
PROBLEMS ON GROUPS AND SYMMETRY

N. P. STRICKLAND

Exercise 1. Note that Rπ(x) = −x. Give expressions for Ra,π(x), R−1a,π(x) and Ra,πRb,πR
−1
a,πR

−1
b,π(x). Check

that your last answer is consistent with the formula in the notes for Ra,θRb,φR
−1
a,θR

−1
b,φ.

Solution: First, we have Ra,π = TaRπT−a, so Ra,π(x) = a+Rπ(x−a) = a− (x−a) = 2a−x. If y = 2a−x
then x = 2a− y; this shows that R−1a,π(y) = 2a− y and thus R−1a,π = Ra,π. Using this we have

Ra,πRb,πR
−1
a,πR

−1
b,π(x) = 2a− (2b− (2a− (2b− x)))

= 2a− (2b− (2a− 2b+ x))

= 2a− (4b− 2a− x))

= 4a− 4b+ x,

so [Ra,π, Rb,π] = T4(a−b). On the other hand, we saw in lectures that [Ra,θ, Rb,φ] = T(1−Rθ)(1−Rφ)(a−b). This
is consistent because 1−Rπ is just twice the identity matrix, so (1−Rθ)(1−Rφ)(a− b) = 4(a− b).

Exercise 2. Find Symm(X) and Dir(X) when X ⊆ R2 is

(a) The unit disc centred at the origin
(b) The isosceles triangle with vertices (0, 2), (−1,−3) and (1,−3).
(c) The four points (1, 1), (1,−1), (−1, 1) and (−1,−1).
(d) The square with vertices (−1, 2), (−1,−2), (3, 2) and (3,−2).

Solution:

(a) Here Symm(X) = O2 and Dir(X) = SO2. This just means that the unit disc is invariant under
any rotation about the origin, and under any reflection across a line through the origin, which is
geometrically clear.

For a more algebraic proof, note that X = {x ∈ R2 | ‖x‖ ≤ 1}. For any A ∈ O2 and x ∈ X we
have ‖Ax‖ = ‖x‖ ≤ 1 so Ax ∈ X; thus AX ⊆ X. Conversely, if y ∈ X then ‖A−1y‖ = ‖y‖ ≤ 1
so the point x := A−1y lies in X. We have y = Ax so y ∈ AX. This shows that X ⊆ AX, so
X = AX, so A ∈ Symm(X). As A was an arbitrary element of O2 we have Symm(X) = O2 and
Dir(X) = Symm(X) ∩ SO2 = O2 ∩ SO2 = SO2, as claimed.

(b) Here it is evident that the only symmetry is under reflection across the y-axis, which lies at angle
π/2 to the horizontal. Recall that Sθ is the reflection across the line at angle θ/2 to the horizontal,
so reflection across the y-axis is Sπ. Thus Symm(X) = {1, Sπ}. This contains no rotations other
than the identity, so Dir(X) = {1}.
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X

Sπ

(c) Here X consists of the vertices of a square of side 2 with horizontal and vertical sides (note that this
is different from our usual square X4). We have Symm(X) = D4 and Dir(X) = C4. Indeed, it is
clear that X is invariant under a rotation Rθ if and only if θ is a multiple of a quarter-turn, or in
other words a multiple of π/2 = 2π/4. Thus if we put R = Rπ/2 we find that

Dir(X) = {1 = R0, Rπ/2, Rπ, R3π/2} = {1, R,R2, R3} = C4.

It is also clear that X is unchanged if we reflect it across the x-axis, so S0 ∈ Symm(X). If A ∈
Symm(X) is a reflection then AS0 is a rotation and lies in Symm(X) so AS0 = Rk for some k so
A = AS0S0 = RkS0 so A ∈ D4. If A ∈ Symm(X) is a rotation we have seen that A ∈ C4 ⊆ D4,
so again A ∈ D4; thus Symm(X) ⊆ D4. As R and S0 preserve X we also have D4 ⊆ Symm(X),
so Symm(X) = D4. Alternatively, we can just observe geometrically that there are four lines of
reflectional symmetry at angles 0, π/4, π/2 and 3π/4 to the x-axis, so the reflections in Symm(X)
are S0, Sπ/2, Sπ and S3π/2.

(d) Here X is an off-centre square.

S0

(1, 0)

There is a lot of symmetry about the point (1, 0) at the centre of the square. However, the question
asks about Symm(X), which is by definition the group of symmetries about the point (0, 0), and
from that point of view the picture is much less symmetrical. In fact, the only symmetry is the
reflection across the x-axis, so Symm(X) = {1, S0} and Dir(X) = {1}.

Exercise 3. (a) What can you say aboutRπAR
−1
π for A ∈ O2? (Try writing out the matrices explicitly).

(b) Show that Rπ/nXn 6= Xn but that Dn = Rπ/nDnR
−1
π/n.

(c) Deduce that Rπk/nDnR
−1
πk/n = Dn for all k ∈ Z.

(d) Let X be the regular heptagon centred at (0, 0) with one vertex at (0, 1). Find n and θ such that
Symm(X) = RθDnR

−1
θ . There are three different possibilities for θ in the range [0, π/2); find all of

them.
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Solution:

(a) Rπ is the matrix
(−1 0

0 −1
)
, in other words Rπ = −I. This means that R−1π = −I also and thus that

RπAR
−1
π = −(−A) = A for all A.

(b) The polygon Xn has vertices vk with polar coordinates [1, 2πk/n]. The map Rπ/n sends v0 to [1, π/n]
which is not a vertex, so Rπ/nXn 6= Xn. The elements of Dn have the form R2kπ/n or S2kπ/n for

k ∈ Z. Using the equations RαRβR
−1
α = Rβ and RαSβR

−1
α = Sβ+2α we see that

Rπ/nR2πk/nR
−1
π/n = R2πk/n ∈ Dn

Rπ/nS2πk/nR
−1
π/n = S2π(k+1)/n ∈ Dn.

This shows that Rπ/nDnR
−1
π/n ⊆ Dn but these two sets have the same size so they must actually be

equal.
(c) If Rπk/nDnR

−1
πk/n = Dn then we can substitute Dn = Rπ/nDnR

−1
π/n on the left hand side to deduce

that

Rπ(k+1)/nDnR
−1
π(k+1)/n = Rπk/nRπ/nDnR

−1
π/nR

−1
πk/n = Rπk/nDnR

−1
πk/n = Dn.

By induction, this proves (c) for all k ≥ 0. If k < 0 we have k = −m for some m > 0 and we have
proved already that Dn = Rπm/nDnR

−1
πm/n. If we multiply this equation on the left by R−1πm/n and

on the right by Rπm/n we obtain Rπ−m/nDnRπm/n = Dn, or in other words Rπk/nDnR
−1
πk/n = Dn,

as required.
(d) We have X = Rπ/2X7 so

Symm(X) = Rπ/2 Symm(X7)R−1π/2 = Rπ/2D7R
−1
π/2.

More generally, by using part (c) we see that Rπk/7D7R
−1
πk/7 = D7 and thus that

Symm(X) = Rπ/2D7R
−1
π/2 = Rπ/2Rπk/7D7R

−1
πk/7R

−1
π/2 = R(2k+7)π/14D7R

−1
(2k+7)π/14.

Thus, if we put θ = (2k + 7)π/14 we again have Symm(X) = RθD7R
−1
θ .

Conversely, suppose that θ satisfies Symm(X) = RθD7R
−1
θ . We then have

D7 = R−1π/2 Symm(X)Rπ/2 = R−1π/2RθD7Rπ/2R
−1
θ = Rθ−π/2D7R

−1
θ−π/2.

As S0 ∈ D7 this implies that the element S2θ−π = Rθ−π/2S0R
−1
θ−π/2 also lies in D7. However, we

only have Sφ ∈ D7 if φ is a multiple of 2π/7, so 2θ − π = 2kπ/7 for some k, so θ = π/2 + kπ/7 =

(2k+7)π/14. Thus we have Symm(X) = RθD7R
−1
θ if and only if θ has the form (2k+7)π/14 for some

integer k. For θ ∈ [0, π/2) we must have k = −3 or k = −2 or k = −1, so θ ∈ {π/14, 3π/14, 5π/14}.

Exercise 4. Prove that Dn is generated by reflections.
(A group G is said to be generated by a subset Y if every g ∈ G can be written in the form

g = ya11 ya22 · · · yann
for some n ≥ 1, y1, y2, . . . , yn ∈ Y and a1, a2, . . . , an ∈ {±1}.)
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Solution: Write R = R2π/n and S = S0 so

Dn = {1, R, . . . , Rn−1, S,RS, . . . , Rn−1S}.
Using the fact that RαSβ = Sα+β we see that RkS = R2kπ/nS0 = S2kπ/n, which is a reflection. Also,

because S2 = 1 we see that Rk = (RkS)S. Here RkS and S are reflections lying in Dn, so Rk can be written
as a product of two reflections lying in Dn. Thus every element in Dn is either a reflection or a product of
reflections, so the reflections in Dn generate Dn as claimed.

Exercise 5. Find the conjugacy classes of the elements of Dn and hence find the centre of Dn. [Hint: First
deal with the cases of D1 and D2 which are a bit different. Then treat D3 and D4. You are then probably
ready for the general case. See also the case treated in lectures!]

Solution:

• D1 = {1, S}; the conjugacy classes are {1} and {S}.
• D2 = {I,R, S, SR}. We have R2 = 1 so R = R−1. This means that SRS = R−1 = R, so SR = RS,

so the group is commutative. This means that each element is in a separate conjugacy class, so the
classes are {1}, {R}, {S} and {SR}.

• D3 = {1, R,R2, S, SR, SR2}. We have R3 = 1 so S−1RS = R−1 = R2, showing that R and R2 are
conjugate.

Exercise 6. Use the First Isomorphism Theorem to prove that SO2 ' R/2πZ.

Solution: Define φ : R −→ SO2 by φ(α) = Rα. We have

φ(α)φ(β) = RαRβ = Rα+β = φ(α+ β),

so φ is a homomorphism. Any element of SO2 has the form Rα = φ(α) for some α, so φ is surjective.
Thus, the First Isomorphism Theorem gives us an isomorphism φ : R/ ker(φ) −→ SO2. Moreover, we have
α ∈ ker(φ) iff φ(α) = 1 iff Rα = R0 iff α is an integer multiple of 2π, so ker(φ) = 2πZ. Thus R/2πZ ' SO2

as claimed.

Exercise 7. Suppose x0, x1, . . . xn ∈ Rn have the property that x1 − x0, x2 − x0, . . . , xn − x0 is a basis. If
f, g are isometries of Rn so that f(xi) = g(xi) for i = 0, 1, 2, . . . , n then show that f = g. Thus for instance
an isometry of R2 is determined by the image of three points.

Solution:

Exercise 8. Let R∞ be the set of sequences x = (x1, x2, . . .) such that xn = 0 for n� 0. We define as usual

〈x, y〉 =

∞∑
k=1

xkyk

‖x‖ =
√
〈x, x〉

d(x, y) = ‖x− y‖.
Note that the infinite sum is really only a finite sum because when k is large we have xk = yk = 0. Thus,
there is no convergence problem to worry about. Construct a function f : R∞ −→ R∞ that preserves distances
but is not a bijection.

Solution: Define f(x1, x2, x3, . . .) = (0, x1, x2, x3, . . .). This is a linear map, and it satisfies

‖f(x)‖2 = 02 + x21 + x22 + . . . = ‖x‖2.
We thus have

d(f(x), f(y)) = ‖f(x)− f(y)‖ = ‖f(x− y)‖ = ‖x− y‖ = d(x, y),

so f preserves distances. However, the first entry in f(x) is always 0, so f(x) cannot be equal to (1, 0, 0, . . .)
for any x, so f is not surjective and thus not bijective.

Exercise 9. Find the conjugacy classes in O2. What is the centre of O2?

Solution:
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Exercise 10. (a) Consider the action of O2 on R2. Identify the orbits as subsets of R2 and draw a
picture. Identify the stabilizers.

(b) Consider the action of I(R2) on R2. Identify the orbits as subsets of R2 and draw a picture. Identify
the stabilizers.

Solution:

Exercise 11. Let X be the following subset of R2 (with centre at the origin). The group D3 acts on X.
Find the orbits of this action, find the fixed points of all the elements of D3, and verify the orbit counting
theorem.

Solution: The points marked 1 form an orbit of size 3, the points marked 2 form another orbit of size 3,
and the points marked 3 form an orbit of size 6. Thus, there are 3 orbits altogether.

1

21

2

1 2

3

3

3

3

3

3

Recall that

D3 = {1, R2π/3, R4π/3, S0, S2π/3, S4π/3}.
The identity element of D3 fixes all 12 points of X. The rotations R2π/3 and R4π/3 have no fixed points
in X. The axis of the reflection S0 passes through 2 of the points of X. These two points are fixed under
S0, and the remaining points are not. Similarly, the reflections S2π/3 and S4π/3 have two fixed points each.
Thus

1

|G|
∑
g∈G
|Fix(g)| = 1

6
(12 + 0 + 0 + 2 + 2 + 2) = 3,

which is equal to the number of orbits, as predicted by the orbit counting theorem.

Exercise 12. Find an infinite subgroup G < SO2 such that G 6= SO2. [Hint: think about rational and
irrational numbers.]

Solution: One possibility is to choose an irrational number α and define R = R2πα and

G = 〈R〉 = {Rn | n ∈ Z} = {R2παn | n ∈ Z}.
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This is clearly a subgroup of SO2 (because 1 = R0 ∈ G and RnRm = Rn+m ∈ G and (Rn)−1 = R−n ∈ G
for all n,m ∈ Z.)

I next claim that all the elements Rn are distinct, in other words that Rn 6= Rm whenever n 6= m. Indeed,
if Rn = Rm then R2πα(n−m) = Rn−m = 1 so 2πα(n −m) = 2πk for some integer k. If n 6= m then this
implies that α = k/(n−m), contradicting our assumption that α is irrational. This proves that the elements
Rn are all distinct, so G is infinite.

Finally we must prove that G 6= SO2. For those of you that know about countability, the “real reason”
is that G is countable and SO2 is not. For a more direct proof, it will suffice to show that Rπ 6∈ G. If Rπ
were an element of G we would have Rπ = Rk for some k ∈ Z, and k 6= 0 because certainly Rπ 6= 1 = R0.
This would give R2k = R2

π = 1 = R0, contradicting the fact that all the Rn’s are distinct.
Two other possibilities are to take G = {Raπ | a ∈ Q} or to take G = {Rθ | θ ∈ Q}.

Exercise 13. Put Hn = {A ∈ O2 | An = 1}. Show that if n is odd then Hn is a finite subgroup of O2

(which one?), but if n is even then Hn is not a subgroup at all.

Solution: First suppose that n is odd, say n = 2m+1. For any θ we have S2
θ = 1 so Snθ = (S2

θ )mSθ = Sθ 6= 1,
so Sθ 6∈ Hn. On the other hand, we have Rnθ = 1 iff nθ = 2kπ for some k ∈ Z, iff θ = 2kπ/n for some k, iff
Rθ ∈ Cn. Thus Hn = Cn, which is a finite subgroup of O2.

Now suppose instead that n is even, say n = 2m. Then for all θ we have Snθ = (S2
θ )m = 1, so Sθ ∈ Hn.

For most θ we have Rnθ 6= 1, so Rθ 6∈ Hn. Thus Sθ and S0 lie in Hn but SθS0 = Rθ does not; this shows
that Hn is not a subgroup.

Exercise 14. Show that if G/Z(G) is a cyclic group then G is abelian (hence in fact Z(G) = G). Identify
D4/Z(D4).

Solution:

Exercise 15. The Quaternion group of order 8 is the group

G = {±1,±i,±j,±k}
with ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = −1. Do there exist subgroups N,Q < G
(with N 6= G and Q 6= G) such that G is the semidirect product of N and Q? (One approach is just to find
all the subgroups of G).

Solution: No such subgroups exist. To prove this, I first claim that any nontrivial subgroup H ≤ G
contains the element −1. Indeed, we have G = {1,−1, i,−i, j,−j, k,−k} and i2 = (−i)2 = j2 = (−j)2 =
k2 = (−k)2 = −1. As H is nontrivial it must either contain −1 (so there is nothing to say) or some element
h ∈ {±i,±j,±k}, in which case it also contains h2 = −1, as claimed.

Now suppose that G is the semidirect product of N and Q, where N 6= G and Q 6= G. We then have
|N | < |G| so |Q| = |G|/|N | > 1, so Q is nontrivial, so −1 ∈ Q. Similarly −1 ∈ N , so −1 ∈ N ∩Q. However,
for a semidirect product we must have N ∩Q = {1}, so this gives a contradiction.

The complete list of subgroups is as follows:

{1}
{1,−1}
{1,−1, i,−i}
{1,−1, j,−j}
{1,−1, k,−k}
{1,−1, i,−i, j,−j, k,−k}.

Exercise 16. If X is a non-empty subset of a group G, we write

〈X〉 = {xε11 · · ·x
εt
t | t ≥ 1, x1, · · · , xt ∈ X, ε1, · · · εt ∈ {±1}}

and call it the subgroup of G generated by X.
Suppose G is a group with elements a, b ∈ G, so that G = 〈a, b〉. Show that if a and b are of order 2 and

ab is of order n then G ∼= Dn.
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Solution:

Exercise 17. Use your classification of the conjugacy classes in Dn to find all the normal subgroups of Dn.

Solution:

Exercise 18. Let G be a subgroup of SO2. Suppose that there exists a number ε > 0 such that Rθ 6∈ G
for 0 < θ < ε. Prove that G = Cn for some n (and thus that G is finite). [Hint: mimic the classification of
finite subgroups of Cn.]

Solution: Put S = {φ > 0 | Rφ ∈ G}, so 2π ∈ S. If we take m = 1 then by assumption we have
S ∩ (0,mε) = ∅. If we take m to be very large then 2π ∈ S ∩ (0,mε) so S ∩ (0,mε) 6= ∅. Thus, there
must be some intermediate value of m such that S ∩ (0,mε) = ∅ and S ∩ (0, (m + 1)ε) 6= ∅. Choose
θ ∈ S ∩ (0, (m+ 1)ε). I claim that for φ ∈ S we have φ ≥ θ. Suppose not, so φ < θ. Put ψ = θ−φ, so ψ > 0
and Rψ = RθR

−1
φ ∈ G so ψ ∈ S. We also have θ < (m+ 1)ε. As S ∩ (0,mε) = ∅ we certainly have φ ≥ mε,

so ψ = θ − φ < (m + 1)ε −mε = ε. This contradicts the assumption that S ∩ (0, ε) = ∅, so we must have
φ ≥ θ after all.

Now let α be any element of S. For some k ≥ 0 we must have kθ ≤ α < (k + 1)θ. If we put β = α − kθ
then 0 ≤ β < θ and Rβ = RαR

−k
θ ∈ G. As every element of S is at least as large as θ we see that β cannot

lie in S, and the only way this can happen is if β = 0. Thus α = kθ for some k > 0.
By applying this in the case α = 2π we see that 2π = nθ for some n and thus that θ = 2π/n. It follows

that S = {2πk/n | k > 0} and thus that G = Cn.

Exercise 19. The quaternion group of order 8 is the group

G = {±1,±i,±j,±k}
with ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = −1. Show that if P and Q are any two
nontrivial subgroups of G, then P ∩Q is also nontrivial.

Solution: We first claim that any nontrivial subgroup P ≤ G contains the element −1. Indeed, we have
G = {1,−1, i,−i, j,−j, k,−k} and i2 = (−i)2 = j2 = (−j)2 = k2 = (−k)2 = −1. As P is nontrivial it
must either contain −1 (so there is nothing to say) or some element x ∈ {±i,±j,±k}, in which case it also
contains x2 = −1, as claimed. By the same argument, Q must contain −1, so P ∩Q contains −1, so P ∩Q
is nontrivial.

Exercise 20. Prove or disprove the following statements:

(i) D6/Z(D6) ' D3, where Z(D6) is the centre of D6.
(ii) D42 has a non-cyclic subgroup of order 21.
(iii) D8 ' D4 × C2.
(iv) There is an integer n ≥ 1 such that there is a surjective homomorphism Dn −→ Q8.
(v) D10

∼= D5 × C2.

Solution:

Exercise 21. Let δ : In −→ {±1} be the composite of ψ : In −→ In/Tn ' On and the determinant map (ie
δ(f) = det(ψ(f))).

(a) If f ∈ On show that δ(f) = det(f).
(b) When n = 2 find the value of δ on reflections, rotations, translations and glides.
(c) If X ⊆ Rn write

SI(X) = {f ∈ I(X) | δ(f) = 1}.
Show that SI(X) is a subgroup of I(X) and that either SI(X) = I(X) or [I(X) : SI(X)] = 2.

Solution:

Exercise 22. Let f, g ∈ In be given by f(x) = Ax+ a and g(x) = Bx+ b, where A,B ∈ On and a, b ∈ Rn.

(a) Find C ∈ On and c ∈ Rn such that fg(x) = Cx+ c for all x.
(b) Find D and d such that fgf−1(x) = Dx+ d for all x.
(c) Describe the isometry fTbf

−1.
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(d) Show that T(1,0) is not conjugate to T(0,2) in I2.

Solution:

(a) We have fg(x) = f(Bx + b) = A(Bx + b) + a = ABx + (Ab + a), so we can take C = AB and
c = Ab+ a.

(b) First, if x = f(y) = Ay + a then f−1(x) = y = A−1(x− a) = A−1x−A−1a. Thus

fgf−1(x) = fg(A−1x−A−1a)

= f(BA−1x−BA−1a+ b)

= ABA−1x−ABA−1a+Ab+ a.

Thus we can take D = ABA−1 and d = a+Ab−ABA−1a.
(c) This is what we get in the case B = 1. We then have ABA−1 = 1, so part (b) gives fTbf

−1(x) =
x− a+Ab+ a = x+Ab = TAb(x), so fTbf

−1 = TAb.
(d) If Tb is conjugate to Tc then Tc = fTbf

−1 for some f ∈ I2. If we write f in the form f(x) = Ax+ a
(with A ∈ O2), we see from (c) that fTbf

−1 = TAb, so Ab = c. Thus ‖c‖ = ‖Ab‖ = ‖b‖. As
‖(1, 0)‖ 6= ‖(0, 2)‖, we deduce that T(1,0) is not conjugate to T(0,2).

Exercise 23. Let H be a wallpaper group, and let a be a point in R2. Recall that orbitH(a) = {h(a) | h ∈
H}. Prove that if orbitH(a) = orbitT (H)(a) then σa(H) = ψ(H).

Solution: For any group H ≤ I2 we have seen that σa(H) ≤ ψ(H), so we need only prove the opposite
inequality. Suppose that B ∈ ψ(H), so there is some element h ∈ H with ψ(h) = B. We have h(a) ∈
orbitH(a) = orbitT (H)(a), so there must be some u ∈ T (H) such that h(a) = a + u. Put g = T−uh, so
g ∈ H and g(a) = a. This means that the map f := T−agTa satisfies f(0, 0) = (0, 0), so f(x) = Ax for some
A ∈ O2. From the definition of σa(H) we see that A ∈ σa(H). On the other hand, we have

A = ψ(f) = ψ(T−agTa) = ψ(T−u−ahTa) = ψ(T−u−a)ψ(h)ψ(Ta) = 1.B.1 = B,

so A = B. As A ∈ σa(H), this means that B ∈ σa(H), as required.

Exercise 24. Let H be a wallpaper group, and put L = {h(0) | h ∈ H}. Prove that H ∩O2 ≤ ψ(H). Prove
also that if L = Trans(H), then ψ(H) = H ∩O2.

Solution: First, if A ∈ O2 then A = ψ(A). Thus, if A ∈ H ∩O2 then A = ψ(A) ∈ ψ(H), so H ∩O2 ≤ ψ(H).
Now suppose that L = Trans(H); we must show that ψ(H) ≤ H ∩ O2. If A ∈ ψ(H) then there is an

element h ∈ H with ψ(h) = A, which means that h(x) = Ax+ a for some a ∈ R2. Next, note that a = h(0),
so a ∈ L (by the definition of L). We are assuming that L = Trans(H), so a ∈ Trans(H), which means
that Ta ∈ H. This means that the function g = T−1a h also lies in H. Clearly g(x) = h(x) − a = Ax, so g
corresponds to the element A ∈ O2. This means that A ∈ H ∩O2, as claimed.

Exercise 25. Three infinite wall-paper patterns are represented below by a small segment of the pattern.

(a) Find the isometry group of pattern (a).
(b) Find the isometry group of pattern (b).
(c) Find the isometry group of pattern (c) and show that it is generated by a reflection and a rotation.
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Pattern (a) Pattern (b) Pattern (c)

Solution: Pattern (a): Let R be rotation throught π/2 about O, and let S be reflection across L. It
is clear that Tu, Tv, R and S preserve X, so 〈Tu, Tv, R, S〉 ≤ I(X). Now suppose we have f0 ∈ I(X). If
det(f0) = −1 we put f1 = Sf0, otherwise we put f1 = f0; either way we have det(f1) = 1 and f1 ∈ I(X).
Clearly f1 must send O to the centre of one of the motifs, so f1(O) = nu+mv+O for some n,m ∈ Z. We put
f2 = T−nu T−mv f1, so f2 ∈ I(X), det(f2) = 1 and f2(O) = O. Thus f2 is a rotation about O that preserves
X; clearly the angle must be a multiple of π/2, so f2 = Rk for some k. We thus have f1 = Tmv T

n
uR

k and
either f0 = Tmv T

n
uR

k or f0 = STmv T
n
uR

k. Thus f0 ∈ 〈Tu, Tv, R, S〉, which proves that I(X) = 〈Tu, Tv, R, S〉.

L

M

O

P Q

u

v

In particular, we see that SM , RP,π and RQ,π/2 all lie in 〈Tu, Tv, R, S〉. By following the above recipe we

find that SM = STvTuR, RP,π = TvR
2 and RQ,π/2 = TuR.

Pattern (b): Clearly 〈Tu, Tv, SL〉 ≤ I(X). Suppose that f0 ∈ I(X), and put f1 = SLf0 if det(f0) = −1
and f1 = f0 otherwise. Note that O is the point where the blunt ends of two white motifs meet, so f1(O)
must also be the point of intersection of the blunt ends of two white motifs, so f1(O) = O + nu + mv for
some n,m ∈ Z. Put f2 = T−nu T−mv f1, so f2 is a rotation around O that preserves the pattern X. There is
only one dark grey motif adjacent to O, so f2 must send that motif to itself, and this forces f2 to be the
identity. Thus either f0 = Tmv T

n
u or f0 = SLT

m
v T

n
u , and in either case we have f0 ∈ 〈SL, Tu, Tv〉. This shows

that I(X) = 〈SL, Tu, Tv〉.
9



O

u v

L

Pattern (c): Put S = SL and R = RO,2π/3, so 〈R,S〉 ≤ I(X).

O

P

P2 P1

v

u

As ψ(S) is a reflection and ψ(R) is a rotation we see that ψ(RS) = ψ(R)ψ(S) is a reflection and thus that
ψ(RSRS) = ψ(RS)2 = 1, so RSRS is a translation. As P lies on L we have S(P ) = P and RS(P ) =
R(P ) = P1. This lies on L again, so SRS(P ) = S(P1) = P1, and it follows that RSRS(P ) = R(P1) = P2.
Thus RSRS is a translation sending O to P2, so we must have RSRS = Tu. Similarly, we have SRSR = Tv.
Next, put R′ = T−1u T−1v R. This has ψ(R′) = R2π/3, so R′ must be a rotation through 2π/3 about some
point. We have seen that R(P ) = P1 = P + u + v so R′(P ) = P so P must be the centre of the rotation
R′, so R′ = RP,2π/3. Now suppose that f ∈ I(X). Then f must send P to the centre of some motif, say

f(P ) = nu + mv for some n,m ∈ Z, so T−mv T−nu f fixes P and preserves X. After multiplying by S if
necessary we get a rotation that fixes P and preserves X, which must be a power of R′. As Tu, Tv, S and
R′ lie in 〈R,S〉 we deduce that f ∈ 〈R,S〉. Thus I(X) = 〈R,S〉 as required.

Exercise 26. Let X be the wallpaper pattern shown below. We have seen that I(X) = 〈Tu, Tv, Rπ/3, S0〉,
where u = (1, 0) and v = (1/2,

√
3/2). We also see geometrically that the rotation RP,π and the glide GL,u/2

preserve X, so it must be possible to write RP,π and GL,u/2 in terms of Tu, Tv, Rπ/3 and S0. Do this
explicitly. [Hint: just follow through the steps in the proof that I(X) = 〈Tu, Tv, Rπ/3, S0〉.]
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O P

L

Solution: We have
GL,u/2(0, 0) = u/2 + SL(0, 0) = (1/2, 0) + (0,

√
3/2) = v,

so the map f = T−vGL,u/2 = Tu/2−vSL satisfies f(0, 0) = (0, 0). As L is parallel to the x-axis we have
ψ(SL) = S0 and ψ(Ta) = 1 for all a so ψ(f) = S0. Thus f(x) = S0(x) + b for some b, but f(0, 0) = (0, 0)
so b = (0, 0) so f = S0. Thus GL,u/2 = Tvf = TvS0, which writes GL,u/2 in terms of {Tu, Tv, Rπ/3, S0} as
required.

Similarly, we have RP,π(0, 0) = (1, 0) = u so the map h = T−uRP,π satisfies h(0, 0) = (0, 0). It also has
ψ(h) = ψ(T−u)ψ(RP,π) = Rπ so we must have h = Rπ, so RP,π = TuRπ = TuR

3
π/3.

Exercise 27. Let T be a triangle with angles π/2, π/6 and π/3. Let Sl, Sm and Sn be the reflections in
the three sides of T . Find a pattern X with isometry group Isom(X) generated by Sl, Sm and Sn.

Solution: Let X be the pattern of hexagons shown below.

O
l

l′

m

n

u

v

I claim that I(X) = 〈Sl, Sm, Sn〉. One checks directly that Sl, Sm and Sn send X to itself, so 〈Sl, Sm, Sn〉 ≤
I(X). Clearly Sm = S0 and Sn = S−2π/6 and it follows that 〈Sm, Sn〉 = D6. Moreover, the Sl′ = Sπ lies in D6

so it can be written in terms of Sn and Sm (an explicit expression is Sl′ = SnSmSnSmSn). It follows that the
map Tu = Sl′Sl lies in 〈Sl, Sm, Sn〉. We also have SmSn = Rπ/3 so the map Tv = TRπ/3u = Rπ/3TuR

−1
π/3 also

11



lies in 〈Tl, Tm, Tn〉. Given an arbitary element g ∈ I(X) we see in the usual way that the map h = T−nu T−mv g
fixes O for some n,m ∈ Z, and thus h lies in the symmetry group of the hexagon around O, which is
the group D6 = 〈Sm, Sn〉. It follows that the map g = Tmv T

n
u h lies in 〈Sl, Sm, Sn〉, which proves that

I(X) = 〈Sl, Sm, Sn〉 as claimed.

Exercise 28. (a) Let the group G act on the non empty set X. We say that G acts transitively on X
if for all x, y ∈ X there is an element g ∈ G so that g ∗ x = y.

Show that the following are equivalent
(1) G acts transitively on X
(2) For any z ∈ X we have G ∗ z = X
(3) For some z ∈ X we have G ∗ z = X.

(b) Decide which of the following actions are transitive.
(1) Sn acting naturally on {1, 2, . . . , n}.
(2) D4 acting on the square X4.
(3) S6 acting by conjugation on the set of elements of S6 having order 3 (so θ ∗ φ = θφθ−1).

(c) Let G be a group and H be a subgroup. Then G acts on G/H = {xH | x ∈ G}, the set of left
cosets of H in G, by left multiplication: g ∗ xH = gxH, for g ∈ G and xH ∈ G/H. Show G acts
transitively on G/H.

(d) If G acts on sets X1 and X2 by • : G × X1 −→ X1 and ∗ : G × X2 −→ X2 we say these actions are
equivalent if there is a bijection φ : X1 −→ X2 such that g ∗ φ(x) = φ(g • x) for all g ∈ G and x ∈ X1.

Show that if G acts transitively on a set X then this action is equivalent to one of G by left
multiplication on G/H, for some subgroup H of G.

Solution:

(a) (1)⇒(2): Suppose G acts transitively and that z ∈ X. Then for any y ∈ X there exists g ∈ G such
that g ∗ z = y, by the definition of transitivity. This means that y ∈ {g ∗ z | g ∈ G} = G ∗ z. As
every y lies in G ∗ z, we have G ∗ z = X, as required.

(2)⇒(3): if the condition G ∗ z = X holds for every element z of the nonempty set X, then it
certainly holds for some element.

(3)⇒(1): Suppose that G ∗ z = X for some element z ∈ X. Let x and y be points of X. Then
x ∈ X = G ∗ z, so x = a ∗ z for some a ∈ G. Similarly y = b ∗ z for some b ∈ G. Thus the element
g = ba−1 satisfies g ∗ x = (ba−1) ∗ a ∗ z = b ∗ z = y. Thus G acts transitively, as claimed.

(b) (1) Suppose x, y ∈ {1, . . . , n}. If x = y let σ ∈ Sn be the identity permutation, otherwise let σ be
the transposition (x y). Either way we have σ ∗ x = y, so the action is transitive.

(2) This action is not transitive. The square X4 contains the point P = (1, 0), and also the point
Q = (1/2, 1/2) on the edge between (1, 0) and (0, 1). There is no element g ∈ D4 such that
g(P ) = Q.

(3) This action is not transitive. To see this, put x = (1 2 3) and y = (1 2 3)(4 5 6). It is easy to see
that x3 = y3 = 1, so x and y lie in the set under consideration. As x and y have different cycle
types, they are not conjugate. More explicitly, for any g ∈ S6 the permutation g ∗ x = gxg−1

satisfies (gxg−1)(g(4)) = g(4), but there is no number i with y(i) = i, so g ∗ x 6= y.
(c) Given any two elements xH, yH ∈ G/H, the element g = yx−1 satisfies g ∗ (xH) = yH; this shows

that G acts transitively.
(d) Suppose that G acts transitively on X. Choose a point a ∈ X and put H = {g ∈ G | g ∗ a = a}.

Define φ : G/H −→ X by φ(xH) = x ∗ a. To see that this is well-defined, note that if xH = yH then
x−1y ∈ H so (x−1y) ∗ a = a so x ∗ a = x ∗ (x−1y) ∗ a = y ∗ a. Conversely, if φ(xH) = φ(yH) then
x ∗ a = y ∗ a so a = (x−1y) ∗ a so x−1y ∈ H so xH = yH; this shows that φ is injective. Moreover,
for any b ∈ X, there is an element x ∈ G with x ∗ a = b, because the action is transitive, and so
φ(xH) = b. This shows that φ is surjective and thus bijective. We also have

φ(g ∗ (xH)) = φ(gxH) = (gx) ∗ a = g ∗ (x ∗ a) = g ∗ φ(xH),

so φ gives an equivalence between the two actions.

Exercise 29. Using the formulae in the notes about the geometry of the tent, find the coordinates of the
vertices P , Q, R, S and T of the dodecahedron, as indicated in the diagram below.
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P

Q

R
S

T

Then find the centre C of the pentagon PQRST and check that d(P,C)2 = d(Q,C)2 = d(R,C)2 = (2+τ)/5.

[Hint: You may find it convenient to write all numbers in terms of τ . If a
√

5 turns up you can write it

as 2τ − 1 (because τ = (
√

5 + 1)/2). If a τ2 turns up you can write it as τ + 1 (because τ2 − τ − 1 = 0).]

Solution: The cube in the middle has centre at (0, 0, 0) and the sides have length τ so the coordinates of the
vertices are (±τ/2,±τ/2,±τ/2). We use the usual axes so the z-axis is vertical, the x-axis passes through
the middle of RS and the y-axis is parallel to RS. With these conventions we have Q = τ/2.(1,−1, 1) and
T = τ/2.(1, 1, 1). Next, the right hand face of the cube has x = τ/2 and we see from the notes that the
distance from the base of a tent to its ridge is 1/2 so on the line RS we have x = τ/2 + 1/2 = (τ + 1)/2.
The midpoint of RS lies on the x-axis and thus has coordinates ((τ + 1)/2, 0, 0). To get from this point to
S we move half the length of the ridge in the positive y-direction. The length of the ridge is 1 so we end up
with S = ((τ + 1)/2, 0, 0) + (0, 1/2, 0) = (τ + 1, 1, 0)/2. Similarly we have R = (τ + 1,−1, 0)/2.

Again, the top face is at height τ/2 so the top ridge is at height τ/2 + 1/2 = (τ + 1)/2 so the centre
of the top ridge is (0, 0, τ + 1)/2. To get to P we move a distance of 1/2 in the positive x-direction, so
P = (1, 0, τ + 1)/2.

We now find that Q+T = (τ, 0, τ) and R+S = (τ + 1, 0, 0) so P +Q+R+S+T = (2τ + 3/2, 0, τ + 1/2),
so

C = (P +Q+R+ S + T )/5 = (3 + 4τ, 0, 1 + 3τ)/10.

This implies that

P − C = (2− 4τ, 0, 4 + 2τ)/10

Q− C = (−3 + τ,−5τ,−1 + 2τ)/10

R− C = (2 + τ,−5,−1− 3τ)/10.

It follows that

d(P,C)2 = ‖P − C‖2 = ((2− 4τ)2 + 02 + (4 + 2τ)2)/102

= (4− 16τ + 16τ2 + 16 + 16τ + 4τ2)/100

= (1 + τ2)/5

= (τ + 2)/5,

where we have used the relation τ2 = τ + 1. Similarly, we have

d(Q,C)2 = ((−3 + τ)2 + 25τ2 + (−1 + 2τ)2)/100

= (9− 6τ + τ2 + 25τ2 + 1− 4τ + 4τ2)/100

= (1− τ + 3τ2)/10

= (2τ + 4)/10 = (τ + 2)/5,

and

d(R,C)2 = ((2 + τ)2 + 25 + (1 + 3τ)2)/100

= (4 + 4τ + τ2 + 25 + 1 + 6τ + 9τ2)/100

= (3 + τ + τ2)/10

= (4 + 2τ)/10 = (2 + τ)/5.
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Exercise 30. This problem is a more elaborate application of the method we used to prove that the number
τ = 2 cos(π/5) is equal to (1 +

√
5)/2.

Define ζ = e2πi/15 and σ = ζ + ζ−1. Express the number ρ = σ4 − σ3 − 4σ2 + 4σ + 1 in terms of ζ. Then
work out (σ+1)ρ and (ζ5−1)ζ5(σ+1)ρ. Show that ζ5 6= 1 and that σ is a positive real number, and deduce
that ρ = 0.

Now recall that the number τ = (1 +
√

5)/2 satisfies τ2 − τ − 1 = 0 so τ−1 = τ − 1 and τ − τ−1 = 1.
Check that for any t we have t4 − t3 − 4t2 + 4t+ 1 = q0(t)q1(t), where

q0(t) = t2 − τt+ τ−1 − 1

q1(t) = t2 + τ−1t− τ − 1.

Deduce that either q0(σ) = 0 or q1(σ) = 0. Given that in fact q1(σ) 6= 0, prove that σ = (τ +
√

9− 3τ)/2.

Solution: First, we have

σ = ζ + ζ−1

σ2 = ζ2 + 2 + ζ−2

ζ3 = ζ3 + 3ζ + 3ζ−1 + ζ−3

ζ4 = ζ4 + 4ζ2 + 6 + 4ζ−2 + ζ−4,

so

ρ = σ4 − σ3 − 4σ2 + 4σ + 1

= (ζ4 + 4ζ2 + 6 + 4ζ−2 + ζ−4)− (ζ3 + 3ζ + 3ζ−1 + ζ−3)

− (4ζ2 + 8 + 4ζ−2) + (4ζ + 4ζ−1) + 1

= ζ4 − ζ3 + ζ − 1 + ζ−1 − ζ−3 + ζ−4.

It follows that

(σ + 1)ρ = ζρ+ ρ+ ζ−1ρ

= ζ5 − ζ4 + ζ2 − ζ + 1− ζ−2 + ζ−3+

ζ4 − ζ3 + ζ − 1 + ζ−1 − ζ−3 + ζ−4+

ζ3 − ζ2 + 1− ζ−1 + 1− ζ−4 + ζ−5

= ζ5 + 1 + ζ−5,

and thus that

(ζ5 − 1)ζ5(σ + 1)ρ = (ζ5 − 1)(ζ10 + ζ5 + 1)

= ζ15 + ζ10 + ζ5 − ζ10 − ζ5 − 1

= ζ15 − 1 = e2πi − 1 = 0.

We have ζ = cos(2π/15) + i sin(2π/15) so σ = 2 cos(2π/15). It is well-known that cos(θ) > 0 for |θ| < π/2

and 2π/15 < π/2 so σ > 0. This implies that σ + 1 6= 0. We also have ζ5 = e2πi/3 = (−1 +
√

3i)/2 6= 1 so
ζ5 − 1 6= 0 and clearly also ζ5 6= 0. As (ζ5 − 1)ζ5(σ + 1)ρ = 0 and the numbers ζ5 − 1, ζ5 and σ + 1 are all
nonzero we must have ρ = 0.

Next, we have

q0(t)q1(t) = (t2 − τt+ τ−1 − 1)(t2 + τ−1t− τ − 1)

= t4 + (τ−1 − τ)t3 + (−τ − 1− ττ−1 + τ−1 − 1)t2 + (τ(τ + 1) + (τ−1 − 1)τ−1)t− (τ−1 − 1)(τ + 1)

= t4 − (τ − τ−1)t3 − (τ − τ−1 + 3)t2 + (τ2 + τ−2 + τ − τ−1)t+ (τ − τ−1).
14



We can simplify most of the terms using the fact that τ − τ−1 = 1. To simplify the coefficient of t we square
this equation to get τ2 − 2 + τ−2 = 1 and thus τ2 + τ−2 = 3. Putting this all in we get

q0(t)q1(t) = t4 − t3 − (1 + 3)t2 + (3 + 1)t+ 1

= t4 − t3 − 4t2 + 4t+ 1,

as claimed. This implies that 0 = ρ = σ4−σ3−4σ2+4σ+1 = q0(σ)q1(σ), so either q0(σ) or q1(σ) is zero. We

are given that q1(σ) 6= 0 so q0(σ) = 0. The roots of the equation q0(t) = 0 are t = (τ ±
√
τ2 − 4τ−1 + 4)/2.

We have τ2 = τ + 1 and τ−1 = τ − 1 so τ2 − 4τ−1 + 4 = τ + 1 − 4τ + 4 + 4 = 9 − 3τ . Thus the roots are
t = (τ ±

√
9− 3τ)/2. We have τ = (1 +

√
5)/2 ' 1.618 and so

√
9− 3τ ' 2.036, so (τ −

√
9− 3τ)/2 < 0. As

σ is a positive root of q0 we must have σ = (τ +
√

9− 3τ)/2.

Exercise 31. Show that the centre of Sn is trivial, for n ≥ 3.

Solution:

Exercise 32. The group Dir(Cube) of rotational symmetries of the cube acts on the surface of the cube.
Find the sizes of the orbits of points on the surface and describe geometrically which points have which orbit
sizes.

Solution: Let S be the surface of the cube. For any point x ∈ S we have |Gx| = |G|/|stabG(x)| =
24/|stabG(x)|. Moreover, stabG(x) is the group of all rotations around x that preserve the cube. For most
points x there are no such rotations (except for the identity) and so |stabG(x)| = 1 and the orbit Gx has
order 24. If x is the centre of a face then stabG(x) is cyclic of order 4 and so |Gx| = 24/4 = 6. In fact, Gx
consists of the centres of the 6 faces. If x is a vertex of the cube then stabG(x) is cyclic of order 3 and so
|Gx| = 24/3 = 8. In fact, in this case Gx consists of the 8 vertices of the cube. If x is the midpoint of an
edge then stabG(x) has order 2 and so |Gx| = 24/2 = 12. In fact, in this case Gx consists of the midpoints
of the 12 edges of the cube. In all other cases we have |Gx| = 24.

Exercise 33. Show that if S ∈ Symm(Cube) is a reflection then S = −R for some rotation R ∈ Dir(Cube)
of order 2. Conversely, show that if R ∈ Dir(Cube) is a rotation of order 2 then −R ∈ Symm(Cube) is a
reflection. Hence find how many reflections there in Symm(Cube).

Solution:

Exercise 34. (a) Show that if G is a group of order pn for some n then the centre of G is non-trivial.
(b) Show that any group of order p2 is abelian. [Hint: consider G/Z(G)]
(c) Conclude that any group of order p2 is either cyclic or isomorphic to Cp × Cp.

Solution:

Exercise 35. Show that if G is a semidirect product of H and K with H and K both normal then in fact
G ' H ×K.

Solution:

Exercise 36. The following diagram shows a cuboctahedron X in R3, centred at the origin. Its faces are
squares and equilateral triangles.

Which of the standard finite subgroups of SO3 is isomorphic to Dir(X)? What can you deduce about
Symm(X)?

You may wish to make a model from the net below.
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Solution: Put G = Dir(X), which is a finite subgroup of SO3. The normalisations of the midpoints of the
edges are poles of degree 2, the normalisations of the centres of the triangular faces are poles of degree 3,
and the normalisations of the centres of the square faces are poles of degree 4. The only one of the standard
groups that has poles of degrees 2, 3 and 4 is G2, so G must be conjugate to G2 and thus isomorphic to S4.

One can see from the picture that multiplication by −1 preserves X and so Proposition 6.9 in the notes
tells us that Symm(X) ' {±1} ×Dir(X) ' {±1} × S4.

Exercise 37. Let g : R3 −→ R3 be the map g(x, y, z) = (y, z, x).

(a) Prove that g ∈ O3.
(b) Find a unit vector u with g(u) = u.
(c) Find the order of g and deduce that g ∈ SO3.
(d) Show that g preserves the standard cube (with centre at the origin and edges of length 2 parallel to

the x, y and z axes).
(e) Describe the effect of g geometrically.

Solution:

(a) It is clear that g is linear, and we have

‖g(x, y, z)‖2 = y2 + z2 + x2 = x2 + y2 + z2 = ‖(x, y, z)‖2,

so g preserves lengths. Thus g ∈ O3.
(b) Visibly g(a, a, a) = (a, a, a) for any a. To get a unit vector, put a = 1/

√
3.

(c) We have g2(x, y, z) = g(y, z, x) = (z, x, y) and g3(x, y, z) = g(z, x, y) = (x, y, z), so g3 = 1 and g has
order 3. Because g ∈ O3 we have det(g) = ±1 and det(g)3 = det(g3) = det(1) = 1 which would give
a contradiction if det(g) were −1, so det(g) = 1. Thus g ∈ SO3.

(d) The vertices of the standard cube are the points (x, y, z) for which x, y, z ∈ {1,−1}. Clearly, if
(x, y, z) satisfies this condition then so does (y, z, x), so g carries vertices of the cube to vertices of
the cube, so it sends the cube to itself.

(e) As g ∈ SO3, it must be a rotation. Part (b) shows that the axis of rotation is the line x = y = z.
Part (c) implies that the angle of rotation is 2π/3. As g(0, 0, 1) = (0, 1, 0) we see that g carries
the z-axis to the y-axis and thus that the direction of rotation (as seen while looking from (1, 1, 1)
towards the origin) is clockwise.

Exercise 38. Let M1, M2 and M3 be the x, y and z-axes.

(a) Use these to define a homomorphism ψ : Dir(Cube) −→ S3.
16



(b) Describe some elements g ∈ Dir(Cube) and the corresponding permutations ψ(g).
(c) Show that ψ is surjective.
(d) Show that the kernel of ψ is isomorphic to C2 × C2.

Solution:

(a) For any g ∈ Dir(Cube) we let ψ(g) be the permutation such that g(Mi) = Mσ(i) for i = 1, 2, 3.
(b) Let g be a half turn around the vector (0, 1, 1), let h be a one-third turn anticlockwise about the

vector (1, 1, 1), and let k be a quarter turn anticlockwise about the vector (0, 0, 1). Then ψ(g) = (2 3),
ψ(h) = (1 2 3) and ψ(k) = (1 2).

(c) Part (b) shows that the image of ψ contains (1 2) and (2 3), and these two transpositions generate
S3 so ψ is surjective. More explicitly, we have

ψ(1) = 1 ψ(k) = (1 2)
ψ(h) = (1 2 3) ψ(g) = (2 3)
ψ(h−1) = (1 3 2) ψ(gh) = (1 3).

(d) Let G be the group of matrices of the form

g =
( ε1 0 0

0 ε2 0
0 0 ε3

)
such that ε1ε2ε3 = 1. It is easy to see that G is a subgroup of SO3 and that it preserves the cube
so it is a subgroup of Dir(Cube). If g ∈ G and x ∈ R then g(x, 0, 0) = (±x, 0, 0), so g preserves
the x-axis, or in other words g(M1) = M1. Similarly, we have g(M2) = M2 and g(M3) = M3, so
ψ(g) = 1, so G ≤ ker(ψ).

Conversely, if g ∈ ker(ψ) then g(M1) = M1. The axis M1 meets the surface of the cube at (1, 0, 0)
and (−1, 0, 0), so g(1, 0, 0) = ε1(1, 0, 0) for some ε1 ∈ {1,−1}. Similarly we have g(0, 1, 0) = ε2(0, 1, 0)
and g(0, 0, 1) = ε3(0, 0, 1) for some ε2, ε3 ∈ {1,−1}. Thus, the matrix of g has the form described
above, and as g ∈ Dir(Cube) ≤ SO3 we have det(g) = 1 so ε1ε2ε3 = 1 so g ∈ G. This shows that
ker(ψ) = G.

We can define an isomorphism χ : C2 × C2 = {±1} × {±1} −→ G by χ(ε1, ε2) = (ε1, ε2, ε1ε2).

Exercise 39. Consider the action of G on C as in Question 1. Observe that the stabilizer of H is

NG(H) = {g ∈ G | gHg−1 = H}.

This is called the normalizer of H in G.

(a) (i) Show that H is a normal subgroup of NG(H).
(ii) Show that if H is normal in K then K ⊆ NG(H).

(b) Consider the action of H on the set G/H of left cosets of H by left translation: h ∗ (gH) = hgH.
(i) Show that {kH} is a complete orbit if and only if k−1Hk = H.

(ii) Let w be the number of singleton orbits. Show that if H is a p-group then

[G : H] ≡ w (mod p).

(iii) Conclude that if G is a p-group and H 6= G then H 6= NG(H).
(iv) Deduce from (iii) that if G is a p-group and H is a subgroup of index p then H is normal in G.

Solution:

Exercise 40. Let G be a group of order 77, and let X be a set of order 96 on which G acts. Suppose there
are precisely four orbits. By investigating the possible sizes of the orbits, show that there is exactly one
point x ∈ X such that gx = x for all g ∈ G.

Solution: Let the sizes of the 4 orbits be d1, d2, d3 and d4 with d1 ≤ d2 ≤ d3 ≤ d4. These sizes must divide
77, and thus must be 1, 7, 11 or 77. We must also have d1 + d2 + d3 + d4 = 96. If d4 6= 77 then di ≤ 11 for
all i so 96 = d1 + d2 + d3 + d4 ≤ 4× 11 = 44, which is false. Thus d4 = 77 and d1 + d2 + d3 = 96− 77 = 19.
By similar arguments or by inspection we must have d1 = 1, d2 = 7 and d3 = 11. Thus, there is precisely
one orbit of size 1. If this orbit has the form {x} then x is fixed under the action of G. If y is in any of the
other orbits then |Gy| > 1 so y is not fixed. Thus, there is precisely one fixed point.
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Exercise 41. Let G be a finite group, and let X be a set with an action of G. Suppose that there is precisely
one orbit, and that |X| > 1. Use the orbit counting theorem to show that there is an element g ∈ G such
that Fix(g) = ∅.
Solution: The identity element fixes all of X, so it has more than one fixed point. The orbit counting
theorem says that the average number of fixed points is the number of orbits, which is 1. As the identity has
more than one fixed point, some other element g ∈ G must have less than one, so as to bring the average back
down to 1. Thus |Fix(g)| < 1 but of course |Fix(g)| is a nonnegative integer so |Fix(g)| = 0 so Fix(g) = ∅.

For a more algebraic presentation, note that
∑
g∈G 1 = |G|, so |G|−1

∑
g∈G 1 = 1. The orbit counting

theorem tells us that |G|−1
∑
g∈G |Fix(g)| = number of orbits = 1. By subtracting these equations we find

that
∑
g∈G(|Fix(g)|−1) = 0. If we move the g = 1 term to the other side we get

∑
g 6=1(|Fix(g)|−1) = 1−|X|.

The right hand side is less than 0, so at least one of the terms on the left must be less than 0, so |Fix(g)|−1 < 0
for some g. As before, this means that Fix(g) = ∅.
Exercise 42. Let G be a finite simple group (so there are no normal subgroups of G except for {1} and G
itself). Let p be a prime dividing the order of G, and let X be a set of order n on which the group acts.
Suppose that the action is nontrivial, so there is and element g ∈ G and an element x ∈ X such that gx 6= x.
Prove that n ≥ p.

[Hint: Use X to define a homomorphism and consider its kernel. For which integers m does p divide m!?]

Solution: We can use X to define a homomorphism G −→ Sn in the usual way. (In other words, we list
the elements of X as {x1, . . . , xn} say, and then let φ(g) be the permutation σ such that gxi = xσ(i) for all
i.) The kernel of any homomorphism is a normal subgroup, and there are only two normal subgroups of G
so either ker(φ) = {1} or ker(φ) = G. As the action is nontrivial, we have gxi 6= xi for some g ∈ G and
i ∈ {1, . . . , n}, so φ(g)(i) 6= i, so φ(g) 6= 1. Thus g 6∈ ker(φ), so ker(φ) 6= G, so we must have ker(φ) = {1}.
This means that φ is injective and thus that |G| = |φ(G)|. Moreover, φ(G) is a subgroup of Sn, so n! = |Sn|
is divisible by |φ(G)| = |G|, and |G| is divisible by p, so n! is divisible by p. Now, if m < p then none of the
numbers 1, 2, . . . ,m are divisible by p so m! is not divisible by p. As p divides n! we must have n ≥ p as
claimed.

Exercise 43. We know that Dir(Tet) ' A4 and that Dir(Cube) ' S4. Find a geometric reason that Dir(Tet)
is isomorphic to a subgroup of Dir(Cube). [Hint: can you see a tetrahedron inside the cube?]

Solution: The following picture shows a tetrahedron embedded inside a cube. We’ll assume as usual that
the edges of the cube have length 2.

Alternatively, we can say that the cube is built from the tetrahedron by attaching a pyramid to each face.
All the pyramids have the same shape: the base edges have length 2

√
2, and the remaining edges have length

2. Thus, any isometry of the tetrahedron carries pyramids to pyramids and thus gives an isometry of the
cube. This shows that Dir(Tet) ≤ Dir(Cube).

Exercise 44. In this problem we will find the coordinates of the vertices of a tetrahedron. We will place
the tetrahedron with its centre at the origin and the first vertex v1 on the z-axis. After choosing suitable
units of length we may assume that v1 = (0, 0,

√
3). We then rotate our coordinates if necessary so that the

next vertex v2 lies in the xz-plane, say v2 = (a, 0,−b). There are two more vertices; we call the one with
positive y-coordinate v3, and the one with negative y-coordinate v4.
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(a) Explain why the points v3 and v4 lie in the plane z = −b.
(b) Explain why v3 = (−a/2, a

√
3/2,−b), and give the corresponding formula for v4.

(c) By considering the distances d(O, vi) and d(vi, vj) show that a2 + b2 = 3 and a2 + (b+
√

3)2 = 3a2.
(d) Solve these equations for a and b, and obtain explicit expressions for the coordinates of v2, v3 and

v4.
(e) Consider the matrix

g =

(
1/3 0

√
8/3

0 −1 0√
8/3 0 −1/3

)
Calculate g(vi) for i = 1, 2, 3, 4 and thus determine the vertex permutation induced by g.

Solution:

(a) A twist of one third around the z-axis sends v2 to v3, v3 to v4 and v4 to v2. Such a twist preserves
horizontal planes, and v2 lies in the plane z = −b so the same is true of v3 and v4.

(b) Let w2, w3 and w4 be the points in the xy plane lying above v2, v3 and v4. Then w2 = (a, 0) and
w3 and w4 are obtained from w2 by rotating around the origin through 2π/3 in either direction, so

the coordinates are (cos(±2π/3)a, sin(±2π/3)a), which is equal to (−a/2,±a
√

3/2). In combination

with (a) this means that v3 = (−a/2, a
√

3/2,−b) and v3 = (−a/2,−a
√

3/2,−b).
(c) All the vertices of a tetrahedron have the same distance from the centre, so ‖v2‖2 = ‖v1‖2, or in

other words a2 + b2 = 3. The distance between any two vertices is the same, so d(v1, v2) = d(v3, v4).

We have v1− v2 = (−a, 0, b+
√

3) so d(v1, v2)2 = a2 + (b+
√

3)2. We also have v2− v3 = (0, a
√

3, 0),

so d(v2, v3)2 = 3a2. It follows that a2 + (b+
√

3)2 = 3a2 as claimed.

(d) Our second equation expands out to give b2+2b
√

3+3−2a2 = 0. Our first equation gives a2 = 3−b2
and after substituting this in we get 3b2 +2b

√
3−3 = 0, so b2 +2b/

√
3−1 = 0, so (b+1/

√
3)2 = 4/3.

As b must clearly be positive this gives b = 1/
√

3. This implies that a2 = 3− b2 = 3− 1/3 = 8/3 so

a =
√

8/3 = 2
√

2/3. Putting this back into our equations for the vi gives

v1 = (0, 0,
√

3)

v2 = (2
√

2/3, 0,−1/
√

3)

v3 = (−
√

2/3,
√

2,−1/
√

3)

v4 = (−
√

2/3,−
√

2,−1/
√

3).

(e) Let V be the matrix whose columns are v1, v2, v3 and v4, so gV is the matrix whose columns are
gv1, gv2, gv3 and gv4. We have

gV =

(
1/3 0 2

√
2/3

0 −1 0

2
√
2/3 0 −1/3

)(
0 2
√

2/3 −
√

2/3 −
√

2/3

0 0
√
2 −

√
2√

3 −1/
√
3 −1/

√
3 −1/

√
3

)

=

(
2
√

2/3 0 −
√

2/3 −
√

2/3

0 0 −
√
2

√
2

−1/
√
3
√
3 −1/

√
3 −1/

√
3

)
,

so g(v1) = v2, g(v2) = v1, g(v3) = v4 and g(v4) = v3. Thus, the permutation associated to g is
(1 2)(3 4).

Exercise 45. Let (e1, e2) be the usual basis of R2, let L = <1 be the x-axis and S = Se.
Show that if G is the subgroup 〈ST1, T2〉 of I2 then the point group ψ(G) is cyclic of order 2, whereas

σa(G) is trivial for all a ∈ R2.

[Hint: For the second part show that every g ∈ G can be written in the form: Si1T i11 T
i2
2 .]

Solution:

Exercise 46. Let H be a wallpaper group such that Trans(H) = {(2n,m) | n,m ∈ Z}. Prove that
|ψ(H)| ≤ 4.

Solution: The group Trans(H) ≤ R2 looks like this:
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(−2, 0) (0, 0) (2, 0)

(0,−1)

(0, 1)

We know that if A ∈ ψ(H) then A.Trans(H) = Trans(H) (Lemma 5.8 in the notes). If A is a rotation about
the origin that sends Trans(H) to itself, then the angle must be 0 or π, so A = I or Rπ. If A is the reflection
across a line L through the origin, then L must be either the x-axis or the y-axis, so A = S0 or Sπ. Thus
ψ(H) ⊆ {1, S0, Sπ, S0Sπ} and so |ψ(H)| ≤ 4.

Here is a slightly more formal argument. We know that A.Trans(H) = Trans(H), so A(0, 1) lies in
Trans(H) and has length 1, so A(0, 1) = (0, 1) or A(0, 1) = (0,−1). In the first case we define A1 = A, and
in the second we define A1 = S0A; either way we have A1.Trans(H) = Trans(H) and A1(0, 1) = (0, 1). As
A1 preserves lengths and angles we see that A1(2, 0) is perpendicular to A1(0, 1) = (0, 1) and ‖A1(2, 0)‖ = 2;
the only possibilities are A1(2, 0) = (2, 0) or A1(2, 0) = (−2, 0). In the first case we put A2 = A1,and in the
second we define A2 = SπA1; either way we have A2(0, 1) = (0, 1) and A2(2, 0) = (2, 0). As (0, 1) and (2, 0)
are a basis of R2, this means that A2 = 1, and it follows that A is either 1, S0, Sπ or S0Sπ = Rπ.

Exercise 47. Let Oct be a regular octahedron, centred at the origin in R3. Since Oct is dual to the cube
we know that Dir(Oct) ' S4. Prove this directly as follows:

(i) Describe 24 rotation in Dir(Oct).
(ii) Describe a set of 4 objects in which Dir(Oct) acts and such that the induced homorphism Dir(Oct) −→

S4 is injective. Prove your assertions.

Solution:

Exercise 48. By considering cycle types show that A5 has no elements of order 15. What does the classi-
fication of finite subgroups of SO3 tell us about subgroups of A5 of order 30? Show that there are no such
subgroups.

Solution: A5 consists of elements of the following types:

• the identity, with order 1
• transposition pairs (such as (1 2)(3 4)), with order 2
• 3-cycles (such as (1 2 3)), with order 3
• 5-cycles (such as (1 2 3 4 5)) with order 5.

There are thus no elements of order 15.
Now let G be a subgroup of A5 with |G| = 30. The group A5 is isomorphic to the subgroup G3 of SO3, so

G is isomorphic to some subgroup of G3 and thus to a finite subgroup of SO3. It follows by the classification

that G is isomorphic to G1, G2 or G3, or to C̃n or D̃n for some n. As |G| = 30 which is different from the

orders of G1, G2 and G3 we must have G ' C̃30 or G ' D̃15. However C̃30 and D̃15 both contain elements
of order 15 and G does not, which gives a contradiction. Thus there can be no subgroups of A5 of order 30.

Exercise 49. Suppose H is a subgroup of a finite group G, and consider the action of G on the set

C = {gHg−1 | g ∈ G}
of conjugates of H.

(i) Show that h ∗K = hKh−1 defines an action of G on C.
(ii) Conclude that |C| divides the order of G.
(iii) Suppose G is of order pns with (p, s) = 1 and np is the number of conjugates of P . Use Part (ii) to

show that if np ≡ 1 mod p then np divides s.

Solution:
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Exercise 50. Let G be a group of order 605. Show that G has a normal subgroup of order 121 and hence
show that G is a semidirect product of proper subgroups.

Find a group automorphism θ : C11×C11 −→ C11×C11 of order 5. Construct a non-abelian group of order
605 which has a subgroup isomorphic to C11 ×C11 (You may use general facts about automorphism groups
of elementary abelian groups without proof.)

Solution:

Exercise 51. Write out the multiplication table of the group Z3 o−1 Z2.

Solution:

(0, 0) (+1, 0) (−1, 0) (0, 1) (+1, 1) (−1, 1)

(0, 0) (0, 0) (+1, 0) (−1, 0) (0, 1) (+1, 1) (−1, 1)

(+1, 0) (+1, 0) (−1, 0) (0, 0) (+1, 1) (−1, 1) (0, 1)

(−1, 0) (−1, 0) (0, 0) (+1, 0) (−1, 1) (0, 1) (+1, 1)

(0, 1) (0, 1) (−1, 1) (+1, 1) (0, 0) (+1, 0) (−1, 0)

(+1, 1) (+1, 1) (0, 1) (−1, 1) (+1, 0) (0, 0) (+1, 0)

(−1, 1) (−1, 1) (+1, 1) (0, 1) (−1, 0) (−1, 0) (0, 0)

Exercise 52. Prove by induction that in Zn oa Zm we have

(v, w)k = (v + awv + . . .+ a(k−1)wv, kw).

List the elements of the group G = Z5 o2 Z4. Calculate the element 1 + 2 + 2
2

+ 2
3 ∈ Z5. Can you explain

your result (carefully) with less calculation? Show that every element of G has order 1, 2, 4 or 5.

Solution: The base case says that (v, w)1 = (v, w), which is clear. Given the statement for (v, w)k we have

(v, w)k+1 = (v, w)(v, w)k

= (v, w)(v + awv + . . .+ a(k−1)wv, kw)

= (v + aw(v + awv + . . .+ a(k−1)wv), w + kw)

= (v + awv + a2wv + . . .+ akwv, (k + 1)w),

which is the required statement for (v, w)k+1.
The elements of G are as follows:

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3).

We have 2
2

= 4 and 2
3

= 8 = 3 so 1 + 2 + 2
2

+ 2
3

= 1 + 2 + 4 + 3 = 10 = 0. Alternatively, the group Z×5
has order 4, so for any x ∈ Z×5 we have x4 = 1 and thus (x− 1)(1 + x+ x2 + x3) = x4− 1 = 0. If x 6= 1 then
the element x− 1 is nonzero and thus has a multiplicative inverse in Z5, so we can multiply by this inverse

to see that 1 + x+ x2 + x3 = 0. By putting x = 2 we see again that 1 + 2 + 2
2

+ 2
3

= 0.
Now, for any element (v, w) ∈ G we have

(v, w)4 = (v + 2
w
v + 2

2w
v + 2

3w
v, 4w) = ((1 + 2

w
+ 2

2w
+ 2

3w
)v, 0).

(Here we have used the fact that 4w = 0 for all w ∈ Z4.) If w 6= 0 we can put x = 2
w 6= 1 in the previous

paragraph and deduce that 1 + 2
w

+ 2
2w

+ 2
3w

= 0, so (v, w)4 = (0, 0), which implies that the order of (v, w)
is 1, 2 or 4. On the other hand, if w = 0 then it is easy to see that (v, w)k = (v, 0)k = (kv, 0) and thus that
(v, w)5 = (0, 0), so the order of (v, w) is 1 or 5.
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Exercise 53. Recall that if H and K are groups the Cartesian product H×K is a group under the operation
(h, k)(h′, k′) = (hh′, kk′).

Show that if G is a group and a, b ∈ G are distinct with the property that a, b and ab all have order 2
then L = {e, a, b, ab} is a subgroup of G and L is isomorphic to C2 × C2.

Show that if K is any group of order 4 then either K ' C4 or K ' C2 × C2, but not both. Which of
these two alternatives hold for K = D2?

Solution: We first claim that the elements e, a, b and ab are all distinct. Indeed, if a = e or b = e or ab = e
then a, b or ab would have order 1 rather than 2, contradicting our assumption. We also have b 6= a by
assumption. We cannot have ab = a, because if we did we could multiply on the left by a−1 to get b = e.
Similarly, we cannot have ab = b, so all four elements are distinct, so L is a set of order 4.

The set L clearly contains e. As a2 = b2 = (ab)2 = e we have a−1 = a, b−1 = b, (ab)−1 = ab and of
course e−1 = e; thus L is closed under taking inverses. We also have ab = (ab)−1 = b−1a−1 = ba so a and b
commute. Using this, it is easy to fill in the multiplication table as follows:

e a b ab
e e a b ab
a a e ab b
b b ab e a
ab ab b a e

(For example, (ab)a = aba = aab = b, which explains the entry in the row marked ab and the column marked
a.) The table shows that L is closed under multiplication, so it is a subgroup. Recall that C2 = {1, R} where
R2 = 1. We can define φ : C2 × C2 −→ L by φ((Ri, Rj)) = aibj , so

φ((1, 1)) = e

φ((R, 1)) = a

φ((1, R)) = b

φ((R,R)) = ab

As C2 × C2 = {(1, 1), (R, 1), (1, R), (R,R)} we see that φ is a bijection.
As a and b commute we have

φ((Ri, Rj))φ((Rk, Rl)) = aibjakbl

= aiakbjbl

= ai+kbj+l

= φ((Ri+k, Rj+l))

= φ((Ri, Rj)(Rk, Rl)),

which shows that φ is a homomorphism and thus an isomorphism.
Now let K be a group of order 4. By Lagrange’s theorem, every element a ∈ K has order dividing 4 and

thus equal to 1, 2 or 4. Only the identity element can have order 1 so the other 3 elements must have order
2 or 4. If there are no elements of order 4 then let a and b be any two distinct elements of order 2. Then
ab is another element of K, which is not the identity because a 6= b−1 = b, so it must also have order 2.
Using the first part of the question we deduce that L = {1, a, b, ab} is a subgroup of K and is isomorphic to
C2 × C2. As |L| = |K| = 4 we must have L = K, so K ' C2 × C2.

On the other hand, suppose that not all elements of K \ {1} have order 2. Let a be an element of order
4, and put L = {1, a, a2, a3}. It is easy to see that L is a subgroup isomorphic to C4, and |L| = |K| = 4 so
L = K, so K ' C4 as claimed.

We cannot have both K ' C2 × C2 and K ' C4, for in the first case all elements of K have order 2
whereas in the second case some elements have order 4.

Exercise 54. Let G be a group of order 18.

(a) Show that there is a normal subgroup P ≤ G with |P | = 9, and another subgroup Q ≤ G of the
form Q = {1, h} with h2 = 1 (and so h−1 = h).
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(b) Show that if P ' C9 then G ' C2 × C9 or G ' D9.
(c) Now suppose that P ' C3 × C3 (so in particular, P is abelian, and x3 = 1 for all x ∈ P ). For any

x ∈ P , we put

xh = hxh = h−1xh

x+ = x2 (xh)2 = xxhxhhxh = xxhxxh

x− = x2 xh = xxhxh

P+ = {x ∈ P | xh = x}

P− = {x ∈ P | xh = x−1}.

(i) Show that x+ ∈ P+ and x− ∈ P− and x = x+x−.
(ii) Show that P+ and P− are subgroups of P , and that P+ ∩ P− = {1}.
(iii) Deduce that P ' P+ × P−.
(iv) Show that if |P+| = 9 then G ' C3 × C3 × C2.
(v) Show that if |P+| = 3 then G ' C3 ×D3.

(The case |P+| = 1 gives a new group, for which we do not yet have a name.)

Solution:

(a) We know that n3 divides 2 and is congruent to 1 modulo 3; the only possibility is n3 = 1. This
means that there is a unique, normal Sylow 3-subgroup, which we call P . We then let Q be any
Sylow 2-subgroup. As |Q| = 2, it is clear that Q = {1, h} for some h with h2 = 1.

(b) Suppose that P ' C9. We can then choose an element g ∈ P that generates P , with g9 = 1. As P
is normal, we see that hgh = ga for some integer a. As h2 = 1, this means that

g = h2gh2 = hgah = ga
2

,

so a2 = 1 (mod 9), so the number a2−1 = (a+ 1)(a−1) is divisible by 9. The following table shows
all numbers a mod 9 and their squares:

a −4 −3 −2 −1 0 1 2 3 4
a2 −2 0 4 1 0 1 4 0 −2

As a2 = 1 (mod 9), we must have a = 1 (mod 9) or a = −1 (mod 9), so hgh = g or hgh = g−1. If
hgh = g then h commutes with g and we find that G ' P ×Q ' C2×C9. If hgh = g−1 we find that
G ' D9.

(c) Now suppose instead that P ' C3 × C3.
(i) We have

(x+)h = hx+h = h(xxhxxh)h = hxxhxx.

Now, xx lies in P and P is normal so hxxh lies in P . Moreover, P is abelian, so xx commutes
with hxxh. We thus have hxxhxx = xxhxxh, or in other words, (x+)h = x+. This shows that
x+ ∈ P+.
Next, we have xxx = x3 = 1 and so

(x−)hx− = h(xxhxh)hxxhxh = hxxhxxxhxh = hxxhhxh = hxxxh = hh = 1,

so (x−)h = (x−)−1, so x− ∈ P−.
Finally, we have

x+x− = (xx)(hxxh) (xx)(hxh) = (xx)(xx)(hxxh)(hxh) = xhxxxh = xhh = x.

(In the second equality, we used the fact that each of the four bracketed terms lies in P , so we
can commute them past each other.)

(ii) Clearly 1 ∈ P+ and 1 ∈ P−. If x, y ∈ P+ we have x = hxh and y = hyh, so xy = hxhhyh =
hxyh, so xy ∈ P+. In particular, we can take y = x to see that the element x−1 = x2

lies in P+. This shows that P+ is a subgroup of P . Now suppose instead that x, y ∈ P−,
so that hxh = x−1 and hyh = y−1. As x and y commute we have x−1y−1 = (xy)−1, so
hxyh = hxhhyh = x−1y−1 = (xy)−1, so xy ∈ P−. It follows that P− is also a subgroup.
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If x ∈ P+ ∩P− then xh = x and also xh = x−1, so x = x−1, so x2 = 1. As P ' C3×C3 we also
know that x3 = 1, and it follows that x = x3(x2)−1 = 1. This shows that P+ ∩ P− = {1}.

(iii) As P+ and P− are subgroups of the abelian group P , we see that they commute with each
other, so we can define a homomorphism φ : P+ × P− −→ P by φ(y, z) = yz. For any x ∈ P we
have (x+, x−) ∈ P+ ×P− and φ(x+, x−) = x+x− = x. This shows that φ is surjective. We also
have P+ ∩ P− = {1}, which implies that φ is injective. This means we have an isomorphism
P+ × P− −→ P , and so |P+||P−| = 9.

(iv) Suppose that |P+| = 9, so P+ = P and P− = {1}. This means that hxh = x for all x ∈ P , so
P commutes with Q, so G ' Q× P ' C2 × C3 × C3.

(v) Now suppose instead that |P+| = 3, so |P−| = 3 also. This means that P+ ' P− ' C3, so we
can choose a ∈ P+ and b ∈ P− such that P+ = {1, a, a2} and P− = {1, b, b2} and a3 = b3 = 1.
We define φ : C3 ×D6 −→ G by

φ((Ri, Rj)) = aibj

φ((Ri, RjS)) = aibjh.

It is easy to check that this is an isomorphism of groups.

Exercise 55. (a) Let G be a group of order 21. Show that G has a normal subgroup of order 7 and
hence show that G is a semidirect product of proper subgroups.

(b) Construct a non-abelian group of order 21.
(c) Using the fact that Z×7 is cyclic, show that every non-Abelian group of order 21 is isomorphic to the

one in (b).

Solution:

(a) If we let n7 be the number of Sylow 7-subgroups then n7 divides 3 and is congruent to 1 modulo
7 so we must have n7 = 1. If we let N be the unique Sylow 7-subgroup then it follows that N is
normal in G. [Explicitly, if g ∈ G then gNg−1 is clearly a subgroup of order 7 but we have seen
that N is the only such subgroup so gNg−1 = N , which means that N is normal.] Now let Q be
a Sylow 3-subgroup of G. The order of N ∩ Q divides both 7 = |N | and 3 = |Q| so we must have
|N ∩Q| = 1 so N ∩Q = {1}. This means that |NQ| = |N ||Q|/|N ∩Q| = 21 = |G| so NQ = G, so
G is the semidirect product of N and Q.

(b) Recall that Zn oa Zm is defined whenever a ∈ Z×n and am = 1. As 2 ∈ Z×7 and 2
3

= 8 = 1, we can
define the group H = Z7 o2 Z3, which is a non-Abelian group of order 21.

(c) Let G be a non-Abelian group of order 21. As in part (a) we see that there are subgroups N and
Q of G such that N is normal, |N | = 7, |Q| = 3, and G is the semidirect product of N and Q. As
the orders of N and Q are prime, they must be cyclic groups. We saw in lectures that all semidirect
products of cyclic groups have the form Zn oa Zm, so G ' Z7 oa Z3 for some a ∈ Z×7 with a3 = 1.

We know that Z×7 is cyclic of order 6, generated by some element b say. From this it is not hard
to see that there are precisely three elements satisfying a3 = 1, viz. a = 1, a = b2 and a = b−2.
Explicitly, we have

a 1 2 3 −1 −2 −3

a3 1 1 −1 −1 −1 1

so the three possibilities are a = 1, a = 2 and a = −3 = 2
−1

. [If we take b = 3 then b generates
Z×7 and b2 = 2 and b−2 = −3.] The case a = 1 would give the Abelian group Z7 × Z3, which is
impossible as G is assumed to be non-Abelian.

We now see that G is isomorphic either to the group H = Z7 o2 Z3 considered in part (b), or to
the group H ′ := Z7 o−3 Z3. It will thus be enough to show that H ′ is isomorphic to H.

Define φ : H −→ H ′ by φ(v, w) = (v,−w); this is clearly a bijection. We next show that φ is a
homomorphism. We will write ∗ for the group operation in H and ∗′ for the group operation in H ′,
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so as to make clear which is which. We have

φ((v, w) ∗ (x, y)) = φ(v + 2
w
x,w + y)

= (v + 2
w
x,−w − y)

= (v +−3
−w
x,−w − y)

= (v,−w) ∗′ (x,−y)

= φ(v, w) ∗′ φ(x, y),

which shows that φ is a homomorphism as claimed, and thus an isomorphism.

Exercise 56. Let G be a group of order 60, and suppose that G has a cyclic normal subgroup N of order
12. Let Q be a Sylow 5-subgroup of G. What standard groups are N , Q and Aut(N) isomorphic to? Show
that every homomorphism φ : Q −→ Aut(N) is trivial. Deduce that every element of Q commutes with every
element of N , and thus that G is Abelian.

Solution: As N is cyclic of order 12, it is isomorphic to Z12. As |G| = 5 × 12 and 5 does not divide
12, the Sylow 5-subgroup Q must have order 5. Groups of prime order are cyclic so Q is isomorphic to
Z5. Finally, Aut(N) ' Aut(Z12) ' Z×12, and we showed in lectures that Z×12 = {±1,±5} ' C2 × C2, so
Aut(N) ' C2×C2. As the order of Q is coprime to the order of Aut(N), we deduce that any homomorphism
φ : Q −→ Aut(N) is trivial. [More explicitly, if g ∈ Q then g5 = 1 so φ(g)5 = φ(g5) = 1. On the other hand,
for any h ∈ Aut(N) ' C2 × C2 we have h2 = 1 so φ(g)2 = 1. This means that φ(g) = φ(g)5(φ(g)2)−2 = 1,
so φ is trivial.]

For any g ∈ Q we define as usual γg : N −→ N by γg(x) = gxg−1, so γg ∈ Aut(N). We then have a
homomorphism φ : Q −→ Aut(N) given by φ(g) = γg. This must be trivial, by our first paragraph. Thus
gxg−1 = x for all g ∈ Q and x ∈ N . After multiplying on the right by g we deduce that gx = xg for all g
and x, so every element of Q commutes with every element of N .

Now define µ : N×Q −→ G by µ(x, g) = xg = gx. As N and Q commute, this function is a homomorphism.
The image is the subgroup NQ, and because |N | = 12 and |Q| = 5 are coprime we have |NQ| = |N ||Q| =
60 = |G|, so NQ = G. It follows that µ is surjective and |N ×Q| = |G| so it must also be injective and thus
an isomorphism. Thus G ' Z12 × Z5, so G is Abelian.

Exercise 57. Show that every group of order 1225 is abelian.

Solution: First note that 1225 = 25× 49 = 5272, so we will study the Sylow 5-subgroups and 7-subgroups
of G. We know that n5 divides 49 (so n5 ∈ {1, 7, 49}) and n5 = 1 (mod 5). As 7 = 2 (mod 5) and 49 = 4
(mod 5) we see that the only possibility is n5 = 1. We therefore have a unique Sylow 5-subgroup, which we
call P . Note that P is normal, and also that |P | = 52, so Proposition 2.8 tells us that P is abelian.

Next, we know that n7 divides 25 (so n7 ∈ {1, 5, 25}) and n7 = 1 (mod 7). As 5 = 5 (mod 7) and 25 = 4
(mod 7), we see that n7 must be 1. There is thus a unique Sylow 7-subgroup, which we call Q. We again
see that Q is normal and abelian.

Using Proposition 2.9 in the notes, we see that G ' P ×Q. This is abelian, because P and Q are.

Exercise 58. If G is a group let θg : G −→ G be defined by θg(x) = gxg−1. The group of inner automorphisms
is

Inn(G) = {θg | g ∈ G}.
(i) Show that Inn(G) is a normal subgroup of Aut(G).
(ii) Calculate Aut(G), Inn(G) and Out(G) = Aut(G)/ Inn(G) in the following cases

(a) G = C7

(b) G = C3 × C3

(c) G = S3

(d) [A bit harder] G = Q8.

Solution:

Exercise 59. Given m ≥ 1 consider the 2× 2 matrices

x =

(
eπi/m 0

0 e−πi/m

)
and y =

(
0 −1
1 0

)
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Let Q4m = 〈x, y〉 be the subgroup of GL2(C) that they generate. This is called the generalized quaternion
group.

(i) Show that x is of order 2m and y is of order 4.
(ii) Show that yxy−1 = x−1.
(iii) Deduce from Part (ii) that any element of Q4m can be written in the form xiyj . Since xm = y2, we

may assume j = 0 or 1. List the 4m elements of Q4m.
(iv) Deduce from Part (ii) that for any l the subgroup 〈xl〉 is normal in Q4m.
(v) Show that if m is odd, Q4m is a semidirect product of the normal subgroup N = 〈x2〉 by the subgroup

H = 〈y〉, associated to the homomorphism φ : H −→ Aut(N) ∼= U(Zm) given by φ(y) = ψ−1.
(vi) Conclude that Q12 as defined here is isomorphic to the group with that name in the lectures.
(vii) Show that Q8 is not a semidirect product of proper subgroups.

Solution:
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