) = (a0, a1) + ((b0, b1) + (c0, c1))

= (a0, a1) + (b0 + c0, b1 + c1)

= (a0 + (b0 + c0), a1 + (b1 + c1))

= ((a0 + b0) + c0, (a1 + b1) + c1)

= (a0 + b0, a1 + b1) + (c0, c1)

= ((a0, a1) + (b0, b1)) + (c0, c1) = (a+ b) + c.

(The first, second, fourth and fifth steps here are just instances of the definition of addition in R; the third
step uses the associativity rules in K0 and K1.) Thus, addition in R is associative.

Similarly, the distributivity rule in K0 tells us that a0(b0 + c0) = a0b0 + a0c0. The distributivity rule in
K1 tells us that a1(b1 + c1) = a1b1 + a1c1. It follows that in R we have

a(b+ c) = (a0, a1)(b0 + c0, b1 + c1)

= (a0(b0 + c0), a1(b1 + c1))

= (a0b0 + a0c0, a1b1 + a1c1)

= (a0b0, a1b1) + (a0c0, a1c1) = ab+ ac.

The other commutative ring axioms can be checked in the same way.
As 1 6= 0 in K0, we see that the element e = (1, 0) ∈ R is nonzero. For any element a = (a0, a1) ∈ R

we have ea = (a0, 0) 6= (1, 1) = 1R, so a is not inverse to e. Thus e is a nonzero element with no inverse,
proving that R is not a field.

Exercise 2.1:

• φ0 is not linear because φ0(−I) = (−I)2 = I 6= −φ(I).
• φ1 is linear because

φ1(sA+ tB) = sA+ tB− (sA+ tB)T = sA+ tB− sAT − tBT = s(A−AT ) + t(B−BT ) = sφ1(A) + tφ1(B).

(This is enough by Remark 2.10.)
• φ2 is also linear, because

φ2 (s [ ab ] + t [ cd ]) = φ2
[
sa+tc
sb+td

]
= (sa+ tc)x+ (sb+ td)x2 = s(ax+ bx2) + t(cx+ dx2) = sφ2 [ ab ] + tφ2 [ cd ] .

• φ3 is not linear, because

φ3 (− [ 01 ]) = φ3
[

0
−1
]

= (−x)2 6= −x2 = −φ3 [ 01 ] .

• φ4 is linear, because if h(x) = s f(x)+t g(x) then h(2) = s f(2)+t g(2) and h(−2) = s f(−2)+t g(−2)
so

φ4(s f(x) + t g(x)) =
[
h(2)
h(−2)

]
= s

[
f(2)
f(−2)

]
+ t
[
g(2)
g(−2)

]
= sφ4(f(x)) + tφ4(g(x)).

• φ5 is not linear. Indeed, for constant polynomials we just have φ5(c) = c3, so φ5(1 + 1) = 8 6= 2 =
φ5(1) + φ5(1).

Exercise 2.2: No. We would have

[M : Q] = [M : K][K : Q] = 7× 3 = 21

[M : Q] = [M : L][L : Q] = 5× 4 = 20,

which is obviously not possible.

83



Exercise 2.3: Put a = [L : K] and b = [M : L] and c = [N : M ]. As K, L, M and N are all different we
must have a, b, c > 1. We also have

ab = [M : L][L : K] = [M : K] = 6

bc = [N : M ][M : L] = [N : L] = 15.

As ab = 6 with a, b > 1 we must have (a, b) = (2, 3) or (a, b) = (3, 2). As bc = 15 with b, c > 1 we must have
(b, c) = (3, 5) or (b, c) = (5, 3). The only way these can both be satisfied is if (a, b, c) = (2, 3, 5).

Exercise 2.4: The general form for elements of V is

M =
[
a b c
b d e
c e −a−d

]
= aA+ bB + cC + dD + eE,

where

A =
[
1 0 0
0 0 0
0 0 −1

]
B =

[
0 1 0
1 0 0
0 0 0

]
C =

[
0 0 1
0 0 0
1 0 0

]
D =

[
0 0 0
0 1 0
0 0 −1

]
E =

[
0 0 0
0 0 1
0 1 0

]
.

It follows easily from this that the list A,B,C,D,E is a basis for V .

Exercise 2.5:

• Put A = iI = [ i 0
0 i ]. As i = −i we see that A† = −A, so A ∈ V . On the other hand, we have

−iA = I and I + I† = 2I so −iA 6∈ V . This means that V is not closed under multiplication by the
complex number −i, so it is not a subspace over C of M2(C).

• If A =
[
a b
c d

]
then A+ A† =

[
a+a b+c

c+b dd

]
. For this to be zero, we need a+ a = d+ d = 0 (so a and d

are purely imaginary) and c = −b. Equivalently, A must have the form

A =
[

iw x+iy
−x+iy iz

]
= w [ i 0

0 0 ] + x
[

0 1
−1 0

]
+ y [ 0 ii 0 ] + z [ 0 0

0 i ]

for some w, x, y, z ∈ R. It follows that V is a subspace over R of M2(C), with basis given by the
matrices

[ i 0
0 0 ]

[
0 1
−1 0

]
[ 0 ii 0 ] [ 0 0

0 i ] .

In particular, this basis has size four, so dimR(V ) = 4 as required.

Exercise 2.6: As L is generated over C by x, it is certainly generated over the larger field K by x. Put
f(t) = tn − xn ∈ K[t]. Clearly f(x) = 0, so x is algebraic over K. Let g(t) be the minimal polynomial of
x over K, so g(t) divides f(t), and L = K(x) ' K[t]/g(t), so m = [L : K] is the degree of g(t). As g(t)
divides f(t) we see that m ≤ n. We will suppose that m < n and derive a contradiction; this will complete
the proof.

The coefficients of g(t) are elements of K = Q(xn), so they can be written as ai(x
n)/bi(x

n) for certain
polyomials ai(s) and bi(s) 6= 0. If we let d(s) be the product of all the terms bi(s) we obtain an expression
d(xn)g(t) =

∑m
i=0 ci(x

n)ti, with ci(s), d(s) ∈ C[s]. By assumption g(x) = 0, so
∑m
i=0 ci(x

n)xi = 0. As
m < n we can compare coefficient of xnj+i (for 0 ≤ i ≤ m) to see that ci(x) = 0. It follows that g(t) = 0,
which contradicts the fact that g(t) divides f(t), as required.

Exercise 3.1: Recall that F4 = {0, 1, α, α2} with α2 = α−1 = 1 + α. Define φ : Z[x]→ F4 by

φ(a0 + a1x+ · · ·+ adx
d) = a0 + a1α+ · · ·+ adα

d.

This is clearly a homomorphism. It satisfies φ(0) = 0 and φ(1) = 1 and φ(x) = α and φ(x2) = α2, so every
element of F4 is in the image of φ, so φ is surjective. Let I be the kernel of φ. Proposition 3.10 then gives
us an induced isomorphism φ : Z[x]/I → F4. One can check that I can be described more explicitly as

I = {f(x) ∈ Z[x] | f(x) = 2g(x) + (x2 + x+ 1)h(x) for some g(x), h(x) ∈ Z[x]}.
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Exercise 3.2: Write
R = Z/12Z = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

The principal ideals are as follows:

R.0 = {0}
R.1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} = R.5 = R.7 = R.11

R.2 = {0, 2, 4, 6, 8, 10} = R.10

R.3 = {0, 3, 6, 9} = R.9

R.4 = {0, 4, 8} = R.8

R.6 = {0, 6}.
In fact, it can be shown that every ideal in Z/nZ is principal, so the above list actually contains all ideals in
R.

Exercise 4.1: We first recall Eisenstein’s criterion. Suppose we have a monic polynomial

a0 + a1x+ · · ·+ ad−1x
d−1 + xd

and a prime number p such that

(a) the coefficients a0, . . . , ad−1 are all integers divisible by p; and
(b) the constant term a0 is not divisible by p2,

then g(x) is irreducible over Q. We find the f0(x) is irreducible by Eisenstein’s criterion with p = 3, and
that f3(x) is irreducible by Eisenstein’s criterion with p = 5. On the other hand, f1(x) = (x− 2)(x2 +x+ 1)
and f2(x) = (x− 3)(x+ 6), so neither of these is irreducible over Q.

Exercise 4.2: We start with f0(x) = f(x) and f1(x) = f ′(x)/4 = x3 + 3
2x

2 + 3
2x+ 1

2 . By long division we
have

f0(x) = (x+ 1
2 )f1(x) + ( 3

4x
2 + 3

4x+ 3
4 ),

so f2(x) = x2 + x+ 1. We then divide f1(x) by f2(x) and obtain

f1(x) = (x+ 1
2 )f2(x)

(with no remainder). Thus the algorithm stops with gcd(f(x), f ′(x)) = x2 + x + 1. This means that every
root of x2+x+1 is a double root of f(x), so f(x) is divisible by (x2+x+1)2, but these are monic polynomials
of the same degree, so f(x) = (x2 + x+ 1)2.

Exercise 4.3: The polynomial f(x + 2) = x4 + 3x3 + 3x2 + 3x + 3 satisfies Eisenstein’s criterion at
p = 3, so f(x + 2) is irreducible, so f(x) is irreducible. We can also make the same argument using
f(x− 1) = x4 − 9x3 + 30x2 − 42x+ 21 (but f(x+ 1) does not work).

Exercise 4.4: First, in F2 we have f(0) = 1 and f(1) = 1, so f(x) has no roots, so it has no factors of
degree one. Thus, the only way it could factorise would be as an irreducible quadratic times an irreducible
cubic. The only quadratics over F2 are x2, x2 + 1 = (x + 1)2, x2 + x = x(x + 1) and x2 + x + 1. Only the
last of these is irreducible. We find by long division over F2 that

f(x) = (x3 + x2)(x2 + x+ 1) + 1,

so f(x) is not divisible by x2 + x+ 1. It is therefore irreducible as claimed.
Now suppose we have a factorisation f(x) = g(x)h(x) in Q[x], where g(x) and h(x) are monic. We see

from Gauss’s Lemma that g(x), h(x) ∈ Z[x], so it makes sense to reduce everything modulo 2. We then have
f(x) = g(x)h(x) in F2[x], but f(x) is irreducible, so one of the factors must be equal to one, say g(x) = 1.
As g(x) is monic, the only way we can have g(x) = 1 is if g(x) = 1. We deduce that f(x) is irreducible in
Q[x], as claimed.
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Exercise 4.5: I claim that R is just the ring Fp[xp] of polynomials in xp. To see this, consider an arbitrary

element f(x) ∈ Fp[x], say f(x) =
∑N
i=0 aix

i for some sequence of coefficients ai ∈ Fp. We then have

f ′(x) =
∑N
i=0 i ai x

i−1, so f ′(x) = 0 iff i ai = 0 for all i. If i is divisible by p then it gives the zero element
of Fp so the equation i ai = 0 holds automatically. However, if i is not divisible by p then it gives a nonzero
element of the field Fp, so we can multiply by the inverse to get ai = 0. It follows that f ′(x) = 0 iff f(x) has

the form
∑M
j=0 ajpx

jp say, or equivalently f(x) is a polynomial function of xp.

Exercise 5.1: We will write Ki for the splitting field of fi(x).

• We can write f0(x) as (x− 1)2, so K0 = Q.

• We can factor f1(x) as (x2 − 2)(x2 − 3), so the roots are ±
√

2 and ±
√

3, so the K1 = Q(
√

2,
√

3).
• The roots of f2(x) are (1±

√
−3)/2, so K2 = Q(

√
−3).

• The roots of f3(x) are α, ωα and ω2α, where α is the real cube root of 2, and ω = e2πi/3 =
(
√
−3 − 1)/2. It follows that K3 contains α and ωα, so it also contains (ωα)/α = ω, so it also

contains 2ω + 1 =
√
−3. Form this it follows that K3 = Q(α, ω) = Q(α,

√
−3).

• We can regard f4(x) as a quadratic function of x2, and we find that it vanishes when x2 = (4 ±√
12)/2 = 2±

√
3, so x = ±

√
2±
√

3. Thus, one root of f(x) is α =
√

2 +
√

3, and another is−α. The

other two roots are β and −β, where β =
√

2−
√

3. However, we have αβ =
√

(2 +
√

3)(2−
√

3) =
√

1 = 1, so β = α−1. It follows that the full list of roots is α,−α, 1/α,−1/α, so K4 = Q(α).
• If we let α denote the positive real fourth root of 2, then the roots of f5(x) are α, iα,−α and −iα.

It follows that K5 = Q(α, i). It follows that [K5 : Q] = 8.
• The roots of f6(x) are the 6th roots of unity, which are the powers of α = eπi/3 = (1 +

√
−3)/2, so

K6 = Q(
√
−3).

• The roots of f7(x) are the numbers 2αk, where again α = eπi/3 = (1 +
√
−3)/2. It follows that

K7 = K6 = Q(
√
−3).

Exercise 5.2:

(a) The roots of x4 + 1 are the primitive 8th roots of unity. One of these is α = eiπ/4 = (1 + i)/
√

2, and

the others are α3 = iα, α5 = −α and α7 = −iα. Note that i = α2 and
√

2 = (1 + i)/α = (1 +α2)/α,

so i,
√

2 ∈ Q(α). It is also clear that α ∈ Q(i,
√

2), so the relevant splitting field is Q(i,
√

2).
(b) We may observe that x4 + x2 + 1 = (x2 + x + 1)(x2 − x + 1), and so its roots are just the roots of

the two quadratic factors. These are

−1±
√
−3

2
and

1±
√
−3

2
.

It follows that the splitting field is Q(
√
−3), of degree 2 over Q.

(c) The roots of x6 + 1 are the 6th roots of −1. As −1 = eiπ, one of these roots is

α = eiπ/6 = (
√

3 + i)/2.

The other roots are obtained by multiplying α by a 6th root of 1, but the 6th roots of 1 are just
the powers of α2, so the roots of x6 + 1 are α, α3, α5, α7, α9 and α11. Thus, the splitting field is just
Q(α). Note that α ∈ Q(i,

√
3), but i = eiπ/2 = α3 ∈ Q(α), and so

√
3 = 2α − i ∈ Q(α). It follows

that the splitting field can also be described as Q(i,
√

3). It therefore has degree 4 over Q.
(d) Note that x9 − 1 = (x3 − 1)(x6 + x3 + 1), so the roots of x6 + x3 + 1 are the primitive 9th roots

of unity. One may then observe that if ζ is a primitive 9th root of unity, all other primitive 9th
roots of unity are powers of ζ, so that the splitting field is just Q(ζ). Its degree over Q is just the
degree of the minimal polynomial of ζ, but this is the given polynomial x6 +x3 +1 as it is irreducible
(substitute x 7→ x+ 1 and use Eisenstein with p = 3). So [Q(ζ) : Q] = 6.
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Alternatively, the roots of y2 + y + 1 are ω = −1+
√
−3

2 ∈ Q(
√
−3) and ω−1 = ω2 = −1−

√
−3

2 ∈
Q(
√
−3). The roots of x6 + x3 + 1 are the cube roots of these, so if α = ω

1
3 , then the roots are

α, ωα, ω2α;α−1, ωα−1, ω2α−1. So the splitting field is Q(α, ω); but Q(ω) = Q(
√
−3), so has degree

2 over Q. Further, α satisfies the cubic equation x3 − ω with coefficients in Q(ω), so Q(ω, α) has
degree at most 3 over Q(ω). Thus the degree of the splitting field is at most 6 over Q (using the
Degrees Theorem). On the other hand, the polynomial is irreducible (as above), so adjoining any
root of it gives a field extension of degree 6, and so adjoining all the roots gives a field extension of
degree at least 6. Thus the degree equals 6.

Exercise 5.3: First define χ0 : K[x]→ L by χ0(p(x)) = p(α), or more explicitly

χ0(
∑
i

aix
i) =

∑
i

aiα
i.

The kernel of this is I(α,K), which is zero because α is transcendental. Thus, if q(x) 6= 0 we see that q(α)
is a nonzero element of L, so it has an inverse in L. Thus, given a rational function f(x) = p(x)/q(x),
we can try to define χ(f(x)) = p(α)/q(α) ∈ L. There is a potential ambiguity here: what if f(x) can be
represented in a different way, say as f(x) = r(x)/s(x) for some r(x), s(x) ∈ K[x] with s(x) 6= 0? By the
construction of K(x), this means that p(x)s(x) = r(x)q(x) in K[x], which implies that p(α)s(α) = r(α)q(α)
in L, which means that p(α)/q(α) = r(α)/s(α) in L. We therefore have a well-defined function χ : K(x)→ L
as described. We know from Proposition 1.29 that χ(K(x)) is a subfield of L and that χ gives an isomorphism
K(x) → χ(K(x)), so it will suffice to show that χ(K(x)) = K(α). It is clear that K = χ(K) ⊆ χ(K(x))
and α = χ(x) ∈ χ(K(x)), and by definition K(α) is the smallest subfield of L containing K and α, so
K(α) ⊆ χ(K(x)). Conversely, as K(α) is a field containing K and α, we see that it must contain all powers
of α, and then all K-linear combinations of powers; equivalently, it must contain q(α) for all q ∈ K[x]. If q(x)
is nonzero then q(α) ∈ K(α) \ {0} = K(α)×, so 1/q(α) ∈ K(α), so p(α)/q(α) ∈ K(α) for all p(x) ∈ K[x].
This shows that K(α) contains χ(K(x)), so we must have K(α) = χ(K(x)), as required.

Exercise 5.4: We can define a function µ : L → L by µ(a) = αa for all a ∈ L. This is clearly K-linear
(or even L-linear, but we will not use that). Let f(t) ∈ K[t] be the characteristic polynomial of µ. More
explicitly, we can choose a basis e1, . . . , ed for L over K, and note that there must be elements Aij ∈ K with
µ(ei) = αei =

∑
j Aijej for all i. This gives a matrix A ∈ Md(K), and thus a matrix tI − A ∈ Md(K[t]).

We then have f(t) = det(tI − A), which is a monic polynomial of degree d over K, so it can be written as∑d
i=0 cit

i for some coefficients ci ∈ K. The Cayley-Hamilton theorem then tells us that
∑d
i=0 ciµ

i = f(µ) = 0
as a K-linear map from L to L. As µ(a) = αa (and so µ2(a) = µ(αa) = α2a, and so on) we deduce that∑d
i=0 ciα

ia =
∑d
i=0 ciµ

i(a) = 0. In particular, we can take a = 1 and thus deduce that f(α) = 0, so
f(x) ∈ I(α,K). As f is monic we also have f(x) 6= 0, so I(α,K) 6= 0 as claimed.

Exercise 5.5:

(a) If α ∈ Q then Proposition 5.8 tells us that [Q(α) : Q] = deg(min(α,Q)) < ∞. If [Q(α) : Q] < ∞
then evidently Q(α) is an example of a subfield K ⊆ C with α ∈ K and [K : Q] < ∞. If we are
given such a field K, then Proposition 5.10 (applied to the extension Q ⊂ K) tells us that α ∈ Q.
Thus, the three conditions mentioned are all equivalent.

(b) First, it is clear that Q contains Q, so 0, 1 ∈ Q. Suppose that α, β ∈ Q. This means that there are
subfields L,M ⊂ C with α ∈ L and β ∈M and [L : Q], [M : Q] <∞. Now Proposition 5.12 tells us
that LM is a subfield of C containing both α and β, such that [LM : Q] < ∞. As (iii) implies (i)
above, we see that LM ⊆ Q. Now α+ β, α− β and αβ all lie in LM , so they lie in Q. Similarly, if
α 6= 0 then α−1 ∈ L ⊆ LM ⊆ Q. It follows that Q is a subfield as claimed.

(c) Now suppose that α ∈ C and α is algebraic over Q. We thus have a minimal polynomial f(x) =

min(α,Q)(x) =
∑d
i=0 aix

i, with ad = 1 and ai ∈ Q for all i. Now part (a) tells us that there exists
a field Li ⊂ C with ai ∈ Li ⊂ C and [Li : Q] < ∞. Put L = L0L1 · · ·Ld, so Proposition 5.12 tells
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us that [L : Q] < ∞. Moreover, as f(α) = 0 we see that [L(α) : L] ≤ d, so [L(α) : Q] = [L(α) :
L][L : Q] < ∞. This means that L(α) is a finite degree extension of Q containing α, so α ∈ Q by
criterion (iii) above.

(d) Suppose we have a nonconstant polynomial f(x) ∈ Q[x]. We can regard this as a nonconstant
polynomial over C, so the Fundamental Theorem of Algebra tells us that there is a root (say α) in
C. Now the relation f(α) = 0 tells us that α is algebraic over Q, so part (c) tells us that α ∈ Q.
We therefore see that any nonconstant polynomial over Q has a root in Q, which means that Q is
algebraically closed.

Exercise 5.6:

(a) It is a general fact that if θ is algebraic over K and the minimal polynomial has degree d, then the
set {1, θ, . . . , θd−1} is a basis for K(θ) over K. From this it follows that {1, α} is a basis for F4 over
F2. This means that every element of F4 can be written as a0 +a1α for some a0, a1 ∈ F2 = {0, 1}, so

F4 = {0, 1, α, 1 + α}.
(b) Similarly, as the minimal polynomial of β over F2 has degree 4 we see that the set {1, β, β2, β3} is a

basis for F16 over F2. This gives the following list of elements of F16:

0, 1, β, 1 + β, β2, 1 + β2, β + β2, 1 + β + β2,

β3, 1 + β3, β + β3, 1 + β + β3, β2 + β3, 1 + β2 + β3, β + β2 + β3, 1 + β + β2 + β3.

(c) As the minimal polynomial of β is t4 + t3 + t2 + t + 1, we have β4 + β3 + β2 + β + 1 = 0. If we
multiply by β − 1 and cancel we get β5 − 1 = 0, so β5 = 1.

(d) The homomorphisms from F4 to F16 biject with the roots of the minimal polynomial g(t) = t2+t+1 =
0 in F16. As this polynomial has degree two, it can have at most two roots in any field. Thus, if we
can find two roots then we need not look for any more. By working through our list of elements of
F16 we find that the required roots are as follows:

γ = β2 + β3

δ = 1 + β2 + β3.

Indeed, we have

g(γ) = 1 + γ + γ2 = 1 + β2 + β3 + (β4 + 2β2β3 + β6).

We can discard the term 2β2β3 because 2 = 0 in F2. We also know that β5 = 1, so β6 = β. Using
these the above equation simplifies to g(γ) = 1 + β + β2 + β3 + β4, but this is just the minimal
polynomial evaluated at β, so g(γ) = 0. A similar argument shows that g(δ) = 0 as well. It follows
that the two homomorphisms φ, ψ : F4 → F16 are given by

φ(a0 + a1α) = a0 + a1γ = a0 + a1β
2 + a1β

3

ψ(a0 + a1α) = a0 + a1δ = a0 + a1 + a1β
2 + a1β

3.

Exercise 6.1: Suppose that σ(i) = i. Transitivity means that for any j ∈ N we can choose τ ∈ A with
τ(i) = j. As A is commutative we then have

σ(j) = σ(τ(i)) = τ(σ(i)) = τ(i) = j.

As j was arbitrary, this means that σ is the identity. Thus the action is free, as claimed.
Next, as A is transitive we can choose σi ∈ A (for i = 1, . . . , N) such that σi(1) = i. Now let τ be

any element of A. Put i = τ(1), and note that τ−1σi sends 1 to 1. As the action is free this means that
τ−1σi = 1, so τ = σi. This means that A = {σ1, . . . , σn}, and these elements are all different, so |A| = n.

Exercise 6.2:
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(a) Suppose that f(x2) is irreducible. If f(x) = u(x)v(x) then f(x2) = u(x2)v(x2), and as f(x2) is
irreducible this means that either u(x2) or v(x2) is constant, so either u(x) or v(x) is constant. This
proves that f(x) is irreducible.

(b) The polynomial f(x) = ϕ3(x) = x2 + x + 1 is irreducible, but one can check directly that f(x2) =
f(x)f(−x), which shows that f(x2) is reducible.

(c) Let α1, . . . , αd be the roots of f(x) in C. As f(x) has degree greater than one and is irreducible, it
cannot be divisible by x, so we must have αi 6= 0 for all i. Choose a square root βi for αi. We then
have f(x) =

∏
i(x− αi) =

∏
i(x− β2

i ), so

f(x2) =
∏
i

(x2 − βi)2 =
∏
i

(x− βi)(x− (−βi)).

It follows that L = Q(β1, . . . , βd) and

K = Q(α1, . . . , αd) = Q(β2
1 , . . . , β

2
d) ⊆ L.

As both K and L are normal over Q, we know that G(L/K) is a normal subgroup of G(L/Q),
and that G(L/Q)/G(L/K) ' G(K/Q). For σ ∈ G(L/K) we know that σ(βi)

2 = αi = β2
i , so

σ(βi)/βi ∈ {1,−1}. We define χi(σ) = σ(βi)/βi; it is not hard to check that this gives a group
homomorphism χi : G(L/K)→ {1,−1}. We can put these together to define a map χ : G(L/K)→
{1,−1}d by χ(σ) = (χ1(σ), . . . , χd(σ)). As the elements βi generate L over K, we see that χ is
injective, so G(L/K) is an elementary abelian 2-group. We cannot say much more than this without
more information about the polynomial f(x).

Exercise 6.3: Put α1 =
√

1111 and α2 =
√

11 + α1 and α3 =
√

111 + α2, so Ki = Ki−1(αi).

(a) Homomorphisms φ1 : K1 → R biject with roots in R of the polynomial min(α1,K0)(t) = min(
√

1111,Q)(t) =
t2 − 1111. These roots are α1 ' 33.332 and −α1 ' −33.332. More explicitly, there are two possible
homomorphisms, namely

φ11(u+ vα1) = u+ vα1

φ12(u+ vα1) = u− vα1.

(b) The minimal polynomial of α2 over K1 is t2 − 11 − α1. If we apply φ11 to the coefficients of this,
we just get the polynomial t2 − 11 − α1 again. The extensions of φ11 biject with the roots in R of
this polynomial, which are α2 ' 6.658 and −α2 ' −6.658. More explicitly, there are two possible
extensions of φ11, given by

φ21(u+ vα2) = u+ vα2

φ22(u+ vα2) = u− vα2

for all u, v ∈ K1. Alternatively, we can look back at the proof of the degree formula [K2 : K0] =
[K2 : K1][K1 : K0] = 2× 2 = 4 and see that the list 1, α1, α2, α1α2 is a basis for K2 over Q. In terms
of this basis, we have

φ21(u+ vα1 + wα2 + xα1α2) = u+ vα1 + wα2 + xα1α2

φ22(u+ vα1 + wα2 + xα1α2) = u+ vα1 − wα2 − xα1α2

for all u, v, w, x ∈ Q. Now consider instead extensions of the homomorphism φ12. These again
biject with the roots in R of a certain polynomial. To find the required polynomial, we take
min(α2,K1)(t) = t2 − 11−α1 and apply φ12 to the coefficients, giving t2 − 11 +α1. Here 11−α1 '
−22.332 < 0, so there are no such roots. This means that the homomorphism φ12 : K1 → R cannot
be extended over K2.

(c) The minimal polynomial of α3 over K2 is t2 − 111 − α2. If we apply φ21 to the coefficients of this,
we just get the polynomial t2 − 111− α2 again. The extensions of φ21 over K3 biject with the roots
in R of this polynomial, which are α3 ' 10.847 and −α3 ' −10.847. More explicitly, any element
a ∈ K3 can be written as

a = a0 + a1α1 + a2α2 + a3α1α2 + a4α3 + a5α1α3 + a6α2α3 + a7α1α2α3,
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and we then have

φ31(a) = a0 + a1α1 + a2α2 + a3α1α2 + a4α3 + a5α1α3 + a6α2α3 + a7α1α2α3

φ32(a) = a0 + a1α1 + a2α2 + a3α1α2 − a4α3 − a5α1α3 − a6α2α3 − a7α1α2α3.

Now consider instead extensions of the homomorphism φ22. These biject with the roots in R of the
polynomial t2−111+α2 (obtained by applying φ22 to the coefficients of min(α3,K2)(t) = t2−111−
α2). Here 111−α2 ' 104.342 > 0 so there are two roots, say α′3 ' 10.214 and −α′3 ' −10.214. This
gives two extensions of φ22:

φ33(a) = a0 + a1α1 − a2α2 − a3α1α2 + a4α
′
3 + a5α1α

′
3 − a6α2α

′
3 − a7α1α2α

′
3

φ34(a) = a0 + a1α1 − a2α2 − a3α1α2 − a4α′3 − a5α1α
′
3 + a6α2α3 + a7α1α2α3.

(d) We now have EQ(K,R) = {φ31, φ32, φ33, φ34} and so |EQ(K,R)| = 4. On the other hand, we have
[K : Q] = [K3 : K2][K2 : K1][K1 : K0] = 2× 2× 2 = 8, so |EQ(K,R)| < [K : Q] as claimed.

(e) The same methods show that there are eight different homomorphisms from K to C, which can be
characterised as follows:

φ31(α3) =

√
111 +

√
11 +

√
1111 ' 10.847

φ32(α3) = −

√
111 +

√
11 +

√
1111 ' −10.847

φ33(α3) =

√
111−

√
11 +

√
1111 ' 10.214

φ34(α3) = −

√
111−

√
11 +

√
1111 ' −10.214

φ35(α3) =

√
111 +

√
11−

√
1111 ' 10.538 + 0.224i

φ36(α3) = −

√
111 +

√
11−

√
1111 ' −10.538− 0.224i

φ37(α3) =

√
111−

√
11−

√
1111 ' 10.214− 0.224i

φ38(α3) = −

√
111−

√
11−

√
1111 ' −10.214 + 0.224i.

Exercise 6.4: Suppose we have
∑
i biθi, or in other words

∑
i biθi(a) = 0 for all a ∈ L. Taking a = 1 we

get

b0 + b1 + b2 + b3 = 0(A)

Similarly, we can take a to be
√
p,
√
q or

√
pq to get three more equations:

b0
√
p+ b1

√
p− b2

√
p− b3

√
p = 0

b0
√
q − b1

√
q + b2

√
q − b3

√
q = 0

b0
√
pq − b1

√
pq − b2

√
pq + b3

√
pq = 0.

After dividing by
√
p,
√
q and

√
pq respectively we get

b0 + b1 − b2 − b3 = 0(B)

b0 − b1 + b2 − b3 = 0(C)

b0 − b1 − b2 + b3 = 0.(D)

Adding (A), (B), (C) and (D) gives b0 = 0. We can then add (A) and (B) to get b1 = 0. Similar manipulations
then give b2 = b3 = 0, as required.
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Exercise 6.5:

(a) Note that α is a root of the polynomial f(x) = x4 − 2, which is irreducible over Q by Eisenstein’s
criterion at the prime 2. It follows that f(x) is the minimal polynomial of α over Q, and so [Q(α) :
Q] = deg(f(x)) = 4.

(b) Any element of a ∈ K can be written as a = x+ iy with x, y ∈ Q(α), and x and y are the real and
imaginary part of a, so they are uniquely determined. It follows that 1, i is a basis for K over Q(α),
so [K : Q(α)] = 2. We see in the same way that [Q(i) : Q] = 2.

(c) We now have

[K : Q(i)][Q(i) : Q] = [K : Q] = [K : Q(α)][Q(α) : Q].

After inserting the values obtained in (a) and (b) we see that [K : Q] = 8 and [K : Q(i)] = 4.
(d) We have f(x) = (x − α)(x − iα)(x − i2α)(x − i3α) in K[x], so K is a splitting field for f(x) over

Q(i), so it is normal over Q(i). Note also that [K : Q(i)] = [Q(i, α) : Q(i)] = 4, so min(α,Q(i)) must
have degree 4, so it must be the same as f(x). This means that f(x) is still irreducible over Q(i),
so the Galois group acts transitively on the roots. Thus, there is an automorphism σ ∈ G(K/Q(i))
with σ(α) = iα. Alternatively, we can be more concrete as follows. Every element a ∈ K can be
written in a unique way as a = a0 + a1α + a2α

2 + a3α
3 with a0, . . . , a3 ∈ Q(i). We can thus define

a Q(i)-linear map σ : K → K by

σ(a0 + a1α+ a2α
2 + a3α

3) = a0 + ia1α+ i2a2α
2 + i3a3α

3.

It is clear that σ respects addition and sends 0 to 0 and 1 to 1. Just by expanding everything out,
one can also check that σ(ab) = σ(a)σ(b), so σ is a homomorphism. We now find that 1, σ, σ2 and
σ3 are all different, but that σ4 = 1. Thus σ generates a subgroup of G(K/Q(i)) isomorphic to C4.
As |G(K/Q(i))| = [K : Q(i)] = 4, this must be the whole group.

Exercise 6.6:

(a) Here L = Q(µ5), so we know from the general cyclotomic theory that L is Galois over Q, and
the Galois group is (Z/5Z)× = {−2,−1, 1, 2}. As Z/5Z is a field we know that (Z/5Z)× is cyclic.

Explicitly, we have 2
2

= 4 = −1, and it follows easily from this that the group is generated by 2.
(b) Here K and L are both normal over Q, and G(L/Q) = (Z/25Z)× whereas G(K/Q) = (Z/5Z)×.

More explicitly, we can put ζ = e2πi/25, and for each k ∈ (Z/25Z)× there is a unique automorphism
σk of L with σk(ζ) = ζk. Note that K = Q(ζ5), so σk acts as the identity on K if and only if
ζ5k = ζ5, or equivalently 5k = 5 (mod 25), or equivalently k = 1 (mod 5). This means that

G(L/K) = {σ1, σ6, σ11, σ16, σ21} = {σ1+5i | 0 ≤ i < 5}.

Note that σi only depends on i modulo 25, so

σ1+5iσ1+5j = σ1+5i+5j+25ij = σ1+5(i+j).

It follows from this that G(L/K) is cyclic of order 5, generated by σ6.
(c) Here the polynomial f(x) = x5 − 12 is irreducible over Q (by Eisenstein’s criterion at the prime 3)

and has a root in L. However, we have L ⊆ R and f(x) has only one real root so f(x) does not split
in L[x]. It follows that L is not normal over K.

(c) This is normal, with Galois group C5. Here is a rigorous argument (in practice, you wouldn’t
necessarily write down all these steps):

Firstly, observe that [L : Q] = 20. For we have

[L : Q] = [L : K][K : Q]

and

[L : Q] = [L : Q(
5
√

3)][Q(
5
√

3) : Q].
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As [K : Q] = 4 (by (a)) and [Q( 5
√

3) : Q] = 5 (the minimal polynomial is x5 − 3, irreducible by
Eisenstein with p = 3), we see that [L : Q] is a multiple of 4 and of 5, so is divisible by 20. Conversely,

[L : K] = [K( 5
√

3) : K] ≤ 5, as it is the degree of the minimal polynomial of 5
√

3 over K, and this
must divide x5 − 3, so be of degree at most 5. As [L : Q] = [L : K][K : Q], we see [L : Q] ≤ 20.
Combining these, we get that [L : Q] = 20 and thus that [L : K] = 5.

So x5 − 3 is the minimal polynomial of 5
√

3 over K. Write α = 5
√

3 and ζ = e2πi/5. The roots of
the minimal polynomial are α, αζ, αζ2, αζ3 and αζ4. All these roots lie in K(α), so it follows that
|G(K(α)/K)| = 5, and the extension is Galois.

As every group with 5 elements is cyclic, this implies that the Galois group is C5. Explicitly,
however, the 5 automorphisms are determined by the their effects on α; α must be sent to one of α,
αζ, αζ2, αζ3 or αζ4. It is easy to see that the automorphism sending α to αζ generates all of the
automorphisms (as do any of the non-trivial automorphisms).

Exercise 7.1: The obvious basis is the set B = {1,
√

2,
√

3,
√

6}. Note that

1

2 +
√

2 +
√

3
=

2 +
√

2−
√

3

(2 +
√

2−
√

3)(2 +
√

2 +
√

3)
=

2 +
√

2−
√

3

(2 +
√

2)2 − (
√

3)2
=

2 +
√

2−
√

3

3 + 4
√

2
.

Here
1

3 + 4
√

2
=

3− 4
√

2

(3 + 4
√

2)(3− 4
√

2)
=

3− 4
√

2

32 − (4
√

2)2
=

4
√

2− 3

23
.

Putting this together, we get

1

2 +
√

2 +
√

3
= (2 +

√
2−
√

3)(4
√

2− 3)/23 = 2
23 + 5

23

√
2 + 3

23

√
3− 4

23

√
6.

Exercise 7.2: Clearly Q(
√

3 +
√

5) ⊆ Q(
√

3,
√

5). But if α =
√

3 +
√

5, then α3 = 18
√

3 + 14
√

5, so

√
3 =

α3 − 14α

4
√

5 =
18α− α3

4
.

This gives the other inclusion.

Exercise 7.3: Put α =
√
p+
√
q ∈ Q(

√
p,
√
q). Then

α2 = p+ q + 2
√
pq α3 = (p+ 3q)

√
p+ (q + 3p)

√
q,

so
√
p =

α3 − (q + 3p)α

2(q − p)
√
q =

α3 − (p+ 3q)α

2(p− q)
.

This shows that
√
p,
√
q ∈ Q(α), Q(α) = Q(

√
p,
√
q). The assumed linear independence statement shows

that [Q(
√
p,
√
q) : Q] = 4, so [Q(α) : Q] = 4, so the minimal polynomial min(α,Q) must have degree 4. We

saw above that α2 = p + q + 2
√
pq, so (α2 − (p + q))2 = 4pq, so α4 − 2(p + q)α + (p + q)2 − 4pq = 0. As

(p+ q)2− 4pq = (p− q)2, this can be rewritten as f(α) = 0. This means that f(x) is divisible by min(α,Q),
but both these polynomials are monic of degree 4, so they must be the same. One can show in the same
way that f(±√p±√q) = 0, for any of the four possible choices of signs. Alternatively, we can perform the
following expansion:

(x−√p−√q)(x−√p+
√
q)(x+

√
p−√q)(x+

√
p+
√
q)

=((x−√p)2 − q)((x+
√
p)2 − q) = (x2 − 2

√
px+ p− q)(x2 + 2

√
px+ p− q)

=(x2 + p− q)2 − (2
√
px)2 = x4 − 2(p+ q)x2 + (p− q)2 = f(x).
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Either way, we see that the roots of f(x) are
√
p+
√
q,
√
p−√q, −√p+

√
q and −√p−√q, so the splitting

field of f(x) is Q(
√
p,
√
q).

On the other hand, we see by inspection that

g(x) = (x2 − p)(x2 − q) = (x−√p)(x+
√
p)(x−√q)(x+

√
q).

It is clear from this that the splitting field of g(x) is also Q(
√
p,
√
q).

Exercise 7.4: Put α = 3
√

3 ∈ R and ω = e2πi/3 = (
√
−3 − 1)/2, so L can also be described as Q(α, ω).

Put f(t) = t3 − 3 ∈ Q[t]. This is irreducible over Q by Eisenstein’s criterion at the prime 3, but it splits
over L as (t − α)(t − ωα)(t − ω2α). It follows that L is the splitting field of f(t), so that the Galois group
G = G(L/Q) can be regarded as a group of permutations of the set R = {α, ωα, ω2α}. This group acts
transitively on R (because f(t) is irreducible), so it must be either the full group ΣR of all permutations, or
the subgroup AR of even permutations. However, complex conjugation restricts to give an automorphism
of L corresponding to the transpositon that exchanges ωα and ω2α. This shows that G(L/K) 6⊆ AR, so we
must have G(L/K) = ΣR ' Σ3.

Exercise 7.5: There is an automorphism σ of L given by z 7→ z. We claim that this is the only nontrivial
automorphism. To see this, write α = 3

√
3, so L = Q(α, i) and

L ∩ R = Q(α) = {a+ bα+ cα2 | a, b, c ∈ Q}.

We will need to know that
√

3 does not lie in L. It certainly does not appear to lie in L, but there could in
principle be a strange coincidence, so we should check rigorously. As

√
3 is real, if it lay in L we would have√

3 = a+ bα+ cα2 for some a, b, c ∈ Q. Squaring this gives

(a2 + 6bc) + (2ab+ 3c2)α+ (2ac+ b2)α2 = 3,

so

a2 + 6bc = 3

2ab+ 3c2 = 0

2ac+ b2 = 0.

If either of b or c is zero then the first equation gives a2 = 3, which is impossible as a is rational. We may
thus assume that b and c are nonzero, and rearrange the second and third equations as 3c2/b = −2a = b2/c,

and thus 3 = (b/c)3. This is again impossible, as b/c is rational. Thus, we have
√

3 6∈ L, as expected. Now

consider ω = e2πi/3 = (
√

3i − 1)/2. If this were in L, then (2ω + 1)/i =
√

3 would also be in L, which is
false. So ω 6∈ L, and similarly ω−1 6∈ L, so the only cube root of unity in L is 1.

Now let ρ be any automorphism of L. Then ρ(i)2 + 1 = ρ(i2 + 1) = ρ(0) = 0, so ρ(i) = ±i. Similarly
(ρ(α)/α)3 = ρ(α3)/α3 = ρ(3)/3 = 1, so ρ(α)/α is a cube root of unity in L. By the previous paragraph we
therefore have ρ(α) = α. It follows that ρ is either the identity (if ρ(i) = i) or σ (if ρ(i) = −i).

As 1 and σ both act as the identity on α, we see that G(L/Q(α)) = G(L/Q) = {1, σ}. Now [L : Q(α)] =
2 = |G(L/Q(α))|, so L is normal over Q(α). On the other hand, [L : Q] = 4 > 2 = |G(L/Q)|, so L is not
normal over Q. Explicitly, the polynomial f(t) = t3 − 3 ∈ Q[t] has a root in L but does not split in L.

Exercise 7.6: Put α = 4
√

3 and

f(t) = (t− α)(t+ α)(t− iα)(t+ iα).

We find that (t−α)(t+α) = t2 −
√

3, but (t− iα)(t+ iα) = t2 +
√

3, so f(t) = t4 − 3. It follows easily that
L = Q(α, i) is a splitting field for f(t) over Q, so L is normal over Q. The set R = {α, iα,−α,−iα} of roots
is the set of vertices of a square in the complex plane. We claim that the group G(L/Q) is just the dihedral
group of rotations and reflections of this square. Indeed, complex conjugation gives an automorphism σ
which reflects the square across the real axis. Next, we can use Eisenstein’s criterion at the prime 3 to see
that f(t) is irreducible, so G(L/Q) acts transitively on R. It follows that there is an automorphism φ with
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φ(α) = iα. Now φ(i) must be a square root of −1, so φ(i) = ±i. If φ(i) = i then we put ρ = φ, otherwise
we put ρ = φσ. Either way we find that ρ(i) = i and ρ(α) = iα. This implies that ρ(imα) = im+1α for all
m, so ρ is a quarter turn of the square. This means that ρ and σ generate D8, so |G(L/Q)| ≥ |D8| = 8. On
the other hand, the set

B = {1, α, α2, α3, i, iα, iα2, iα3}
clearly spans L over Q, so [L : Q] ≤ |B| = 8, and for any extension we have |G(L/Q)| ≤ [L : Q]. It follows
that all these inequalities must be equalities, so G(L/Q) = D8 and B is a basis.

α

iα

−α

−iα

σ

ρ

Exercise 7.7: We will do (a) and (b) first, and then check that f(x) is irreducible.

(a) From the definition we have 2α2 + 1 =
√
−15, and squaring again gives 4α4 + 4α2 + 16 = 0, so

f(α) = 0. As f(x) only involves even powers of x we have f(−x) = f(x) and so f(−α) = 0. Now

f(2/α) =
16

α4
+

4

α2
+ 4 =

4

α4
(4 + α2 + α4) =

4

α4
f(α) = 0,

and similarly f(−2/α) = 0. Numerically we have α ' 0.87 + 0.12i, and from that one can check that
α,−α, 2/α and −2/al are all distinct. We must therefore have

f(x) = (x− α)(x+ α)(x− 2/α)(x+ 2/α).

(b) We have a normal extension of degree 4, so the Galois group G must have order 4. We know that G
acts transitively on the roots, so there are automorphisms σ and ρ with σ(α) = −α and ρ(α) = 2/α.
These satisfy σ2(α) = σ(−α) = −σ(α) = α and rho2(α) = ρ(2/α) = 2/ρ(α) = α, so σ2 = ρ2 = 1.
We also have σ(ρ(α)) = ρ(σ(α)) = −2/α. It follows that

G = {1, σ, ρ, σρ},
and this is isomorphic to C2 × C2.

We now prove that f(x) is irreducible. It is clear that f(x) > 0 for all x ∈ R, so there are no roots
in Q. This means that the only way f(x) could factor would be as the product of two quadratics, say
f(x) = (x2 + ax+ b)(x2 + cx+ d) for some a, b, c, d ∈ Q. By looking at the term in x3, we see that c = −a.
After substituting this, expanding and comparing the remaining coefficients we obtain

b+ d− a2 = 1

a(d− b) = 0

bd = 4.

If a = 0 we quickly obtain b = (1 ±
√
−3)/2, which is impossible as b ∈ Q. Thus a 6= 0, so the second

equation above gives d = b, so the last equation gives b = ±2. The first equation then becomes a2 = ±4− 1,
which is impossible for a ∈ Q.

Exercise 7.8:
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(a) As f(x) = x4 (mod 2) and f(0) 6= 0 (mod 4) we can use Eisenstein’s criterion to see that f(x) is
irreducible.

(b) Note that α2 + 4 = 3
√

2 =
√

18, and squaring again shows that α4 + 8α2 + 16 = 18, so f(α) = 0.
As f(x) only involves even powers of x we have f(−x) = f(x) and so f(−α) = 0. Now put

β =
√
−3
√

2− 4; the same argument shows that f(±β) = 0. We also have (αβ)2 = (3
√

2 −
4)(−3

√
2 − 4) = −2, so β = ±

√
−2/α. (With the standard conventions for square roots we have

α > 0, and β and
√
−2 are positive multiples of i, and it follows that β =

√
−2/α.) It follows that

the roots of f(x) are as described, so the splitting field is Q(α, β) = Q(α, αβ) = Q(α,
√
−2) = M as

claimed.
(c) We have 3

√
2 − 4 ' 0.24 > 0 so α is real, so Q(α) ⊆ M ∩ R. As f(x) is irreducible, it must be the

minimal polynomial for α, and so [Q(α) : Q] = deg(f(x)) = 4. As Q(α) ⊆ R and
√
−2 is purely

imaginary we see that 1,
√
−2 is a basis for M over Q(α), so M ∩ R = Q(α) and [M : Q] = [M :

Q(α)][Q(α) : Q] = 2× 4 = 8.
(d) First let ψ : M → M be given by complex conjugation, so ψ(

√
−2) = −

√
−2 and ψ(α) = α. It is

clear that ψ2 = 1. Next, the Galois group of the splitting field of an irreducible polynomial always
acts transitively on the roots, so we can find σ ∈ G(M/Q) with σ(α) =

√
−2/α. Now σ must

permute the roots of x2 + 2, so σ(
√
−2) = ±

√
−2. If the sign is positive we put φ = σψ, otherwise

we put φ = σ. In either case we then have φ(α) =
√
−2/α = β and φ(

√
−2) = −

√
−2. This means

that

φ2(α) = φ(
√
−2/α) = φ(

√
−2)/φ(α) = −

√
−2/(

√
−2/α) = −α

and φ2(
√
−2) =

√
−2. It follows in turn that φ4 = 1. We now have various different automorphisms,

whose effect we can tabulate as follows:

1 φ φ2 φ3 ψ φψ φ2ψ φ3ψ

α α β −α −β α β −α −β

β β −α −β α −β α β −α
√
−2

√
−2 −

√
−2

√
−2 −

√
−2 −

√
−2

√
−2 −

√
−2

√
−2.

We see that the eight automorphisms listed are all different, but |G(M/Q)| = [M : Q] = 8, so we
have found all the automorphisms.

(e) We can read off from the above table that ψφψ−1 = φ3 = φ−1. This means that G(M/Q) is the
dihedral group D8, with φ corresponding to a rotation through π/2, and ψ to a reflection.

Exercise 8.1: Recall the key fact that

xn − 1 =
∏
d|n

ϕd(x).

In particular, we have

x− 1 = ϕ1(x)

x2 − 1 = ϕ1(x)ϕ2(x)

x4 − 1 = ϕ1(x)ϕ2(x)ϕ4(x)

x5 − 1 = ϕ1(x)ϕ5(x)

x10 − 1 = ϕ1(x)ϕ2(x)ϕ5(x)ϕ10(x)

x20 − 1 = ϕ1(x)ϕ2(x)ϕ4(x)ϕ5(x)ϕ10(x)ϕ20(x).

Dividing the second and third of these gives

ϕ4(x) =
x4 − 1

x2 − 1
= x2 + 1.
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On the other hand, we can divide the last two equations to give

ϕ20(x)ϕ4(x) =
x20 − 1

x10 − 1
= x10 + 1.

Putting these together, we get

ϕ20(x) =
x10 + 1

x2 + 1
= x8 − x6 + x4 − x2 + 1.

(The calculation can also be arranged in various other ways, but this is probably the most efficient.)

Exercise 8.2: We have

x200 − 1 = ϕ200(x)ϕ100(x)ϕ50(x)ϕ40(x)ϕ25(x)ϕ20(x)ϕ10(x)ϕ8(x)ϕ5(x)ϕ4(x)ϕ2(x)ϕ1(x)

x100 − 1 = ϕ100(x)ϕ50(x)ϕ25(x)ϕ20(x)ϕ10(x)ϕ5(x)ϕ4(x)ϕ2(x)ϕ1(x)

x40 − 1 = ϕ40(x)ϕ20(x)ϕ10(x)ϕ8(x)ϕ5(x)ϕ4(x)ϕ2(x)ϕ1(x)

x20 − 1 = ϕ20(x)ϕ10(x)ϕ5(x)ϕ4(x)ϕ2(x)ϕ1(x)

and it follows that

ϕ200(x) =
(x200 − 1)(x20 − 1)

(x100 − 1)(x40 − 1)
=
x100 + 1

x20 + 1
= x80 − x60 + x40 − x20 + 1.

Exercise 8.3: Put ζ = e3πi/7 = (e2πi/14)3 and α = ζ + 1. As 3 and 14 are coprime, we see that ζ is a
primitive 14th root of unity, and so is a root of the cyclotomic polynomial ϕ14(t). We know that

t14 − 1 = ϕ14(t)ϕ7(t)ϕ2(t)ϕ1(t)

t7 − 1 = ϕ7(t)ϕ1(t)

t+ 1 = ϕ2(t).

We can divide the first of these by the second and the third to give

ϕ14(t) =
t7 + 1

t+ 1
= t6 − t5 + t4 − t3 + t2 − t+ 1.

Now put f(t) = ϕ14(t− 1). This is again a polynomial of degree 6 over Q, and we have f(α) = ϕ14(α− 1) =
ϕ14(ζ) = 0. More explicitly, we can use the expression ϕ14(t) = (t7 + 1)/(t+ 1) to get

f(t) =
(t− 1)7 + 1

t− 1 + 1
= ((t− 1)7 + 1)/t =

6∑
i=0

(−1)i
(

7
i

)
t6−i = t6 − 7t5 + 21t4 − 35t3 + 35t2 − 21t+ 7.

This reduces to t6 modulo 7, either by inspecting the coefficients directly, or by recalling that (t−1)7 = t7−17

(mod 7). Moreover, the constant term is 7, which is not divisible by 72. Thus Eisenstein’s criterion is
applicable, and we see that f(t) is irreducible.

Exercise 8.4: Put ζ = e2πi/15 and K = Q(ζ) = Q(µ15). The general theory tells us that for each
integer k that is coprime to 15, there is a unique automorphism σk of K with σk(ζ) = ζk, and that the rule
k+15Z 7→ σk gives a well-defined isomorphism (Z/15Z)× → G(K/Q). Every element of Z/15Z has a unique
representative lying between −7 and 7, and the integers in that range that are coprime to 15 form the set

U = {−7,−4,−2,−1, 1, 2, 4, 7},
so we can identify this set with (Z/15Z)×. Put A = {1,−1}, which is a cyclic subgroup of U of order 2.
Note that 23 = 8 = −7 (mod 15) and 24 = 16 = 1 (mod 15). It follows that the set B = {1, 2, 4,−7} is a
cyclic subgroup of U of order 4, and we see directly that U = A×B.
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Exercise 8.5:

(a) Put f(x) = x2 − βx + 1 ∈ Q(β)[x]. As β = ζ + ζ−1, we see that βζ = ζ2 + 1, so f(ζ) = 0. Thus,
ζ satisfies a quadratic equation over Q(β), as claimed. The minimal polynomial min(ζ,Q(β)) must
divide f(x), so it has degree one (if ζ ∈ Q(β)) or two (if ζ 6∈ Q(β)). Thus, we have [Q(ζ) : Q(β)] ≤ 2.

(b) We next observe that ζn = 1 so |ζ| > 0 and |ζ|n = 1, so |ζ| = 1. If ζ is real this means that ζ = ±1,
so ζ2 = 1, but this contradicts the assumption that ζ is a primitive nth root for some n ≥ 3. Thus,
we see that ζ 6∈ R. On the other hand, as |ζ| = 1 we see that ζ−1 = ζ, so β = ζ+ ζ = 2Re(ζ) ∈ R. It
follows that Q(β) ⊆ R and so ζ 6∈ Q(β). In conjunction with (a) this means that [Q(ζ) : Q(β)] = 2.

(c) We claim that ζm + ζ−m = pm(β) for some polynomial pm(x). Indeed, we can put p0(x) = 2 and
p1(x) = x, and then define pm(x) recursively for m > 1 by pk+1(x) = x pk(x) − pk−1(x). We claim
that pk(β) = ζk + ζ−k. This is clear for k ∈ {0, 1}. If the claim holds for all k ≤ m, we have

pm+1(β) = βpm(β)− pm−1(β)

= (ζ + ζ−1)(ζm + ζ−m)− (ζm−1 + ζ1−m)

= (ζm+1 + ζ1−m + ζm−1 + ζ−m−1)− (ζm−1 + ζ1−m)

= ζm+1 + ζ−m−1.

The claim therefore holds for all m, by induction.
(d) The first few steps of the recursive scheme are as follows:

p0(x) = 2

p1(x) = x

p2(x) = x p1(x)− p0(x) = x2 − 2

p3(x) = x p2(x)− p1(x) = x3 − 3x

p4(x) = x p3(x)− p2(x) = x4 − 4x2 + 2

p5(x) = x p4(x)− p3(x) = x5 − 5x3 + 5x.

Thus, we have ζ5 + ζ−5 = β5 − 5β3 + 5β.

Exercise 8.6: Suppose that g(t) = f(t + a) is irreducible as above. Suppose we have a factorisation
f(t) = p(t)q(t), where p(t) and q(t) are nonconstant polynomials in K[t]. We then have nonconstant
polynomials r(t) = p(t + a) and s(t) = q(t + a) with g(t) = r(t)s(t). This is impossible, because g(t) is
assumed to be irreducible. This means that no such factorisation f(t) = p(t)q(t) can exist, so f(t) must be
irreducible.

Now take f(t) = ϕp(t) = (tp − 1)/(t− 1) and a = 1. We then have

g(t) =
(t+ 1)p − 1

(t+ 1)− 1
= t−1((t+ 1)p − 1) =

p−1∑
i=0

(
p

i+ 1

)
ti.

This is monic, and using Lemma 8.7 we see that g(t) = tp−1 (mod p), so the coefficients of t0, . . . , tp−2 are
all divisible by p. Moreover, the constant term is g(0) = p, which is not divisible by p2. Eisenstein’s criterion
therefore tells us that g(t) = f(t+ 1) is irreducible, so we can use the first paragraph above to see that f(t)
is also irreducible.

Exercise 8.7: Put s = t2
k

. As the divisors of 2k are just the powers 2j for j ≤ k, we have s − 1 =∏k
j=0 ϕ2j (t). We also have s2 = t2×2

k

= t2
k+1

, so s2 − 1 =
∏k+1
j=0 ϕ2j (t). By dividing these two equations we

get ϕ2k+1(t) = (s2 − 1)/(s− 1) = s+ 1 = t2
k

+ 1 as claimed.

Alternatively, if ζ is a 2k+1th root of unity, then ζ2
k

cannot be equal to 1 (by primitivity) but (ζ2
k

)2 =

ζ2
k+1

= 1. We must therefore have ζ2
k

= −1. It follows that the primitive 2k+1th roots of unity are precisely
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the same as the roots of t2
k

+ 1. This polynomial is monic and coprime with its derivative, so there are no

repeated roots. It follows that t2
k

+ 1 is the product of t− ζ as ζ runs over the roots, which is ϕ2n+1(t).

Exercise 8.8: We will write µk for the set of all kth roots of unity, and µ×k for the subset of primitive
roots.

(a) Note that ζk = 1 if and only if ζ
k

= 1, so ζ and ζ have the same order. In other words, ζ is a
primitive mth root of unity if and only if ζ is a primitive mth root of unity. Now suppose that
m > 2. The only roots of unity on the real axis are +1 (of order 1) and −1 (of order 2), so all
primitive mth roots of unity have nonzero imaginary part. Our first observation shows that the
roots with positive imaginary part biject with those of negative imaginary part, so the total number
of roots is even. This number is the same as the degree of ϕm(x).

(b) We can write n = 2m, where m is odd. Suppose that ζ ∈ µ×n , so ζk = 1 if and only if n|k.
This means that ζm 6= 1, but (ζm)2 = ζn = 1, so we must have ζm = −1. This means that
(−ζ)m = (−1)mζm = (−1)m+1, which is 1 because m is odd. On the other hand, if (−ζ)k = 1 then
ζ2k = (−ζ)2k = 12 = 1, so 2k must be divisible by n = 2m, so k must be divisible by m. This proves
that −ζ ∈ µ×m.

Conversely, suppose that −ζ ∈ µ×m. As m is odd we then have ζm = (−1)m(−ζ)m = −1, and
thus ζn = (ζm)2 = 1, so ζ ∈ µn. On the other hand, if ζk = 1 then (−ζ)2k = (ζk)2 = 1, so 2k is
divisible by m. As m is odd this can only happen if k is divisible by m, say k = mj. This means
that ζk = (ζm)j = (−1)j , but we also assumed that ζk = 1, so j must be even. As k = mj this
means that k is divisible by 2m = n. This shows that ζ ∈ µ×n .

Next, ϕm(x) is the product of the terms x − ζ for ζ ∈ µ×m, so ϕm(−x) is the product of the
corresponding terms −x − ζ. The number of terms here is |µ×m|, which is even, by part (a). It
therefore does not matter if we change all the signs, so ϕm(x) is the product of the terms x+ ζ. Now
x+ ζ = x− (−ζ), and {−ζ | ζ ∈ µ×m} = µ×n , so we see that ϕm(−x) = ϕn(x).

(c) We can write n = p2m for some m, so n/p = mp. Suppose that ζ ∈ µ×n . Then (ζp)mp = ζn = 1. On
the other hand, if (ζp)k = ζpk = 1, then pk must be divisible by p2m, so k must be divisible by pm.
It follows that ζp ∈ µ×pm.

Conversely, suppose that ζp ∈ µ×mp. It is then clear that ζn = (ζp)mp = 1, so ζ ∈ µn. On the

other hand, suppose that ζk = 1. Then (ζp)k = 1, so k is divisible by mp, say k = mpj. Now the
original relation ζk = 1 can be written as (ζp)mj = 1, so mj must be divisible by mp, say mj = mpi.
It follows that k = mpj = p.mj = mp2i = ni, so k is divisible by n. This shows that ζ ∈ µ×n as
claimed.

Now note that ϕn/p(x
p) is the product of the terms xp − ξ for ξ ∈ µ×n/p. Here xp − ξ can be

rewritten as the product of the terms x− ζ, as ζ runs over the pth roots of ξ. Thus, ϕn/p(x
p) is the

product of all terms x − ζ for which ζp ∈ µ×n/p, or equivalently (by what we just proved) ζ ∈ µ×n .

This means that ϕn/p(x
p) = ϕn(x).

(d) If we start with ϕp(x) and apply (c) repeatedly we can find ϕpk(x) for all k (and any prime p). If p
is odd we can then use (b) to find ϕ2pk(x), and then we can use method (c) at the prime 2 to find
ϕ4pk(x), ϕ8pk(x) and so on. Eventually this gives ϕ2ipj (x) for all i and j. If p and q are distinct odd
primes, then we cannot find ϕpq(x) by this method. In particular, the first case that we do not cover
is ϕ15(x). However, if we compute ϕpq(x) by some other method then using (b) and (c) we can find
ϕ2ipjqk(x).

(e) Let N be the smallest number such that ϕN (x) has a coefficient not in {0, 1,−1}. If N is divisible
by p2 for some prime p, then ϕN (x) = ϕN/p(x

p) by (c). Here N/p < N so (by the definition of N)
the coefficients of ϕN/p(x) are all in {0, 1,−1}. It follows that the same is true of ϕN/p(x

p), which

gives a contradiction. Thus, N cannot be divisible by p2 for any p, so N is a product of distinct
primes. If one of these primes is 2 then the remaining primes are odd, so (b) is applicable and
ϕN (x) = ϕN/2(−x), which again gives a contradiction. Thus, N must be a product of distinct odd

primes. There must be more than one prime factor, because of the rule ϕp(x) =
∑p−1
i=0 x

i.
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(f) The first few numbers that are products of at least two odd primes are

15, 21, 33, 35, 39, 51, 65, 69, 77, 85, 87, 91, 93, 95, 105.

We can ask Maple to calculate the corresponding cyclotomic polynomials, and we find that they all
have coefficients in {0, 1,−1} until we get to ϕ105(x). This has degree 48 and involves −2t7 and
−2t41, so N = 105. In fact 105 = 3× 5× 7, which is the smallest number that is a product of three
distinct odd primes.

Alternatively, we can make Maple do all the work automatically, as follows:

for n from 1 to 1000 do

f := numtheory[cyclotomic](n,x);

A := {coeffs(f,x)} minus {0,1,-1};

if nops(A) > 0 then

print([n,sort(f)]);

break;

fi:

od:

Exercise 8.9: We can reorganise the definition and use the geometric progression formula as follows:

f(x) = (1− x)

(
q−1∑
i=0

xip

)p−1∑
j=0

xjq

( ∞∑
k=0

xkpq

)

= (1− x)
xpq − 1

xp − 1

xpq − 1

xq − 1

1

1− xpq
=

(x− 1)(xpq − 1)

(xp − 1)(xq − 1)

=
ϕ1(x)ϕpq(x)ϕp(x)ϕq(x)ϕ1(x)

ϕp(x)ϕ1(x)ϕq(x)ϕ1(x)
= ϕpq(x).

Now consider an arbitrary natural number m. The element m/p ∈ Fq is represented by some i ∈
{0, . . . , q−1}, and the element m/q ∈ Fp is represented by some j ∈ {0, . . . , p−1}. We find that m−(ip+jq)
is divisible by both p and q, so m = ip+ jq + kpq for some k ∈ Z. We define λ(m) to be 1 if k ≥ 0, and 0 if
k < 0. Note that ip+ jq ≤ (q − 1)p+ (p− 1)q < 2pq, so λ(m) = 1 for m ≥ 2pq. The definition of f(x) can
now be rewritten as

f(x) =

∞∑
m=0

λ(m)(xm − xm+1) =

∞∑
m=0

(λ(m)− λ(m− 1))xm.

It follows that all the coefficients of f(x) are in {0, 1,−1}. We also see that for m > 2pq we have λ(m) −
λ(m− 1) = 1− 1 = 0, so f(x) is a polynomial as expected.

Exercise 8.10:

• Any automorphism is uniquely determined by its effect on α and on ζ. The image of α must be a
root of x5 − 2, so must be one of α, ζα, ζ2α, ζ3α or ζ4α. In the same way, the image of ζ must
be another primitive 5th root of unity, i.e., a root of ϕ5, so is one of ζ, ζ2, ζ3 or ζ4. This gives 20
possible automorphisms, θij say, defined by

θij(ζ) = ζi

θij(α) = ζjα

for i = 1, 2, 3 or 4 and j = 0, 1, 2, 3 or 4. As the extension Q(ζ, α)/Q is Galois and has degree 20,
these are all of the automorphisms.

• The automorphism ψ which fixes ζ and maps α to ζα is clearly of order 5. The automorphism φ which
fixes α and maps ζ to ζ2 is of order 4 because φ2(ζ) = φ(ζ2) = ζ4, and so φ4(ζ) = φ2(ζ4) = (ζ4)4 = ζ.
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The group generated by φ and ψ has as subgroups 〈φ〉 and 〈ψ〉 so its order must be a multiple of
4 and of 5 by Lagrange’s Theorem. It follows that this group must have order 20, so is the whole
Galois group.

• We have:

φψφ−1(α) = φψ(α) = φ(ζα) = φ(ζ)φ(α) = ζ2.α

φψφ−1(ζ) = φψ(ζ3) = φ(ζ3) = ζ

It follows that φψφ−1 = ψ2.
• We see that

ζ2 + ζ + 1 + ζ−1 + ζ−2 = 0.

Rearranging, we get

(ζ +
1

ζ
)2 + (ζ +

1

ζ
)− 1 = 0.

It follows that β is a root of X2 +X − 1, and so β = −1±
√
5

2 , from the quadratic formula. It is then

easy to see that Q(β) = Q(
√

5).
[Q(β) : Q] = 2, so the index of the corresponding subgroup of Gal(M/Q) must be 2, so its order

must be 10.
• The group 〈φ2, ψ〉 is of order 10 (it contains an element of order 2, and an element of order 5, so

its order must be a multiple of 10 – but it isn’t the whole group, as it doesn’t contain φ). Let G
be the subgroup associated to Q(β). If we can show that β is fixed by both φ2 and by ψ, we will
know that 〈φ2, ψ〉 ⊆ G. But by the previous part of the question, |G| = 10, and so we have to have
G = 〈φ2, ψ〉, as required.

But this is easy to check:

φ2(β) = φ2(ζ) + 1
φ2(ζ) = ζ−1 + 1

ζ−1 = 1
ζ + ζ = β

ψ(β) = ψ(ζ) + 1
ψ(ζ) = ζ + 1

ζ = β.

Exercise 8.11:

• L = Q(α, ζ), where ζ = e2πi/7 and α is the real 7th root of 3. Any automorphism must send ζ to
another primitive 7th root of unity, and send α to a 7th root of 3.

There is an automorphism ψ which fixes ζ but maps α to ζα. Clearly ψ is of order 7, as doing ψ
seven times fixes α.

Further, there is an automorphism φ which fixes α but sends ζ to ζ3. Applying φ successively to
ζ we see that ζ is sent successively to

ζ 7→ ζ3 7→ ζ2 7→ ζ6 7→ ζ4 7→ ζ5 7→ ζ 7→ · · ·
so φ has order 6.

• Further,

φψφ−1(α) = φψ(α) = φ(ζα) = φ(ζ)φ(α) = ζ3α = ψ3(α)

and

φψφ−1(ζ) = φψ(ζ5) = φ(ζ5) = ζ = ψ3(ζ)

Thus φψφ−1 = ψ3.
• Finally, it remains to see that φ and ψ generate the whole Galois group. But the Galois group has

order 42, and the subgroup generated by φ and ψ has order which is a multiple of both 6 and 7, so
it must be the whole group.

Exercise 9.1: By the general theory of finite fields, we see that F×11 is cyclic of order 10, generated by
some element α say. It follows that the subgroup generated by α2 is cyclic of order 5.

In general, if K is a finite field then |K×|+ 1 = |K|, which is a power of a prime. As 5 + 1 is not a power
of a prime, we see that |K×| cannot be 5, so K× cannot be isomorphic to C5.
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Exercise 9.2: In F3 we have ϕ8(0) = 1 6= 0 and ϕ8(±1) = 2 = −1 6= 0, so ϕ8(t) has no roots in F3, and
thus has no factors of degree one in F3[t]. Thus, the only way it can factor is as the product of two quadratic
polynomials, say

t4 + 1 = (t2 + at+ b)(t2 + ct+ d) = t4 + (a+ c)t3 + (b+ d+ ac)t2 + (ad+ bc)t+ bd.

By comparing coefficients we get

a+ c = 0

b+ d+ ac = 0

ad+ bc = 0

bd = 1.

The last equation shows that b 6= 0, so b = ±1, so b2 = 1. We can thus multiply the last equation by b to see
that d = b. On the other hand, the first equation gives c = −a. Substituting these into the second equation
and rearranging gives b = −a2. Here a ∈ {0, 1,−1} so −a2 ∈ {0,−1} but we already know that d = b 6= 0
so d = b = −1. As b = −a2 we have a ∈ {1,−1}, and we have seen that c = −a. We can arbitrarily choose
to take a = 1 and then c = −1, so we have the factorisation

ϕ8(t) = t4 + 1 = (t2 + t− 1)(t2 − t− 1) ∈ F3[t].

This gives two fields of order 9:

K = F3[α]/(α2 + α− 1)

L = F3[β]/(β2 − β − 1).

Now consider the field F3[i] and the group

F3[i]× = {1,−1, i,−i, 1 + i, 1− i,−1 + i,−1− i} ' C8.

The elements 1,−1, i and −i are the roots of t4−1, so the remaining elements are roots of (t8−1)/(t4−1) =
t4 + 1 = ϕ4(t). One checks that the elements 1± i are roots of t2 + t− 1, and the elements −1± i are roots
of t2− t−1. There is thus a unique isomorphism φ : K → F3[i] with φ(α) = 1 + i, and a unique isomorphism
ψ : L→ F3[i] with ψ(β) = −1− i = −φ(α). It follows that the composite isomorphism ψ−1φ : K → L sends
α to −β.

Exercise 9.3: Put α = [ 1 1
2 1 ], and identify each element a ∈ F5 with the matrix aI = [ a 0

0 a ]. The set K
then consists of all matrices a + bα with a, b ∈ F5. It is clear that this is a vector space of dimension two
over F5, and so has order 52 = 25. Next, observe that

α2 = [ 1 1
2 1 ] [ 1 1

2 1 ] = [ 3 2
4 3 ]

2α+ 1 = 2 [ 1 1
2 1 ] + [ 1 0

0 1 ] = [ 3 2
4 3 ] = α2.

It follows that

(a+ bα)(c+ dα) = ac+ (ad+ bc)α+ bdα2 = ac+ (ad+ bc)α+ bd(2α+ 1)

= (ac+ bd) + (ad+ bc+ 2bd)α ∈ K,

so K is closed under multiplication. We also see from the above formulae that (a + bα)(c + dα) = (c +
dα)(a+ bα), so multiplication in K is commutative. The remaining parts of Definition 1.1(b) are standard
properties of matrix addition and multiplication. We therefore see that K is a commutative ring. All that
is left is to check that it is a field. To see this, put f(x) = x2 − 2x − 1 ∈ F5[x], so f(α) = 0, so there is a
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unique homomorphism φ from the ring K ′ = K[x]/f(x) to K with φ(x+K[x]f(x)) = α. We also have

f(0) = −1

f(1) = −2

f(2) = −1

f(3) = 2

f(4) = 2

so f(x) has no roots in F5. As it is quadratic and has no roots, it must be irreducible, so K ′ is a field. As
1, x gives a basis for K ′ over F5, and 1, α gives a basis for K over F5, we see that φ is an isomorphism. This
means that K is also a field.

Exercise 9.4: Proposition 8.11 tells us that G(Q(µp)/Q) is isomorphic to (Z/pZ)× = F×p , which is cyclic
of order p− 1 by Corollary 9.13.

Exercise 9.5: We have F×7 = {−3,−2,−1, 1, 2, 3}, and we check that

30 = 1 31 = 3 32 = 2 33 = −1 34 = −3 35 = −2.

It follows that F×7 is a cyclic group of order 6, generated by 3. It follows that for every a ∈ F×7 we have
a6 = 1, so (a3)2 = 1. Thus, if b2 6= 1 then b is not the cube of any element in F×7 . In particular, 3 is
not a cube. (We could also have checked this by just writing out the cubes of all elements.) Thus, the
polynomial f(t) = t3− 3 has not roots in F7. Any nontrivial factorisation would have to involve a quadratic
term and a linear term, which would thus give a root; so f(t) must be irreducible. We therefore have a field
K = F7[α]/(α3 − 3) of order 73 = 343. Now α3 = 3 and 36 = 1, so α18 = 1, but the whole group K× has
order 342, so α does not generate K×.

Exercise 9.6: We first remark that F5 = {−2,−1, 0, 1, 2}, with (±1)2 = 1 and (±2)2 = 4 = −1. It follows
that 2 is a generator of F×5 . We also see that 23 = 8 = −2, so we can write

f(x) = (x2)3 + 23 = (x2 + 2)(x4 − 2x2 + 4) = (x2 + 2)(x4 − 2x2 − 1).

We can thus take g1(x) = x2 + 2. For the other two factors, suppose that g2(x) = x2 + ax + b and
g3(x) = x2 + cx+ d. We should then have

x4 − 2x2 − 1 = g2(x)g3(x) = x4 + (a+ c)x3 + (b+ d+ ac)x2 + (ad+ bc)x+ bd.

By comparing coefficients, we get

a+ c = 0

b+ d+ ac = −2

ad+ bc = 0

bd = −1.

If a = 0 then these equations reduce to c = 0 and d = −2 − b and bd = −1. By checking through the
five possible values of b, we see that these equations are inconsistent. Thus, we must have a 6= 0. The first
equation gives c = −a, and we can feed this into the third equation to get a(d− b) = 0, but a 6= 0 so d = b.
The last equation now says that b2 = −1, and it follows that b = ±2. The second equation can now be
rearranged as a2 = 2b+ 2. If b = −2 this gives a2 = −2, but −2 is not a square in F5, so this is impossible.
If b = 2 then we get a2 = 6 = 1, so a = ±1. We should therefore take

g2(x) = x2 + x+ 2

g3(x) = x2 − x+ 2.

One can then check directly that f(x) = g1(x)g2(x)g3(x) as expected.
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Note that 2 is not a square in F5, so it is certainly not a sixth power, so f(x) has no roots in F5. It
follows that gi(x) has no roots, and a quadratic with no roots is irreducible, so the three factors gi(x) are
irreducible as claimed.

Now suppose we have an extension field K and an element α ∈ K with gi(α) = 0. Let d be the
multiplicative order of α, so we have αm = 1 if and only if m is divisible by d. As gi(x) is a factor of f(x)
we see that f(α) = 0, so α6 = 2, so α12 = 4 = −1 and α24 = 1. It follows that d divides 24 but d does not
divide 12; the only possibilities are d = 8 or d = 24. In fact, if g1(α) = 0 then α2 = −2 and it follows easily
that α8 = 1, so d = 8. On the other hand, if g2(α) = 0 or g3(α) = 0 then α8 = α6α2 = 2α2 = 2(±α−2) 6= 1,
so d must be 24.

Exercise 9.7: As f(α) = 0 we have αp = α + 1. We can raise this to the pth power (remembering that

(x + y)p = xp + yp (mod p)) to get αp
2

= αp + 1, and then use αp = α + 1 again to get αp
2

= α + 2. By

continuing in the same way, we find that αp
k

= α + k for all k. In particular, for 0 < k < p this gives

αp
k 6= α.
Now let g(x) be the minimal polynomial of α over Fp, which is an irreducible factor or f(x). If g(x)

has degree d, we have |K| = pd. By the general theory of finite fields, we have ap
d

= a for all a ∈ K. In

particular αp
d

= α, so by our first paragraph we must have d ≥ p. On the other hand, g(x) divides f(x) and
f(x) has degree p, so we must have d ≤ p. We deduce that d = p and f(x) = g(x), so f(x) is irreducible.

Exercise 9.8: Let K be a finite field. We then have |K| = pd, for some prime p and d > 0. We have seen

that ap
d

= a for all a ∈ K. Put f(x) = xp
d − x + 1 ∈ K[x], so f(a) = 1 for all a ∈ K. It follows that f(x)

has no roots in K, so K is not algebraically closed.

Exercise 11.1: Put A = G(L/(LHLK)) ≤ G. Every automorphism σ ∈ A acts as the identity on LHLK ,
so in particular it acts as the identity on LH ⊆ L, which means that A ≤ G(L/LH) = H. By the same
argument we have A ⊆ G(L/LK) = K, so in fact A ⊆ H ∩K. Conversely, suppose that σ ∈ H ∩K. Any
element a ∈ LHLK can be written as a = b1c1 + · · · + brcr with bi ∈ LH and ci ∈ LK . We have σ(bi) = bi
(because σ ∈ H) and σ(ci) = ci (because σ ∈ K). It follows that σ(a) = a for all a ∈ LHLK , so σ ∈ A.
This means that A = H ∩K. The Galois Correspondence tells us that for all M with K ≤M ≤ L we have
M = LG(L/M). By taking M = LHLK we see that LHLK = LA = LH∩K as claimed.

Exercise 11.2: Choose elements ρ and σ that generate G(L/K), so G(L/K) = {1, ρ, σ, ρσ} with ρ2 =
σ2 = 1 and ρσ = σρ. Put G = G(L/K) and

A = {1, ρ} B = {1, σ} C = {1, ρσ}
M = LA N = LB P = LC .

Then A, B and C are the only proper nontrivial subgroups of G, so M , N and P are the only fields strictly
between K and L. As G is abelian, we see that all subroups are normal, so M , N and P are normal over Q,
with Galois groups G/A, G/B and G/C respectively. All of these are of order 2. As σ 6∈ A, we see that σ
acts nontrivially on M , so we can choose µ ∈M with σ(µ) 6= µ. It follows that the element α = µ− σ(µ) is
nonzero, and it satisfies σ(α) = −α. It follows that α 6∈ K, and [M : K] = |G/A| = 2, so 1 and α must give
a basis for M over K, so M = K(α). We also have σ(α2) = α2, and so α2 ∈MG/A = K. Similarly, there is
an element β ∈ N such that 1, β is a basis for N over K, and ρ(β) = −β, and β2 ∈ K. Note that ρ(α) = α
(as α ∈M) and σ(β) = β (as β ∈ N). It follows that ρ(σ(αβ)) = (−α)(−β) = αβ, so αβ ∈ P .

We next claim that the list 1, α, β, αβ is linearly independent over K. To see this, suppose that a =
w + xα + yβ + zαβ for some w, x, y, z ∈ K. We can use the above formulae to understand σ(a) and ρ(a),
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and we find that

a+ ρ(a) + σ(a) + ρσ(a) = 4w

a+ ρ(a)− σ(a)− ρσ(a) = 4xα

a− ρ(a) + σ(a)− ρσ(a) = 4yβ

a− ρ(a)− σ(a) + ρσ(a) = 4zαβ.

Thus, if w + xα+ yβ + zαβ = 0 we see that w = x = y = z = 0. This shows that the list B = 1, α, β, αβ is
linearly independent list, but dimK(L) = |G| = 4, so B must actually be a basis.

4

2

1

G

A B C

{1}

Q

K(α) K(β) K(αβ)

L

Exercise 11.3: Since ζ4 + ζ3 + ζ2 + ζ+ 1 = 0, we have ζ2 + ζ+ 1 + ζ−1 + ζ−2 = 0. Since α2 = ζ2 + 2 + ζ−2,
we see that α2 +α−1 = 0. Thus α is one of the roots of x2 +x−1 = 0, namely, α = (−1±

√
5)/2. However,

ζ + ζ−1 = ζ + ζ = 2 cos(2π/5) > 0, so we must have α = (−1 +
√

5)/2. It follows that
√

5 = 2α + 1 =

2ζ + 2ζ−1 + 1, so
√

5 = 2α+ 1 ∈ Q(ζ).
Next, we have

β2 = ζ2 − 2 + ζ−2 = α2 − 4 =

(
−1 +

√
5

2

)2

− 4 =
6− 2

√
5

4
− 4 = −1 +

√
5

2
.

We also observe that sin(2π/5) > 0, and recall that when t < 0 the symbol
√
t refers to the square root in

the upper half plane; we thus have β =
√
−(1 +

√
5)/2.

We now put G = G(Q(µ5)/Q) and look at the subgroup lattice. We know that

G = G(Q(µ5)/Q) = {σk | k ∈ (Z/5Z)×} == {σ−2, σ−1, σ1, σ2},
and this is cyclic of order 4, generated by σ2. It follows that the only subgroups are the trivial group,
the whole group, and the subgroup A = {1,−1}. This means that the only subfields are Q(µ5), Q and the
intermediate field M = Q(µ5)A. Now σ−1 exchanges ζ and ζ−1 so it fixes α and sends β to −β. We therefore

see that M = Q(α) = Q(
√

5), and that Q(β) cannot be M so it must be all of Q(ζ). (In fact, one can check
that ζ = (β − β2 − 3)/2, which shows more explicitly that Q(β) = Q(ζ).)

The lattices can now be displayed as follows:

4

2

1

G

H

{1}

Q

Q(
√

5)

Q(
√
−(1 +

√
5)/2)
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Exercise 11.4:

(a) Since ζ10 = ζ−1 etc., we can rewrite the given equation as

ζ5 + ζ4 + ζ3 + ζ2 + ζ + 1 + ζ−1 + ζ−2 + ζ−3 + ζ−4 + ζ−5 = 0.

Now

β = ζ +ζ−1

β2 = ζ2 +2 +ζ−2

β3 = ζ3 +3ζ +3ζ−1 +ζ−3

β4 = ζ4 +4ζ2 +6 +4ζ−2 +ζ−4

β5 = ζ5 +5ζ3 +10ζ +10ζ−1 +5ζ−3 +ζ−5.

By combining these, we find that β5 + β4 − 4β3 − 3β2 + 3β + 1 = 0.
(b) We have

γ2 = ζ2 + ζ8 + ζ7 + ζ10 + ζ6+

2(ζ5 + ζ10 + ζ6 + ζ4 + ζ2 + ζ9 + ζ7 + ζ3 + ζ + ζ8)

= (−1− ζ − ζ3 − ζ4 − ζ5 − ζ9) + 2(−1)

= −3− γ,

so γ2 + γ + 3 = 0. Since γ is a root of x2 + x+ 3 = 0, we see that γ = (−1±
√
−11)/2. The terms

in γ are distributed in the complex plane as follows:

ζ

ζ3

ζ4

ζ5

ζ9

It is clear from this that the imaginary part of γ is positive, so γ = (−1+
√
−11)/2, so

√
−11 = 2γ+1.

It is also clear from the definition that γ ∈ Q(ζ), so
√
−11 ∈ Q(ζ).

(c),(d) The general cyclotomic theory says that G(K/Q) = {σk | k ∈ (Z/11)×}. We have

(Z/11)× = {−5,−4,−3,−2,−1, 1, 2, 3, 4, 5}.

The powers of 2 mod 11 are as follows:

20 = 1, 21 = 2, 22 = 4, 23 = −3, 24 = 5, 25 = −1, 26 = −2, 27 = −4, 28 = 3, 29 = −5, 210 = 1.

This shows that (Z/11)× is cyclic of order 10, generated by 2, and thus G(K/Q) is cyclic of order
10, generated by σ2. We write

C10 = G(K/Q) = 〈σ2〉
C5 = 〈σ2

2〉 = 〈σ4〉 = {1, σ4, σ5, σ−2, σ3}
C2 = 〈σ5

2〉 = 〈σ−1〉 = {1, σ−1}
C1 = {1}.
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These are all the subgroups of the Galois group. It follows that the only subfields of K are KC10 = Q,
KC5 , KC2 and KC1 = K. The terms in γ are precisely the orbit of ζ under C5, so γ ∈ KC5 , so√
−11 ∈ KC5 . We also know that [KC5 : Q] = |C10|/|C5| = 2, which is the same as the degree of

Q(
√
−11), so we must have KC5 = Q(

√
−11). Similarly, we have

σ−1(β) = σ−1(ζ) + σ−1(ζ)−1 = ζ−1 + ζ = β,

so β ∈ KC2 , and it follows that KC2 = Q(β). The subgroup and subfield lattices can thus be
displayed as follows:

10

5

2

1

C10

C5

C2

{1}

Q

Q(
√
−11)

Q(β)

Q(µ11)

Exercise 11.5: Put Mi = LHi , so L = M0 ⊃ M1 ⊃ · · · ⊃ Mr = K. The Galois Correspondence tells us
that L is normal over Mi, with Galois group Hi (so [L : Mi] = 2i) and Mi is normal over K (with Galois
group G/Hi). It follows that [Mi : Mi+1] = 2, so the standard analysis of degree two extensions says that
Mi = Mi+1(αi) for some αi with α2

i ∈Mi+1. This means that L = K(α0, . . . , αr−1). More precisely, for any
subset I ⊆ {0, 1, . . . , r− 1} we can let αI denote the product of the elements αi for i ∈ I. We then find that
these elements αI give a basis for L over K.

This does not yet capture all the information that one might want, as revealed by the following question.
Suppose we have fields K ⊂ K(α1) ⊂ K(α0, α1), with α2

1 ∈ K and α2
0 ∈ K(α1). When is it true that

K(α0, α1) is normal over K? This is usually false but sometimes true. We do not know a good general
criterion even in this case where r = 2, let alone the case of general r.

Exercise 12.1: We first claim that g0(x) is irreducible over Q. If not, it would have to have a monic linear
factor, say x− a with a ∈ Q. Then Gauss’s Lemma (Proposition 4.21) would tell us that a ∈ Z. We would
also have g0(a) = 0, which rearranges to give a(3 − a2) = 1, so a divides 1, so a = ±1. However g0(1) and
g0(−1) are nonzero, so this is impossible. By essentially the same argument, g1(x) is irreducible over Q.
This can also be proved by applying Eisenstein’s criterion (with p = 3) to g0(x− 1) and g1(x− 1).

We now see from the general theory that the Galois groups are either A3 = C3 (if the discriminant is
a square) or Σ3 (if the discriminant is not a square). Using the formula in Remark 12.3 we see that the
discriminant of g0(x) is −4×(−27)−27 = 81 = 92, whereas the discriminant of g1(x) is −4×27−27 = −135.
Thus, the Galois group for g0(x) is A3, and the Galois group for g1(x) is Σ3.

Exercise 12.2: The first claim can be checked using Maple as follows:

r := 1 + q + q^2;

f := (x) -> x^3 - (3*x - 2*q - 1)*r;

g := (x) -> (x^3+3*q*x^2-3*(q+1)*x-(4*q^3+6*q^2+6*q+1));

s := (x) -> x^2+q*x-2*r;

expand(f(s(x)) - f(x)*g(x));

It is possible but painful to do this by hand; f(s(x)) has 25 terms when fully expanded.
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Now suppose we have α ∈ L with f(α) = 0, and we put β = s(α) ∈ Q(α). We can substitute x = α in
the relation f(s(x)) = f(x)g(x) to see that f(β) = f(α)g(α) = 0, so β is another root of f(x). Next, as f(x)
is assumed to be irreducible, it must be the minimal polynomial of α, so Q(α) ' Q[x]/f(x). This means
that homomorphisms from Q(α) to any field M biject with roots of f(x) in M . In particular, we can take
M = Q(α) and we find that there is a homomorphism σ : Q(α)→ Q(α) with σ(α) = β.

We next claim that β 6= α, or equivalently that α is not a root of the quadratic polynomial s(x)−x. This
is clear because the minimal polynomial of α is f(x), which is cubic, so it cannot divide s(x)− x. It follows
that f(x) is divisible in Q(α)[x] by (x−α)(x−β). The remaining factor is a monic polynomial of degree 1, so
it must have the form x−γ for some γ ∈ Q(α). We now have a splitting f(x) = (x−α)(x−β)(x−γ), so Q(α)
is a splitting field for f(x). This means that it is normal, and the order of the Galois group is [Q(α) : Q] = 3.
All groups of order 3 are cyclic, and σ is a nontrivial element, so we must have G(Q(α)/Q) = {1, σ, σ2}.

Exercise 12.3: First, we have

x3 + ux2 + vx+ w = f(x) = (x− α)(x− β)(x− γ) = x3 − (α+ β + γ)x2 + (αβ + βγ + γα)x− αβγ,

so

u = −α− β − γ
v = αβ + βγ + γα

w = −αβγ.

It follows that

w2p = α2β2 + β2γ2 + γ2α2.

This is similar to v2, but not equal to it. More precisely, we have

v2 = α2β2 + β2γ2 + γ2α2 + 2(α2βγ + αβ2γ + αβγ2) = w2p+ 2uw.

Rearranging this gives p = v2/w2 − 2u/w.

Exercise 12.4:

(a) One approach is to simply expand everything out. Alternatively, we can recall the behaviour of
determinants under row and column operations, and argue as follows:

det

[
1 1 1
α β γ

α2 β2 γ2

]
= det

[
1 0 0
α β−α γ−α
α2 β2−α2 γ2−α2

]
= (β − α)(γ − α) det

[ 1 0 0
α 1 1
α2 β+α γ+α

]
= (β − α)(γ − α)(γ − β) = δ(f).

(At the first stage we subtracted the first column from each of the other two columns, then we
extracted factors of β−α and γ−α from the second and third columns, then we calculated the final
determinant directly.)

(b) We have

det(MMT ) = det(M) det(MT ) = det(M)2 = δ(f)2 = ∆(f).

(c) This is just a direct calculation: 1 1 1
α β γ
α2 β2 γ2

1 α α2

1 β β2

1 γ γ2

 =

 1 + 1 + 1 α+ β + γ α2 + β2 + γ2

α+ β + γ α2 + β2 + γ2 α3 + β3 + γ3

α2 + β2 + γ2 α3 + β3 + γ3 α4 + β4 + γ4.


(d) We have

S2 = α2 + β2 + γ2 = (α+ β + γ)2 − 2(αβ + βγ + γα) = −2a,

as α+ β + γ = S1 = 0 and αβ + βγ + γα = a.
(e) Add the three equations to get

(α3 + β3 + γ3) + a(α+ β + γ) + b(1 + 1 + 1) = 0,
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or S3 + aS1 + bS0 = 0. Thus S3 = −aS1 − bS0. Also, add

α4 + aα2 + bα = 0

β4 + aβ2 + bβ = 0

γ4 + aγ2 + bγ = 0

to get S4 = −aS2 − bS1. Thus we conclude that

S3 = −3b

S4 = 2a2.

(f) Substituting the values of S0, . . . , S4 into the matrix in (c), we get:

MMT =

 3 0 −2a
0 −2a −3b
−2a −3b 2a2

 .

By part (b), ∆(f) is the determinant of this matrix, which can be evaluated directly to give ∆(f) =
−(4a3 + 27b2).

Exercise 13.1: Using the formula in Proposition 13.3, we see that the resolvent cubic for f0(x) is x3 −
32x− 64 = 64((x/4)3 − 2(x/4)− 1). In the notation of Exercise 12.1, this is 64g0(x/4), so the Galois group
is the same as for g0(x), namely A3. Using Remark 13.13 we deduce that the Galois group for f0(x) is A4.

Similarly, the resolvent cubic for f1(x) is 64g1(x/4), and the Galois group for g1(x) is Σ3, so the Galois
group for f1(x) is Σ4.

Exercise 13.2: The discriminant is∏
i<j

(αi − αj)2 = (α0 − α1)2(α0 − α2)2(α0 − α3)2(α1 − α2)2(α1 − α3)2(α2 − α3)2

= (2
√

5)2(2
√

2)2(2
√

2 + 2
√

5)2(2
√

2− 2
√

5)2(2
√

2)2(2
√

5)2

= 21452(
√

5 +
√

2)2(
√

5−
√

2)2

= 21452(5− 2)2 = 2143252 = 3686400.

The splitting field is Q(
√

2,
√

5), so the Galois group is C2 × C2 by Proposition 7.2.

Exercise 13.3: We merely sketch this. The matrix M is
1 1 1 1
α β γ δ
α2 β2 γ2 δ2

α3 β3 γ3 δ3

 .

If we put Si = αi + βi + γi + δi, then

MMT =


S0 S1 S2 S3

S1 S2 S3 S4

S2 S3 S4 S5

S3 S4 S5 S6

 .
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From the factorisation f(x) = (x− α)(x− β)(x− γ)(x− δ) we obtain

α+ β + γ + δ = 0

αβ + αγ + αδ + βγ + βδ + γδ = 0

αβγ + αβδ + αγδ + βγδ = −p
αβγδ = q.

From this we deduce that S0 = 4, S1 = 0 and S2 = 0. To compute S3, use

α3 + β3 + γ3 + δ3 = S3
1 − 3(α2β + similar terms)− 6(αβγ + similar terms)

α2β + similar terms = S1(αβ + similar terms)− 3(αβγ + similar terms)

αβγ + similar terms = −p.

Combining these, together with S1 = 0, we see that S3 = −3p. Using the same trick as in Exercise 12.4, we
get that

S4 = −(pS1 + qS0) = −4q

S5 = −(pS2 + qS1) = 0

S6 = −(pS3 + qS2) = −3p2

and so

∆(f) = det


4 0 0 −3p
0 0 −3p −4q
0 −3p −4q 0
−3p −4q 0 −3p2

 = 27p4 + 256q3.

Exercise 15.1: The polynomials f0(x) and f2(x) are solvable by radicals, but f1(x), f3(x), f4(x) and f5(x)
are not. This can be proved as follows.

• f0(x) is x times a quartic, and quartics are solvable by radicals. (Maple says that the relevant Galois
group is Σ4.)

• f1(x) is irreducible by Eisenstein’s criterion at p = 5. It also has precisely three real roots (approxi-
mately −1.33,−0.51, 1.60), as one can see by plotting or an argument with Rolle’s Theorem and the
Intermediate Value Theorem. The Galois group is thus Σ5 by Corollary 7.8, which means that f1(x)
is not solvable by radicals.

• Put g2(x) = 2x3 − 10x + 5, so f2(x) = g2(x2). As g2(x) is cubic, it is solvable by radicals. If the
roots of g2(x) are α, β and γ, then the roots of f2(x) are ±

√
α, ±

√
β and ±√γ. It follows that the

splitting field for f2(x) is obtained from that for g2(x) by adjoining some square roots, which is a
further radical extension; so f2(x) is solvable by radicals. Maple says that the relevant Galois group
is of order 48, isomorphic to the subgroup of Σ6 generated by (1 2 3 4) and (1 5)(3 6).

• We observe that f3(x) = x5f1(1/x), so the roots of f3(x) are the inverses of the roots of f1(x). This
means that f3(x) has the same splitting field as f1(x), so the Galois group is again Σ5, so f3(x) is
not solvable by radicals.

• f4(x) is irreducible by Eisenstein’s criterion at p = 3, and has precisely three real roots (close to
x = 0 and x = ±4.5). We can again use Corollary 7.8 to see that the Galois group is Σ5 and the
polynomial is not solvable by radicals.

• One can check that f5(x) = f1(x)2, so f5(x) has the same roots and the same splitting field as f1(x),
so it is not solvable by radicals.

Exercise 15.2: It will be enough to show that the Galois group of the splitting field is Σ7. Using
Corollary 7.8, it will thus be enough to show that f(x) is irreducible and has precisely five real roots.
Irreducibility follows from Eisenstein’s criterion at p = 7. We can plot the graph using Maple, and we see
that the roots are as required:
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−1 1

More rigorously, we can check that

f ′(x) = 210(x6 − 2x5 − x4 + 2x3) = 210x3(x− 1)(x+ 1)(x− 2),

which has four real roots, at −1, 0, 1, 2. Rolle’s Theorem says that between any two real roots of f(x) there
is a real root of f ′(x), so there are at most five real roots. We also have

f(x)→ −∞ as x→ −∞
f(−1) = 26

f(0) = −21

f(1) = 2

f(2) = −325

f(x)→ +∞ as x→ +∞

so (by the Intermediate Value Theorem) f(x) has exactly five real roots.

Exercise 15.3:

(a) First note that

ρab(ρcd(u)) = a(cu+ d) + b = (ac)u+ (ad+ b) = ρac,ad+b(u).

It follows that U is closed under composition. We also see that ρ10 is the identity, and that ρ1/a,−b/a
is an inverse for ρab. This means that U is a subgroup of Σ5. Now define π : U → F×5 by π(ρab) = a.
The above composition formula shows that π(ρabρcd) = ac = π(ρab)π(ρcd), so π is a homomorphism.
For each a ∈ F×5 we have an element ρa0 ∈ U with π(ρa0) = a, so π is surjective. The kernel is
V = {ρ1b | b ∈ F5}, which is therefore a normal subgroup. The First Isomorphism Theorem tells
us that U/V ' F×5 = {−2,−1, 1, 2}, which is cyclic of order 4, generated by 2. We also see from
the composition formula that ρ1bρ1d = ρ1,b+d, so ρ1b = ρb11. It follows that V is cyclic of order 5,
generated by ρ11.

(b) Let H be a subgroup of Σ5, and let C be a normal subgroup of H that is cyclic of order 5. Choose
a generator σ for C. This has order 5, and by considering the possible cycle types in Σ5 we see that
it must be a 5-cycle, say σ = (p0 p1 p2 p3 p4). Let θ be the permutation that sends i to pi, and note
that θ−1σθ = ρ11. Put H ′ = θ−1Hθ and C ′ = θ−1Cθ, so C ′ is normal in H ′. As θ−1σθ = ρ11 we
see that C ′ = V . Now consider an arbitrary element τ ∈ H ′. Put b = τ(0) ∈ F5. As V is normal in
H ′ we see that τρ11τ

−1 must be another generator for V , so τρ11τ
−1 = ρ1a for some a ∈ F×5 . We

now claim that τ = ρab, or equivalently that the permutation φ = ρ−1ab τ is the identity. Indeed, we
have ρab(0) = b = τ(0), so φ(0) = 0. We also have

ρabρ11ρ
−1
ab = ρa,a+bρ1/a,−b/a = ρ1a = τρ11τ

−1,
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so φρ11φ
−1 = ρ11. This means that φ commutes with ρ11, and thus also with ρ1m = ρm11. It follows

that
φ(m) = φ(ρ1m(0)) = ρ1m(φ(0)) = ρ1m(0) = m,

so φ is the identity as claimed, so τ = ρab. As τ was an arbitrary element of H ′, we conclude that
H ′ ⊆ U , and so H = θH ′θ−1 ⊆ θUθ−1.

(c) Now instead let H be an arbitrary transitive subgroup of Σ5. For any x ∈ F5, the orbit Hx is then the
whole set F5. We have the standard orbit-stabiliser identity |H| = |Hx|.| stabH(x)| = 5| stabH(x)|,
so |H| must be divisible by 5. Moreover, |H| must divide |Σ5| = 120, so it cannot be divisible by 52.
Let C be any Sylow 5-subgroup of H; then |C| = 5 is prime, so C must be cyclic. If C is normal in H
then H is conjugate to a subgroup of U by part (b). From now on we suppose that C is not normal
in H. Sylow theory tells us that the Sylow subgroups of H are precisely the conjugates of C, and
that the number n of such conjugates divides |H|/|C| and is congruent to 1 modulo 5. Moreover, as
C is not normal we have n > 1, and |H|/|C| must divide |Σ5|/|C| = 24. It follows that n = 6, and
this must divide |H|/|C|, so |H| ∈ {30, 60, 120}. If |H| = 120 then H is all of Σ5. If |H| = 60 then
H has index two, so it is normal by a standard lemma. It is not hard to deduce that H = A5.

This just leaves the case where |H| = 30. I think that there are no subgroups of order
30 in Σ5, but this needs a proof.

Exercise 15.4: These are not too difficult to construct. Here is one way to do it:

1: Choose a cubic with two positive real roots and one negative real root. For example, x3 − 7x+ 6 =
(x+ 3)(x− 1)(x− 2).

2: Move this polynomial up or down the y-axis slightly to make it irreducible, but still ensuring that
there are two positive and one negative real root. (If you do this cleverly, you will be able to use
Eisenstein’s criterion to check irreducibility!) For example, x3 − 7x+ 6− 1

6 = 1
6 (6x3 − 42x+ 35) is

irreducible by Eisenstein’s criterion with p = 7.
3: Now replace x by x2 to get a polynomial of degree 6. In our example, we can consider the polynomial

6x6 − 42x2 + 35. Now this polynomial is still irreducible by Eisenstein with p = 7, and its roots
are the square roots of the roots of the cubic in step 2, two of which were positive, giving 4 real
roots, and one negative, giving 2 imaginary roots. Finally, the Galois group cannot be Σ6, since the
polynomial is solvable by radicals (the roots are just the square roots of the roots of the cubic, so
are certainly expressible as radicals).
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