Class EH_chart


Code: embedded/roothalf/EH_atlas.mpl

An instance of this class represents an approximate isometric map $p\colon\Delta\to EX^*$, together with data relating $p$ to the canonical map $q\colon\Delta\to EX^*$. Here $\Delta$ is given the standard hyperbolic metric, and $EX^*$ is given the rescaled metric that has curvature $-1$. We refer to the point $p(0)$ as the centre of the chart. Note that this class extends the class E_chart, so documentation for that class should be read in conjunction with documentation for this one.

Extends: E_chart
Field: curve_H_parameter::RR0

If the centre is $q(c_{Hk}(t))$, then this field should be set to $t$.

Field: alpha::CC0

This should be set so that $p(z)=q(\lambda(z-\alpha)/(1-\overline{\alpha}z)$

Field: lambda::CC0

This should be set so that $p(z)=q(\lambda(z-\alpha)/(1-\overline{\alpha}z)$

Field: beta::CC0

This should be set so that $\beta = -\lambda\alpha$, so $p(0)=q(\beta)$. However, in some cases we will work out $\beta$ first, and only set $\alpha$ and $\lambda$ later.

Field: grid_index::integer
Method: m_c()

The map $z\mapsto\lambda(z-\alpha)/(1-\overline{\alpha}z)$


Method: m_inv_c()

The inverse of the map $z\mapsto\lambda(z-\alpha)/(1-\overline{\alpha}z)$


Method: m()

The map $z\mapsto\lambda(z-\alpha)/(1-\overline{\alpha}z)$, composed with the standard isomorphism $\mathbb{R}^2\to\mathbb{C}$


Method: m_inv()

The inverse map $z\mapsto\lambda(z-\alpha)/(1-\overline{\alpha}z)$, composed with the standard isomorphism $\mathbb{C}\to\mathbb{R}^2$


Method: q()
Method: q_c()
Method: q_inv(x0)
Method: q_inv_c(x0)
Method: vertex_set(k::integer,d::posint,A::EH_atlas)
Method: curve_set(k::integer,t0::RR0,d::posint,A::EH_atlas)
Method: centre_set(x0::RR0_4,d::posint,A::EH_atlas)
Method: square_set(s0::RR0_2,d::posint,A::EH_atlas)