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for applications



Lecture 1



Background to the course

I This course is mainly about the theory of matrices.

I The (i , j)’th entry in a matrix could represent

I The brightness of the (i , j)’th pixel in a digitised image (relevant to image
processing).

I The probability that the i ’th word in the dictionary will be followed by the
j ’th word, in typical english text (relevant to machine translation).

I The number of links from the i ’th website to the j ’th website, in some list
of websites (relevant to search engine design).

I The response of the i ’th patient to the j ’th drug in a clinical trial.
I Many other things.

I We will learn how to calculate many things using matrices.

Row reduction
is a key ingredient in many methods of calculation. We will either use
matrices for which row reduction is easy, or get Maple to do the work. Our
main task is to learn how to convert other kinds of questions to
row-reduction questions, and to interpret the results.

I Eigenvalues and eigenvectors will be another important ingredient.

I A few applications will be treated in more detail: solution of difference
equations; solution of differential equations; long-term behaviour of
random systems known as Markov chains.
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Notation

I R is the set of all real numbers (“scalars”) so 17, π, 123
456
∈ R but

1 + i 6∈ R.

I Rn is the set of column vectors with n entries, so10
20
30

 ∈ R3


π
π2

π3

π4

 ∈ R4

[
12.38
−9.14

]
∈ R2.

I Mm×n(R) is the set of all m × n matrices (with m rows and n columns, ie
height m and width n)[

1 2 3
4 5 6

]
∈ M2×3(R)

1 2
3 4
5 6

 ∈ M3×2(R)

a 2× 3 matrix a 3× 2 matrix

I Mn(R) = Mn×n(R) is the set of all n × n square matrices. In is the n × n
identity matrix.

1 2 2 1
2 3 3 2
2 3 3 2
1 2 2 1

 ∈ M4(R) I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∈ M4(R)
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Notation

I The transpose of an m × n matrix A is the n × n matrix AT obtained by
flipping A over, so the (i , j)’th entry in AT is the same as the (j , i)’th
entry in A. For example, we have

[
a1 a2 a3 a4

b1 b2 b3 b4

]T
=


a1 b1

a2 b2

a3 b3

a4 b4

 .

I Note also that the transpose of a row vector is a column vector, for
example

[
5 6 7 8

]T
=


5
6
7
8

 .
I We will typically write column vectors in this way when it is convenient to

lay things out horizontally.
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Reminder about dot products

For column vectors u, v ∈ Rn, the dot product is

u.v = u1v1 + · · ·+ unvn =
n∑

i=1

uivi .

For example:


1
2
3
4

 .


1000
100
10
1

 = 1000 + 200 + 30 + 4 = 1234.
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Product of a matrix and a vector

We can multiply an m × n matrix by a vector in Rn to get a vector in Rm, for
example [

a b c
d e f

]x
y
z

 =

[
ax + by + cz
dx + ey + fz

]

(2× 3 matrix)(vector in R3) = (vector in R2)

General rule: divide A into n columns ui (each ui in Rm) or into m rows vT
j

(each vj in Rn)

A =

 u1 · · · un

 =

 vT
1

...

vT
m

 .
Now let t =

[
t1 · · · tn

]T
be a vector in Rn. The rule is then

At =

 vT
1

...

vT
m

 t =

v1.t
...

vm.t



= t1u1 + · · ·+ tnun.
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Product of a matrix and a vector

In the example [
a b c
d e f

]x
y
z

 =

[
ax + by + cz
dx + ey + fz

]
(2× 3 matrix)(vector in R3) = (vector in R2)

we have

v1 =

a
b
c

 v2 =
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AB 6= BA

If A and B are numbers then of course AB = BA, but this does not work in
general for matrices.

Suppose that A is an m × n matrix and B is an n × p
matrix, so we can define AB as before.

(a) Firstly, BA may not even be defined. It is only defined if the number of
columns of B is the same as the number of rows of A, or in other words
p = m.

(b) Suppose that p = m, so A is an m × n matrix, and B is an n ×m matrix,
and both AB and BA are defined.

We find that AB is an m ×m matrix
and BA is an n × n matrix. Thus, it is not meaningful to ask whether
AB = BA unless m = n.

(c) Suppose that m = n = p, so both A and B are square matrices of shape
n × n.

This means that AB and BA are also n × n matrices. However,
they are usually not equal. For example, we have1 0 0

0 2 0
0 0 3

 1 1 1
10 10 10

100 100 100

 =

 1 1 1
20 20 20

300 300 300


 1 1 1

10 10 10
100 100 100

1 0 0
0 2 0
0 0 3

 =

 1 2 3
10 20 30

100 200 300

 .
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Matrices and linear equations

Systems of linear equations can be rewritten as matrix equations.

Consider the
equations

w + 2x + 3y + 4z = 1

5w + 6x + 7y + 8z = 10

9w + 10x + 11y + 12z = 100

Note that 1 2 3 4
5 6 7 8
9 10 11 12




w
x
y
z

 =

 w + 2x + 3y + 4z
5w + 6x + 7y + 8z

9w + 10x + 11y + 12z


So our system of equations is equivalent to the single matrix equation

1 2 3 4
5 6 7 8
9 10 11 12




w
x
y
z

 =

 1
10

100

 .
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Matrices and linear equations

Systems of linear equations can be rewritten as matrix equations.

a + b + c = 10

a + 2b + 4c = 20

a + 3b + 9c = 30

a + 4b + 16c = 40

a + 5b + 25c = 50


1 1 1
1 2 4
1 3 9
1 4 16
1 5 25


a

b
c

 =


10
20
30
40
50

 .

The augmented matrix for an equation Au = v is [A|v ]:
1 1 1 10
1 2 4 20
1 3 9 30
1 4 16 40
1 5 25 50
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Tidying

Sometimes we need to tidy up first.

p + 7s = q + 1

5r + 1 = 7q − p

r + s = p + q

p −q +0r +7s = 1
p −7q +5r +0s = −1
p +q −r −s = 0

...

1 −1 0 7
1 −7 5 0
1 1 −1 −1




p
q
r
s

 =

 1
−1
0

 .
The augmented matrix is 1 −1 0 7 1

1 −7 5 0 −1
1 1 −1 −1 0





Tidying

Sometimes we need to tidy up first.

p + 7s = q + 1

5r + 1 = 7q − p

r + s = p + q

p −q +0r +7s = 1
p −7q +5r +0s = −1
p +q −r −s = 0

...

1 −1 0 7
1 −7 5 0
1 1 −1 −1




p
q
r
s

 =

 1
−1
0

 .
The augmented matrix is 1 −1 0 7 1

1 −7 5 0 −1
1 1 −1 −1 0





Tidying

Sometimes we need to tidy up first.

p + 7s = q + 1

5r + 1 = 7q − p

r + s = p + q

p −q +0r +7s = 1
p −7q +5r +0s = −1
p +q −r −s = 0

... 1 −1 0 7
1 −7 5 0
1 1 −1 −1




p
q
r
s

 =

 1
−1
0

 .

The augmented matrix is 1 −1 0 7 1
1 −7 5 0 −1
1 1 −1 −1 0





Tidying

Sometimes we need to tidy up first.

p + 7s = q + 1

5r + 1 = 7q − p

r + s = p + q

p −q +0r +7s = 1
p −7q +5r +0s = −1
p +q −r −s = 0

... 1 −1 0 7
1 −7 5 0
1 1 −1 −1




p
q
r
s

 =

 1
−1
0

 .
The augmented matrix is 1 −1 0 7 1

1 −7 5 0 −1
1 1 −1 −1 0





Lecture 2



(Reduced) row-echelon form

Definition 5.1: Let A be a matrix of real numbers.

Recall that A is said to
be in reduced row-echelon form (RREF) if the following hold:

RREF0: Any rows of zeros come at the bottom of the matrix, after all the nonzero
rows.

RREF1: In any nonzero row, the first nonzero entry is equal to one. These entries
are called pivots.

RREF2: In any nonzero row, the pivot is further to the right than the pivots in all
previous rows.

RREF3: If a column contains a pivot, then all other entries in that column are zero.

We will also say that a system of linear equations (in a specified list of
variables) is in RREF if the corresponding augmented matrix is in RREF.

If RREF0, RREF1 and RREF2 are satisfied but not RREF3 then we say that A
is in (unreduced) row-echelon form.
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(Reduced) row-echelon form

Example 5.2:

A =

1 2 0
0 0 0
0 0 1

 B =

0 2 0
0 0 1
0 0 0


C =

0 1 0
0 0 1
1 0 0

 D =

1 0 2
0 1 0
0 0 1

 .

A is not in RREF because the middle row is zero and the bottom row is not
(RREF0 fails).The matrix B is also not in RREF because the first nonzero
entry in the top row is 2 rather than 1 (RREF1 fails). The matrix C is not in
RREF because the pivot in the bottom row is to the left of the pivots in the
previous rows (RREF2 fails). The matrix D is not in RREF because the last
column contains a pivot and also another nonzero entry (RREF3 fails). On the
other hand, the matrix

E =


1 2 0 3 0 4
0 0 1 5 0 6
0 0 0 0 1 7
0 0 0 0 0 0


is in RREF.
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On the
other hand, the matrix

E =
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0 0 1 5 0 6
0 0 0 0 1 7
0 0 0 0 0 0


is in RREF.
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RREF for systems of equations

Example 5.3: The system of equations

x − z = 1

y = 2

is in RREF because its augmented matrix is in RREF:

A =

[
1 0 −1 1
0 1 0 2

]

The system of equations x + y + z = 1

y + z = 2

z = 3

is not in RREF because its augmented matrix is not in RREF:

B =

 1 1 1 1
0 1 1 2
0 0 1 3
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Solving RREF systems

If a system of equations is in RREF, it can be solved very easily.

w + 2x + 3z = 10

y + 4z = 20.

[
1 2 0 3 10
0 0 1 4 20

]

Variables in non-pivot columns are independent; they can take any value, and
we move them to the right hand side. Variables in pivot columns are
dependent; they stay on the left. The equations now express the dependent
variables in terms of the independent ones.

w = 10− 2x − 3z

y = 20− 4z

Sometimes it is convenient to introduce new letters for the independent
variables, say λ and µ. Then the solution is

w = 10− 2λ− 3µ

x = λ

y = 20− 4µ

z = µ

where λ and µ can take arbitrary values.
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Solving RREF systems — degenerate cases

The augmented matrix 
1 0 0 0 10
0 1 0 0 11
0 0 1 0 12
0 0 0 1 13


has a pivot in every column to the left of the bar, so there are no independent
variables.

It corresponds to the system

w = 10 x = 11 y = 12 z = 13

which is its own (unique) solution.
The augmented matrix 

1 0 0 1 0
0 1 1 0 0
0 0 0 0 1
0 0 0 0 0


has a pivot in the last column, to the right of the bar. It corresponds to the
system

w + z = 0 x + y = 0

0 = 1 0 = 0

so there is clearly no solution.
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Row operations

Let A be a matrix. The following operations on A are called elementary row
operations:

ERO1: Exchange two rows.

ERO2: Multiply a row by a nonzero constant.

ERO3: Add a multiple of one row to another row.

We write A→ B if A can be converted to B by a sequence of EROs. As all
EROs are reversible, we see that if A→ B then also B → A.

Theorem
Let A be a matrix.

(a) By applying a sequence of row operations to A, one can obtain a matrix B
that is in RREF.

(b) Although there are various different sequences that reduce A to RREF,
they all give the same matrix B at the end of the process.

In a moment we will recall the standard procedure for row-reduction. It is not
hard to prove (by induction on the number of rows) that this procedure always
works as advertised, so (a) is true. Statement (b) is an important fact but we
will not prove it in this course.
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Row reduction

To reduce a matrix A to RREF, we do the following.

(a) If all rows are zero, then A is already in RREF, so we are done.

(b) Otherwise, we find a row that has a nonzero entry as far to the left as
possible. Let this entry be u, in the k’th column of the j ’th row say.
Because we went as far to the left as possible, all entries in columns 1 to
k − 1 of the matrix are zero.

(c) We now exchange the first row with the j ’th row (which does nothing if j
happens to be equal to one).

(d) Next, we multiply the first row by u−1. We now have a 1 in the k’th
column of the first row.

(e) We now subtract multiples of the first row from all the other rows to
ensure that the k’th column contains nothing except for the pivot in the
first row.

(f) We now ignore the first row and apply row operations to the remaining
rows to put them in RREF.

(g) If we put the first row back in, we have a matrix that is nearly in RREF,
except that the first row may have nonzero entries above the pivots in the
lower rows. This can easily be fixed by subtracting multiples of those lower
rows.
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Row reduction example

Consider the following sequence of reductions:

 0 0 −2 −1 −13
−1 −2 −1 1 −2
−1 −2 0 −1 −8



1−→

−1 −2 −1 1 −2
0 0 −2 −1 −13
−1 −2 0 −1 −8

 2−→

 1 2 1 −1 2
0 0 −2 −1 −13
−1 −2 0 −1 −8

 3−→

1 2 1 −1 2
0 0 −2 −1 −13
0 0 1 −2 −6

 4−→

1 2 1 −1 2
0 0 1 1/2 13/2
0 0 1 −2 −6

 5−→

1 2 1 −1 2
0 0 1 1/2 13/2
0 0 0 −5/2 −25/2

 6−→

1 2 1 −1 2
0 0 1 1/2 13/2
0 0 0 1 5

 7−→

1 2 1 −1 2
0 0 1 0 4
0 0 0 1 5

 8−→

1 2 0 −1 −2
0 0 1 0 4
0 0 0 1 5

 9−→

1 2 0 0 3
0 0 1 0 4
0 0 0 1 5



Exchange the first two rows; Multiply the first row by −1; Add the first row
to the third row; Divide the second row by −2; Subtract the second row from
the third; Multiplying the third row by −2/5; Subtract half the bottom row
from the middle row; Subtract the middle row from the top row; Add the
bottom row to the top row.
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0 0 −2 −1 −13
−1 −2 0 −1 −8

 3−→

1 2 1 −1 2
0 0 −2 −1 −13
0 0 1 −2 −6

 4−→

1 2 1 −1 2
0 0 1 1/2 13/2
0 0 1 −2 −6



5−→

1 2 1 −1 2
0 0 1 1/2 13/2
0 0 0 −5/2 −25/2

 6−→

1 2 1 −1 2
0 0 1 1/2 13/2
0 0 0 1 5

 7−→

1 2 1 −1 2
0 0 1 0 4
0 0 0 1 5

 8−→

1 2 0 −1 −2
0 0 1 0 4
0 0 0 1 5

 9−→

1 2 0 0 3
0 0 1 0 4
0 0 0 1 5



Exchange the first two rows; Multiply the first row by −1; Add the first row
to the third row; Divide the second row by −2;

Subtract the second row from
the third; Multiplying the third row by −2/5; Subtract half the bottom row
from the middle row; Subtract the middle row from the top row; Add the
bottom row to the top row.
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to the third row; Divide the second row by −2; Subtract the second row from
the third; Multiplying the third row by −2/5; Subtract half the bottom row
from the middle row; Subtract the middle row from the top row; Add the
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Row reduction example

Consider the following sequence of reductions:

C =


1 2 −3 3 2 0
−1 −1 3 0 1 3
1 2 0 1 0 1
−1 −1 0 4 5 4
1 2 1 7 6 8



1−→


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 3 −2 −2 1
0 1 −3 7 7 4
0 0 4 4 4 8

 2−→


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 3 −2 −2 1
0 0 −3 4 4 1
0 0 1 1 1 2

 3−→


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 −3 4 4 1
0 0 3 −2 −2 1

 4−→


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 7 7 7
0 0 0 −5 −5 −5

 5−→


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 1 1 1
0 0 0 0 0 0

 6−→


1 0 −3 −3 −4 −6
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 1 1 1
0 0 0 0 0 0

 7−→


1 0 0 0 −1 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 1 1 1
0 0 0 0 0 0

 8−→


1 0 0 0 −1 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 0 0 0


Add row 1 to rows 2 and 4, and subtract it from rows 3 and 5; Subtract row

2 from row 4; Exchange rows 3 and 5; Add 3 times row 3 to row 4, and
subtract 3 times row 3 from row 5; Divide row 4 by 7, then add 5 times row 4
to row 5; Subtract 2 times row 2 from row 1; Add 3 times row 3 to row 1;
Subtract 3 times row 4 from row 2, and subtract row 4 from row 3.



Row reduction example

Consider the following sequence of reductions:

C =
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−1 −1 3 0 1 3
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−1 −1 0 4 5 4
1 2 1 7 6 8
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Add row 1 to rows 2 and 4, and subtract it from rows 3 and 5;

Subtract row

2 from row 4; Exchange rows 3 and 5; Add 3 times row 3 to row 4, and
subtract 3 times row 3 from row 5; Divide row 4 by 7, then add 5 times row 4
to row 5; Subtract 2 times row 2 from row 1; Add 3 times row 3 to row 1;
Subtract 3 times row 4 from row 2, and subtract row 4 from row 3.
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Add row 1 to rows 2 and 4, and subtract it from rows 3 and 5; Subtract row

2 from row 4;

Exchange rows 3 and 5; Add 3 times row 3 to row 4, and
subtract 3 times row 3 from row 5; Divide row 4 by 7, then add 5 times row 4
to row 5; Subtract 2 times row 2 from row 1; Add 3 times row 3 to row 1;
Subtract 3 times row 4 from row 2, and subtract row 4 from row 3.
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Add row 1 to rows 2 and 4, and subtract it from rows 3 and 5; Subtract row

2 from row 4; Exchange rows 3 and 5;

Add 3 times row 3 to row 4, and
subtract 3 times row 3 from row 5; Divide row 4 by 7, then add 5 times row 4
to row 5; Subtract 2 times row 2 from row 1; Add 3 times row 3 to row 1;
Subtract 3 times row 4 from row 2, and subtract row 4 from row 3.
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Add row 1 to rows 2 and 4, and subtract it from rows 3 and 5; Subtract row

2 from row 4; Exchange rows 3 and 5; Add 3 times row 3 to row 4, and
subtract 3 times row 3 from row 5;

Divide row 4 by 7, then add 5 times row 4
to row 5; Subtract 2 times row 2 from row 1; Add 3 times row 3 to row 1;
Subtract 3 times row 4 from row 2, and subtract row 4 from row 3.



Row reduction example

Consider the following sequence of reductions:

C =


1 2 −3 3 2 0
−1 −1 3 0 1 3
1 2 0 1 0 1
−1 −1 0 4 5 4
1 2 1 7 6 8

 1−→


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 3 −2 −2 1
0 1 −3 7 7 4
0 0 4 4 4 8

 2−→


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 3 −2 −2 1
0 0 −3 4 4 1
0 0 1 1 1 2

 3−→


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 −3 4 4 1
0 0 3 −2 −2 1

 4−→


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 7 7 7
0 0 0 −5 −5 −5

 5−→


1 2 −3 3 2 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 1 1 1
0 0 0 0 0 0



6−→


1 0 −3 −3 −4 −6
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 1 1 1
0 0 0 0 0 0

 7−→


1 0 0 0 −1 0
0 1 0 3 3 3
0 0 1 1 1 2
0 0 0 1 1 1
0 0 0 0 0 0

 8−→


1 0 0 0 −1 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 0 0 0



Add row 1 to rows 2 and 4, and subtract it from rows 3 and 5; Subtract row

2 from row 4; Exchange rows 3 and 5; Add 3 times row 3 to row 4, and
subtract 3 times row 3 from row 5; Divide row 4 by 7, then add 5 times row 4
to row 5;

Subtract 2 times row 2 from row 1; Add 3 times row 3 to row 1;
Subtract 3 times row 4 from row 2, and subtract row 4 from row 3.
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2 from row 4; Exchange rows 3 and 5; Add 3 times row 3 to row 4, and
subtract 3 times row 3 from row 5; Divide row 4 by 7, then add 5 times row 4
to row 5; Subtract 2 times row 2 from row 1;

Add 3 times row 3 to row 1;
Subtract 3 times row 4 from row 2, and subtract row 4 from row 3.
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Add row 1 to rows 2 and 4, and subtract it from rows 3 and 5; Subtract row

2 from row 4; Exchange rows 3 and 5; Add 3 times row 3 to row 4, and
subtract 3 times row 3 from row 5; Divide row 4 by 7, then add 5 times row 4
to row 5; Subtract 2 times row 2 from row 1; Add 3 times row 3 to row 1;

Subtract 3 times row 4 from row 2, and subtract row 4 from row 3.



Row reduction example

Consider the following sequence of reductions:

C =


1 2 −3 3 2 0
−1 −1 3 0 1 3
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−1 −1 0 4 5 4
1 2 1 7 6 8

 1−→
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Add row 1 to rows 2 and 4, and subtract it from rows 3 and 5; Subtract row

2 from row 4; Exchange rows 3 and 5; Add 3 times row 3 to row 4, and
subtract 3 times row 3 from row 5; Divide row 4 by 7, then add 5 times row 4
to row 5; Subtract 2 times row 2 from row 1; Add 3 times row 3 to row 1;
Subtract 3 times row 4 from row 2, and subtract row 4 from row 3.



Deleting columns

We previously saw the following row-reduction:
 0 0 −2 −1 −13
−1 −2 −1 1 −2
−1 −2 0 −1 −8

 →
−1 −2 −1 1 −2

0 0 −2 −1 −13
−1 −2 0 −1 −8

 → · · · →
1 2 0 0 3
0 0 1 0 4
0 0 0 1 5



We can delete the middle column and it still works the same way:
 0 0 −1 −13
−1 −2 1 −2
−1 −2 −1 −8

 →
−1 −2 1 −2

0 0 −1 −13
−1 −2 −1 −8

 → · · · →
1 2 0 3
0 0 0 4
0 0 1 5



(However, the final result is no longer in RREF; we need further row
operations to fix that.)

In general: suppose that A→ A′, and that B is obtained by deleting some
columns from A, and that B ′ is obtained by deleting the corresponding columns
from A′. Then B → B ′.
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Solution by row-reduction

Theorem 6.8: Let A be an augmented matrix, and let A′ be obtained from A
by a sequence of row operations.

Then the system of equations corresponding
to A has the same solutions (if any) as the system of equations corresponding
to A′.
This should be fairly clear. The three types of elementary row operations
correspond to reordering our system of equations, multiplying both sides of one
equation by a nonzero constant, and adding one equation to another one.
None of these operations changes the solution set. We thus have the following
method:
Method 6.9: To solve a system of linear equations:

(a) Write down the corresponding augmented matrix.

(b) Row-reduce it to RREF

(c) Convert it back to a new system of equations, which will have exactly the
same solutions as the old ones.

(d) Read off the solutions (which is easy for a system in RREF).



Solution by row-reduction

Theorem 6.8: Let A be an augmented matrix, and let A′ be obtained from A
by a sequence of row operations. Then the system of equations corresponding
to A has the same solutions (if any) as the system of equations corresponding
to A′.

This should be fairly clear. The three types of elementary row operations
correspond to reordering our system of equations, multiplying both sides of one
equation by a nonzero constant, and adding one equation to another one.
None of these operations changes the solution set. We thus have the following
method:
Method 6.9: To solve a system of linear equations:

(a) Write down the corresponding augmented matrix.

(b) Row-reduce it to RREF

(c) Convert it back to a new system of equations, which will have exactly the
same solutions as the old ones.

(d) Read off the solutions (which is easy for a system in RREF).



Solution by row-reduction

Theorem 6.8: Let A be an augmented matrix, and let A′ be obtained from A
by a sequence of row operations. Then the system of equations corresponding
to A has the same solutions (if any) as the system of equations corresponding
to A′.
This should be fairly clear.

The three types of elementary row operations
correspond to reordering our system of equations, multiplying both sides of one
equation by a nonzero constant, and adding one equation to another one.
None of these operations changes the solution set. We thus have the following
method:
Method 6.9: To solve a system of linear equations:

(a) Write down the corresponding augmented matrix.

(b) Row-reduce it to RREF

(c) Convert it back to a new system of equations, which will have exactly the
same solutions as the old ones.

(d) Read off the solutions (which is easy for a system in RREF).



Solution by row-reduction

Theorem 6.8: Let A be an augmented matrix, and let A′ be obtained from A
by a sequence of row operations. Then the system of equations corresponding
to A has the same solutions (if any) as the system of equations corresponding
to A′.
This should be fairly clear. The three types of elementary row operations
correspond to reordering our system of equations, multiplying both sides of one
equation by a nonzero constant, and adding one equation to another one.

None of these operations changes the solution set. We thus have the following
method:
Method 6.9: To solve a system of linear equations:

(a) Write down the corresponding augmented matrix.

(b) Row-reduce it to RREF

(c) Convert it back to a new system of equations, which will have exactly the
same solutions as the old ones.

(d) Read off the solutions (which is easy for a system in RREF).



Solution by row-reduction

Theorem 6.8: Let A be an augmented matrix, and let A′ be obtained from A
by a sequence of row operations. Then the system of equations corresponding
to A has the same solutions (if any) as the system of equations corresponding
to A′.
This should be fairly clear. The three types of elementary row operations
correspond to reordering our system of equations, multiplying both sides of one
equation by a nonzero constant, and adding one equation to another one.
None of these operations changes the solution set.

We thus have the following
method:
Method 6.9: To solve a system of linear equations:

(a) Write down the corresponding augmented matrix.

(b) Row-reduce it to RREF

(c) Convert it back to a new system of equations, which will have exactly the
same solutions as the old ones.

(d) Read off the solutions (which is easy for a system in RREF).



Solution by row-reduction

Theorem 6.8: Let A be an augmented matrix, and let A′ be obtained from A
by a sequence of row operations. Then the system of equations corresponding
to A has the same solutions (if any) as the system of equations corresponding
to A′.
This should be fairly clear. The three types of elementary row operations
correspond to reordering our system of equations, multiplying both sides of one
equation by a nonzero constant, and adding one equation to another one.
None of these operations changes the solution set. We thus have the following
method:

Method 6.9: To solve a system of linear equations:

(a) Write down the corresponding augmented matrix.

(b) Row-reduce it to RREF

(c) Convert it back to a new system of equations, which will have exactly the
same solutions as the old ones.

(d) Read off the solutions (which is easy for a system in RREF).



Solution by row-reduction

Theorem 6.8: Let A be an augmented matrix, and let A′ be obtained from A
by a sequence of row operations. Then the system of equations corresponding
to A has the same solutions (if any) as the system of equations corresponding
to A′.
This should be fairly clear. The three types of elementary row operations
correspond to reordering our system of equations, multiplying both sides of one
equation by a nonzero constant, and adding one equation to another one.
None of these operations changes the solution set. We thus have the following
method:
Method 6.9: To solve a system of linear equations:

(a) Write down the corresponding augmented matrix.

(b) Row-reduce it to RREF

(c) Convert it back to a new system of equations, which will have exactly the
same solutions as the old ones.

(d) Read off the solutions (which is easy for a system in RREF).



Solution by row-reduction

Theorem 6.8: Let A be an augmented matrix, and let A′ be obtained from A
by a sequence of row operations. Then the system of equations corresponding
to A has the same solutions (if any) as the system of equations corresponding
to A′.
This should be fairly clear. The three types of elementary row operations
correspond to reordering our system of equations, multiplying both sides of one
equation by a nonzero constant, and adding one equation to another one.
None of these operations changes the solution set. We thus have the following
method:
Method 6.9: To solve a system of linear equations:

(a) Write down the corresponding augmented matrix.

(b) Row-reduce it to RREF

(c) Convert it back to a new system of equations, which will have exactly the
same solutions as the old ones.

(d) Read off the solutions (which is easy for a system in RREF).



Solution by row-reduction

Theorem 6.8: Let A be an augmented matrix, and let A′ be obtained from A
by a sequence of row operations. Then the system of equations corresponding
to A has the same solutions (if any) as the system of equations corresponding
to A′.
This should be fairly clear. The three types of elementary row operations
correspond to reordering our system of equations, multiplying both sides of one
equation by a nonzero constant, and adding one equation to another one.
None of these operations changes the solution set. We thus have the following
method:
Method 6.9: To solve a system of linear equations:

(a) Write down the corresponding augmented matrix.

(b) Row-reduce it to RREF

(c) Convert it back to a new system of equations, which will have exactly the
same solutions as the old ones.

(d) Read off the solutions (which is easy for a system in RREF).



Solution by row-reduction

Theorem 6.8: Let A be an augmented matrix, and let A′ be obtained from A
by a sequence of row operations. Then the system of equations corresponding
to A has the same solutions (if any) as the system of equations corresponding
to A′.
This should be fairly clear. The three types of elementary row operations
correspond to reordering our system of equations, multiplying both sides of one
equation by a nonzero constant, and adding one equation to another one.
None of these operations changes the solution set. We thus have the following
method:
Method 6.9: To solve a system of linear equations:

(a) Write down the corresponding augmented matrix.

(b) Row-reduce it to RREF

(c) Convert it back to a new system of equations, which will have exactly the
same solutions as the old ones.

(d) Read off the solutions (which is easy for a system in RREF).



Solution by row-reduction

Theorem 6.8: Let A be an augmented matrix, and let A′ be obtained from A
by a sequence of row operations. Then the system of equations corresponding
to A has the same solutions (if any) as the system of equations corresponding
to A′.
This should be fairly clear. The three types of elementary row operations
correspond to reordering our system of equations, multiplying both sides of one
equation by a nonzero constant, and adding one equation to another one.
None of these operations changes the solution set. We thus have the following
method:
Method 6.9: To solve a system of linear equations:

(a) Write down the corresponding augmented matrix.

(b) Row-reduce it to RREF

(c) Convert it back to a new system of equations, which will have exactly the
same solutions as the old ones.

(d) Read off the solutions (which is easy for a system in RREF).



Example solution by row-reduction

We will try to solve the following system:

2x + y + z = 1
4x + 2y + 3z = −1
6x + 3y − z = 11

We construct and then row-reduce the augmented matrix:

 2 1 1 1
4 2 3 −1
6 3 −1 11

 1−→

 2 1 1 1
0 0 1 −3
0 0 −4 8

 2−→

 2 1 1 1
0 0 1 −3
0 0 0 −4

 3−→

 2 1 0 0
0 0 1 0
0 0 0 1



There is a pivot in the rightmost column, which means that there are no
solutions for the original system.

Each of the equations defines a plane. These are arranged like the three faces
of a Toblerone packet, so there is no point where they all meet.
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Example solution by row-reduction

We will solve the equations a + b + c + d = 4

a + b − c − d = 0

a− b + c − d = 0

a− b − c + d = 0.

The corresponding augmented matrix can be row-reduced as follows:


1 1 1 1 4
1 1 −1 −1 0
1 −1 1 −1 0
1 −1 −1 1 0



1−→


1 1 1 1 4
0 0 −2 −2 −4
1 −1 1 −1 0
0 0 −2 2 0

 2−→


1 1 1 1 4
0 0 1 1 2
1 −1 1 −1 0
0 0 1 −1 0

 3−→


1 1 0 0 2
0 0 1 1 2
1 −1 0 0 0
0 0 1 −1 0

 4−→


1 1 0 0 2
0 0 1 1 2
0 −2 0 0 −2
0 0 0 −2 −2

 5−→


1 1 0 0 2
0 0 1 1 2
0 1 0 0 1
0 0 0 1 1

 6−→


1 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 0 0 1 1

 7−→


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1



Subtract row 1 from row 2, and row 3 from row 4; Multiply rows 2 and 4 by
−1/2; Subtract row 2 from row 1, and row 4 from row 3; Subtract row 1
from row 3, and row 2 from row 4; Multiply rows 3 and 4 by −1/2; Subtract
row 3 from row 1, and row 4 from row 2; Exchange rows 2 and 3.
The final matrix corresponds to the equations a = 1, b = 1, c = 1 and d = 1,
which give the unique solution to the original system of equations.
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Exchange rows 2 and 3.
The final matrix corresponds to the equations a = 1, b = 1, c = 1 and d = 1,
which give the unique solution to the original system of equations.
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Homogeneous systems

A system of linear equations is homogeneous if the values on the right hand
side are all zero.

Example:

a + b + c + d + e + f = 0

2a + 2b + 2c + 2d − e − f = 0

3a + 3b − c − d − e − f = 0

The last column of the augmented matrix is zero all through the row reduction,
so we need not write it in; we can work with the unaugmented matrix.1 1 1 1 1 1

2 2 2 2 −1 −1
3 3 −1 −1 −1 −1



→

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1



a + b = 0 c + d = 0 e + f = 0.

Move the independent variables (from non-pivot columns) to the RHS:

a = −b c = −d e = −f .

If we prefer we can introduce new variables λ, µ and ν, and say that the
general solution is

a = −λ c = −µ e = −ν
b = λ d = µ f = ν

for arbitrary values of λ, µ and ν.
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Lecture 3



Linear combinations

Definition 7.1: Let v1, . . . , vk and w be vectors in Rn. We say that w is a
linear combination of v1, . . . , vk if there exist scalars λ1, . . . , λk such that

w = λ1v1 + · · ·+ λkvk .

Example 7.2: Consider the following vectors in R4:

v1 =


1
−1
0
0

 v2 =


0
1
−1
0

 v3 =


0
0
1
−1

 w =


1

10
100
−111



If we take λ1 = 1 and λ2 = 11 and λ3 = 111 we get

λ1v1 + λ2v2 + λ3v3 =


1
−1
0
0

+


0

11
−11

0

+


0
0

111
−111



=


1

10
100
−111

 = w ,

which shows that w is a linear combination of v1, v2 and v3.
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Linear combinations example

w is a linear combination of v1, . . . , vk if there exist scalars λ1, . . . , λk such that

w = λ1v1 + · · ·+ λkvk .

Consider the following vectors in R4:

v1 =


0
1
2
3

 v2 =


0
1
4
9

 v3 =


0
1
8

27

 v4 =


0
1

16
81

 w =


1
1
1
1

 .

Any linear combination of v1, . . . , v4 has the form

λ1v1 + λ2v2 + λ3v3 + λ4v4 =


0

λ1 + λ2 + λ3 + λ4

2λ1 + 4λ2 + 8λ3 + 16λ4

3λ1 + 9λ2 + 27λ3 + 81λ4

 .
Thus, the first component of any such linear combination is zero.

(You should be able to see this without writing out the whole formula.)
As the first component of w is not zero, we see that w is not a linear
combination of v1, . . . , v4.
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Linear combinations example

w is a linear combination of v1, . . . , vk if there exist scalars λ1, . . . , λk such that

w = λ1v1 + · · ·+ λkvk .

Consider the following vectors in R3:

v1 =

1
1
1

 v2 =

1
2
1

 v3 =

1
3
1

 v4 =

1
4
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1
5
1
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0
1

 .

Any linear combination of v1, . . . , v5 has the form

λ1v1 + · · ·+ λ5v5 =

 λ1 + λ2 + λ3 + λ4 + λ5

λ1 + 2λ2 + 3λ3 + 4λ4 + 5λ5

λ1 + λ2 + λ3 + λ4 + λ5

 .
The first and last components of any such linear combination are the same.

Again, you should be able to see this without writing the full formula. As the
first and last components of w are different, we see that w is not a linear
combination of v1, . . . , v5.
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Two vectors in R3 span a plane

Any vector that lies in the grey plane can be expressed as a linear combination
of the two blue vectors.
Any vector that does not lie in the grey plane cannot be expressed as a linear
combination of the two blue vectors.
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Method for finding linear combinations

Suppose we have vectors v1, . . . , vk ∈ Rn and another vector w ∈ Rn

,
and we want to express w as a linear combination of the vi
(or show that this is not possible).
Let A be the matrix whose columns are the vectors vi :

A =
[

v1 · · · vk
]
∈ Mn×k(R).

For any k-vector λ =
[
λ1 · · · λk

]T
we have

Aλ =
[

v1 · · · vk
] λ1

...
λk

 = λ1v1 + · · ·+ λkvk

Thus, to express w as a linear combination of the vi is the same as to solve
the vector equation Aλ = w , which we can do by row-reducing the augmented
matrix

B =
[

A w
]

=
[

v1 · · · vk w
]
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Example of finding a linear combination

Is w a linear combination of v1, v2 and v3?

v1 =


11
11
1
1

 v2 =


1

11
11
1

 v3 =


1
1

11
11

 w =


121
221

1211
1111

 .

We write down the relevant augmented matrix and row-reduce it:
11 1 1 121
11 11 1 221
1 11 11 1211
1 1 11 1111



→


1 1 11 1111

11 1 1 121
11 11 1 221
1 11 11 1211

→


1 1 11 1111
0 −10 −120 −12100
0 0 −120 −12000
0 10 0 100



→


1 1 11 1111
0 1 12 1210
0 0 1 100
0 1 0 10

 →


1 1 0 11
0 1 0 10
0 0 1 100
0 1 0 10

 →


1 0 0 1
0 1 0 10
0 0 1 100
0 0 0 0



Move the bottom row to the top; Subtract multiples of row 1 from the other
rows; Divide rows 2,3 and 4 by −10, −120 and 10; Subtract multiples of row 3
from the other rows; Subtract multiples of row 2 from the other rows.
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The final matrix corresponds to the system of equations

λ1 = 1 λ2 = 10 λ3 = 100 0 = 0
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In particular, w can be expressed as a linear combination of v1, v2 and v3.
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Example of not finding a linear combination

Is b a linear combination of a1, a2 and a3?

a1 =

 2
−1
0

 a2 =

 3
0
−1

 a3 =

 0
3
−2

 b =

1
2
3



We write down the relevant augmented matrix and row-reduce it: 2 3 0 1
−1 0 3 2
0 −1 −2 3



→

 1 0 −3 −2
0 1 2 −3
2 3 0 1

 →
 1 0 −3 −2

0 1 2 −3
0 3 6 5

 →
 1 0 −3 −2

0 1 2 −3
0 0 0 14

 →
 1 0 −3 −2

0 1 2 −3
0 0 0 1

 →
 1 0 −3 0

0 1 2 0
0 0 0 1



Move the top row to the bottom, and multiply the other two rows by −1;
Subtract 2 times row 1 from row 3; Subtract 3 times row 2 from row 3; Divide
row 3 by 14; Subtract multiples of row 3 from rows 1 and 2.
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 2 3 0 1
−1 0 3 2
0 −1 −2 3

→ . . .→

 1 0 −3 0
0 1 2 0
0 0 0 1



The final matrix has a pivot in the rightmost column, corresponding to the
equation 0 = 1. This means that the equation λ1a1 + λ2a2 + λ3a3 = b cannot
be solved for λ1, λ2 and λ3, or in other words that b is not a linear combination
of a1, a2 and a3.
We can also see this in a more direct but less systematic way, as follows. It is
easy to check that b.a1 = b.a2 = b.a3 = 0, which means that
b.(λ1a1 + λ2a2 + λ3a3) = 0 for all possible choices of λ1, λ2 and λ3. However,
b.b = 14 > 0, so b cannot be equal to λ1a1 + λ2a2 + λ3a3.
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Linear independence

Definition 8.1: Let V = v1, . . . , vk be a list of vectors in Rn.

A linear relation between the vi is a relation of the form λ1v1 + · · ·+ λkvk = 0,
where λ1, . . . , λk are scalars.

For any list we have the trivial linear relation 0v1 + 0v2 + · · ·+ 0vk = 0.
There may or may not be any nontrivial linear relations.

If V has a nontrivial linear relation, we say that it is (linearly) dependent.
If the only linear relation on V is the trivial one, we instead say that V is
(linearly) independent.

Example 8.2: Consider the list V given by

v1 =


1
1
0
0

 v2 =


0
0
1
1

 v3 =


1
0
0
1

 v4 =


0
1
1
0

 .

There is a nontrivial linear relation v1 + v2 − v3 − v4 = 0, so the list V is
dependent.
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Linear dependence example

The list v1, . . . , vk is dependent if there is a relation λ1v1 + · · ·+ λkvk = 0 with
not all λi being zero. Otherwise, it is independent.

Example 8.3: Consider the list A given by

a1 =

[
1
2

]
a2 =

[
12
1

]
a3 =

[
−1
−1

]
a4 =

[
3
1

]
.

Just by writing it out, you can check that 3a1 + a2 + 3a3 − 4a4 = 0.
This is a nontrivial linear relation on the list A, so A is dependent.

Example 8.4: Claim: the following list U is independent.

u1 =
[
1 1 0 0

]T
u2 =

[
0 1 1 0

]T
u3 =

[
0 0 1 1

]T

Indeed, consider a linear relation λ1u1 + λ2u2 + λ3u3 = 0. This gives
λ1

λ1 + λ2

λ2 + λ3

λ3

 =


0
0
0
0

 ;

λ1 = 0; λ3 = 0; λ1 + λ2 = 0; λ2 = 0.

As the only linear relation is the trivial one, we see that U is independent.
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Pivots in every column

Definition 8.6: Let B be a p × q matrix.
We say that B is wide if p < q, or square if p = q or tall if p > q.1 2 1

2 3 2
1 2 1

 1 1
0 0
1 1


wide square tall

Lemma 8.7: Let B be a p × q matrix in RREF.

(a) If B is wide then it is impossible for every column to contain a pivot.

(b) If B is square and every column contains a pivot then B = Iq.
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Checking dependence by row-reduction

Method 8.8: Let V = v1, . . . , vm be a list of vectors in Rn.

We can check whether this list is dependent as follows.

(a) Form the n ×m matrix A =

 v1 . . . vm

 whose columns are the

vectors vi .

(b) Row reduce A to get another n ×m matrix B in RREF.

(c) If every column of B contains a pivot (as on the previous slide) then V is
independent.

(d) If some column of B has no pivot, then the list V is dependent.

Moreover,
we can find the coefficients λi in a nontrivial linear relation by solving the
vector equation Bλ = 0

(which is easy because B is in RREF).

Remark 8.9: If m > n then V is automatically dependent and need not do
any more.

(Any list of 5 vectors in R3 is dependent, any list of 10 in R9 is dependent, . . . .)
Indeed, in this case B is wide, so it cannot have a pivot in every column. This
only tells us that there exists a nontrivial relation λ1v1 + · · ·+ λmvm = 0, it
does not tell us the coefficients λi . To find them we do need to go through the
whole method as explained above.
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Example of checking for (in)dependence

We previously considered the list

v1 =


1
1
0
0

 v2 =


0
0
1
1

 v3 =


1
0
0
1

 v4 =


0
1
1
0

 .

We can write down the corresponding matrix and row-reduce it as follows:
1 0 1 0
1 0 0 1
0 1 0 1
0 1 1 0



1−→


1 0 1 0
0 0 −1 1
0 1 0 1
0 0 1 −1

 2−→


1 0 1 0
0 1 0 1
0 0 1 −1
0 0 −1 1

 3−→


1 0 0 1
0 1 0 1
0 0 1 −1
0 0 0 0



The end result has no pivot in the last column, so the original list is
dependent. To find a specific linear relation, we solve the equation

1 0 0 1
0 1 0 1
0 0 1 −1
0 0 0 0



λ1

λ2

λ3

λ4

 =


0
0
0
0



λ1 = −λ4

λ2 = −λ4

λ3 = λ4

λ4 arbitrary

Taking λ4 = 1 gives (λ1, λ2, λ3, λ4) = (−1,−1, 1, 1),
corresponding to the relation −v1 − v2 + v3 + v4 = 0.
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Here we have 4 vectors in R2, so they must be dependent. Thus, there exist
nontrivial linear relations λ1a1 + λ2a2 + λ3a3 + λ4a4 = 0.
To actually find such a relation, we write down the corresponding matrix and
row-reduce it as follows:[

1 12 −1 3
2 1 −1 1

]

−→
[

1 12 −1 3
0 1 −1/23 5/23

]
−→
[

1 0 −11/23 9/23
0 1 −1/23 5/23

]

We now need to solve the matrix equation

[
1 0 −11/23 9/23
0 1 −1/23 5/23

]
λ1

λ2

λ3

λ4

 =

[
0
0

]

This gives λ1 = 11
23
λ3 − 9

23
λ4 and λ2 = 1

23
λ3 − 5

23
λ4 with λ3 and λ4 arbitrary.

If we choose λ3 = 23 and λ4 = 0 we get (λ1, λ2, λ3, λ4) = (11, 1, 23, 0) so we
have a relation 11a1 + a2 + 23a3 + 0a4 = 0.
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Proof of correctness of the method

Put A =

 v1 · · · vm

 as in step (a), and let B be the RREF form of A.

Note that for any vector λ =
[
λ1 . . . λm

]T ∈ Rm, we have

Aλ =

 v1 · · · vm


λ1

...
λm

 = λ1v1 + · · ·+ λmvm.

Thus, linear relations on our list are just the same as solutions to the
homogeneous equation Aλ = 0. We saw earlier that these are the same as
solutions to the equation Bλ = 0, which can be found by the standard method
for RREF equations. If there is a pivot in every column then none of the
variables λi is independent, so the only solution is λ1 = λ2 = · · · = λm = 0.
Thus, the only linear relation on V is the trivial one, which means that the list
V is linearly independent.
Suppose instead that some column (the k’th one, say) does not contain a pivot.
Then the variable λk will be independent, so we can choose λk = 1. This will
give us a nonzero to solution to Bλ = 0, or equivalently Aλ = 0, corresponding
to a nontrivial linear relation on V. This shows that V is linearly dependent.
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Lecture 4



Spanning

Definition 9.1: Suppose we have a list V = v1, . . . , vm of vectors in Rn.

Then
V spans Rn if every vector in Rn can be expressed as a linear combination of
v1, . . . , vm.

Example 9.2: Consider the list V = v1, v2, v3, v4, where

v1 =


0
1
2
3

 v2 =


0
1
4
9

 v3 =


0
1
8

27

 v4 =


0
1

16
81



Previously we saw that the vector w =
[
1 1 1 1

]T
is not a linear

combination of this list, so the list V does not span R4.

Example 9.3: Consider the list V = v1, v2, v3, v4, v5, where

v1 =

1
1
1

 v2 =

1
2
1

 v3 =

1
3
1

 v4 =

1
4
1

 v5 =

1
5
1

 .

Previously we saw that the vector w =
[
−1 0 1

]T
is not a linear

combination of this list, so the list V does not span R3.
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Spanning example

Consider the list U = u1, u2, u3, where

u1 =

1
1
0

 u2 =

1
0
1

 u3 =

0
1
1

 .

We will show that these span R3. Indeed, for any vector v =
[
x y z

]T ∈ R3

we can put

λ1 =
x + y − z

2
λ2 =

x − y + z

2
λ3 =

−x + y + z

2

and we find that

λ1u1 + λ2u2 + λ3u3

=

(x + y − z)/2
(x + y − z)/2

0

+

(x − y + z)/2
0

(x − y + z)/2

+

 0
(−x + y + z)/2
(−x + y + z)/2


=

(x + y − z + x − y + z)/2
(x + y − z − x + y + z)/2
(x − y + z − x + y + z)/2

 =

x
y
z

 = v .

This expresses v as a linear combination of the list U , as required.
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Spanning example

Consider the list A = a1, a2, a3 where

a1 =

[
1
2

]
a2 =

[
2
3

]
a3 =

[
3
5

]
.

Let v =

[
x
y

]
be an arbitrary vector in R2. Note that

(2y − 4x)

[
1
2

]
+ (x − y)

[
2
3

]
+ x

[
3
5

]

=

[
2y − 4x
4y − 8x

]
+

[
2x − 2y
3x − 3y

]
+

[
3x
5x

]
=

[
x
y

]

or in other words

v = (2y − 4x)a1 + (x − y)a2 + xa3.

This expresses an arbitrary v ∈ R2 as a linear combination of a1, a2 and a3,
proving that the list A spans R2.

In this case there are actually many different ways in which we can express v as
a linear combination of a1, a2 and a3. Another one is

v = (y − 3x)a1 + (2x − 2y)a2 + ya3.
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Checking spanning by row-reduction

Method 9.7: Let V = v1, . . . , vm be a list of vectors in Rn.

We can check whether this list spans Rn as follows.

(a) Form the m × n matrix C =

 vT
1

...

vT
m

 whose rows are the vT
i .

(b) Row reduce C to get another m × n matrix D in RREF.

(c) If every column of D contains a pivot (so D =

[
In

0(m−n)×n

]
) then V

spans Rn.

(d) If some column of D has no pivot, then the list V does not span Rn.

Remark 9.8: This is almost exactly the same as the method for checking
independence

, except that here we start by building a matrix C whose rows are
vT
i , instead of building a matrix A whose columns are vi . These are transposes

of each other: A = CT and C = AT .

Warning: transposing does not interact well with row-reduction, so the matrix
D is not the transpose of B.
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Example of spanning check

Consider the list

v1 =


0
1
2
3

 v2 =


0
1
4
9

 v3 =


0
1
8

27

 v4 =


0
1

16
81



The relevant matrix is C =


0 1 2 3
0 1 4 9
0 1 8 27
0 1 16 81


The first column is zero, and will remain zero no matter what row operations
we perform. Thus C cannot reduce to the identity matrix, so V does not span
(as we already saw by a different method). In fact the row-reduction is

C →


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


but it is not really necessary to go through the whole calculation.
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Example of spanning check

Consider the list V given by
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1
1
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1 5 1



→


1 1 1
0 1 0
0 2 0
0 3 0
0 4 0

 →


1 0 1
0 1 0
0 0 0
0 0 0
0 0 0



At the end of the process the last column does not contain a pivot (so the top
3× 3 block is not the identity), so V does not span R3. Again, we saw this
earlier by a different method.
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For the list

A =

 2
−1
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2
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In the last matrix the third column has no pivot, so the list does not span.
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Example of spanning check

Consider the list U = u1, u2, u3

u1 =

1
1
0

 u2 =

1
0
1

 u3 =

0
1
1

 .

The relevant row-reduction is1 1 0
1 0 1
0 1 1



→

1 1 0
0 −1 1
0 1 1

 →
1 1 0

0 1 −1
0 0 2

 →
1 1 0

0 1 0
0 0 1

 →
1 0 0

0 1 0
0 0 1



The end result is the identity matrix, so the list U spans R3.
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Proof of correctness of the method

Lemma 9.15: Let C be an m× n matrix, and let C ′ be obtained from C by a
single elementary row operation. Let s be a row vector of length n. Then s can
be expressed as a linear combination of the rows of C if and only if it can be
expressed as a linear combination of the rows of C ′.
Proof: Let the rows of C be r1, . . . , rm.

Suppose that s is a linear combination
of these rows, say

s = λ1r1 + λ2r2 + λ3r3 + · · ·+ λmrm.

(a) Suppose that C ′ is obtained from C by swapping the first two rows

, so the
rows of C ′ are r2, r1, r3, . . . , rm. The sequence of numbers
λ2, λ1, λ3, . . . , λm satisfies

s = λ2r2 + λ1r1 + λ3r3 + · · ·+ λmrm

,

which expresses s as a linear combination of the rows of C ′. The
argument is essentially the same if we exchange any other pair of rows.
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Proof of correctness of the method

C ∈ Mm×n(R); C ′ obtained from C by a single row operation; s a row vector of
length n. Claim: s is a linear combination of rows of C iff it is a linear
combination of rows of C ′.

(b) Suppose instead that C ′ is obtained from C by multiplying the first row by
a nonzero scalar u

, so the rows of C ′ are ur1, r2, . . . , rm. The sequence of
numbers u−1λ1, λ2, . . . , λm then satisfies

s = (u−1λ1)(ur1) + λ2u2 + · · ·+ λmrm

,

which expresses s as a linear combination of the rows of C ′.The argument
is essentially the same if we multiply any other row by a constant.

(c) Suppose instead that C ′ is obtained from C by adding u times the second
row to the first row

, so the rows of C ′ are r1 + ur2, r2, r3, . . . , rm. The
sequence of numbers λ1, λ2 − uλ1, λ3, . . . , λn then satisfies

λ1(r1+ur2)+(λ2−uλ1)r2+λ3r3+· · ·+λmrm = λ1r1+λ2r2+· · ·+λmrm = s

,

which expresses s as a linear combination of the rows of C ′. The
argument is essentially the same if add a multiple of any row to any other
row.
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Proof of correctness of the method

C ∈ Mm×n(R); C ′ obtained from C by a single row operation; s a row vector of
length n. Claim: s is a linear combination of rows of C iff it is a linear
combination of rows of C ′.

Corollary 9.16: Let C be an m × n matrix, and let D be obtained from C by
a sequence of elementary row operation. Let s be a row vector of length n.
Then s can be expressed as a linear combination of the rows of C if and only if
it can be expressed as a linear combination of the rows of D.

Proof.
Just apply the lemma to each step in the row-reduction sequence.



Proof of correctness of the method

Lemma 9.17: Let D be an m × n matrix in RREF.

(a) Suppose that every column of D contains a pivot, so D =

[
In

0(m−n)×n

]
.

Then every row vector of length n can be expressed as a linear
combination of the rows of D.

Proof of (a): In this case the first n rows are the standard basis vectors

r1 = eT
1 =

[
1 0 0 · · · 0

]
r2 = eT

2 =
[
0 1 0 · · · 0

]
· · ·

rn = eT
n =

[
0 0 0 · · · 1

]
and ri = 0 for i > n. This means that any row vector v =

[
v1 v2 · · · vn

]
can be expressed as v =

[
v1 0 0 · · · 0

]
+[

0 v2 0 · · · 0
]

+ · · ·+[
0 0 0 · · · vn

]
=v1r1 + v2r2 + v3r3 + · · ·+ vnrn,

which is a linear combination of the rows of D.
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.

Then every row vector of length n can be expressed as a linear
combination of the rows of D.

(b) Suppose instead that the k’th column of D does not contain a pivot.
Then the k’th standard basis vector ek cannot be expressed as a linear
combination of the rows of D.

Example for proof of (b):

Consider the matrix

D =

0 1 2 3 0 4 5 0
0 0 0 0 1 6 7 0
0 0 0 0 0 0 0 1


This is in RREF, with pivots in columns 2, 5 and 8. Let ri be the i ’th row, and

consider a linear combination
λ1r1 + λ2r2 + λ3r3 =

[
0 λ1 2λ1 3λ1 λ2 4λ1 + 6λ2 5λ1 + 7λ2 λ3

]
.

The entries in the pivot columns 2, 5 and 8 of s are just the coefficients λ1, λ2

and λ3. This is not a special feature of this example: it simply reflects the fact
that pivot columns contain nothing except the pivot. Now consider

e6 =
[
0 0 0 0 0 1 0 0

]
For this to be λ1r1 + λ2r2 + λ3r3 we need λ1 = 0 and λ2 = 0 and λ3 = 0 (by
looking in the pivot columns). But that means λ1r1 + λ2r2 + λ3r3 = 0 6= e6.
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Lemma: Let D be an m × n matrix in RREF.

(b) Suppose instead that the k’th column of D does not contain a pivot.
Then the k’th standard basis vector ek cannot be expressed as a linear
combination of the rows of D.

This line of argument works more generally.

Suppose that D is an RREF matrix and that the k’th column has no pivot.
We claim that ek is not a linear combination of the rows of D.
We can remove any rows of zeros from D without affecting the question, so we
may assume that every row is nonzero, so every row contains a pivot.
Suppose that ek = λ1r1 + · · ·+ λmrm say.
By looking in the column that contains the first pivot, we see that λ1 = 0.
By looking in the column that contains the second pivot, we see that λ2 = 0.
Continuing in this way, we see that all the coefficients λi are zero, so∑

i λi ri = 0, which contradicts the assumption that ek = λ1r1 + · · ·+ λmrm.

We conclude that in fact it is impossible to write ek as λ1r1 + · · ·+ λmrm, so ek
is not a linear combination of the rows of D.



Proof of correctness of the method

Lemma: Let D be an m × n matrix in RREF.

(b) Suppose instead that the k’th column of D does not contain a pivot.
Then the k’th standard basis vector ek cannot be expressed as a linear
combination of the rows of D.

This line of argument works more generally.
Suppose that D is an RREF matrix and that the k’th column has no pivot.

We claim that ek is not a linear combination of the rows of D.
We can remove any rows of zeros from D without affecting the question, so we
may assume that every row is nonzero, so every row contains a pivot.
Suppose that ek = λ1r1 + · · ·+ λmrm say.
By looking in the column that contains the first pivot, we see that λ1 = 0.
By looking in the column that contains the second pivot, we see that λ2 = 0.
Continuing in this way, we see that all the coefficients λi are zero, so∑

i λi ri = 0, which contradicts the assumption that ek = λ1r1 + · · ·+ λmrm.

We conclude that in fact it is impossible to write ek as λ1r1 + · · ·+ λmrm, so ek
is not a linear combination of the rows of D.



Proof of correctness of the method

Lemma: Let D be an m × n matrix in RREF.

(b) Suppose instead that the k’th column of D does not contain a pivot.
Then the k’th standard basis vector ek cannot be expressed as a linear
combination of the rows of D.

This line of argument works more generally.
Suppose that D is an RREF matrix and that the k’th column has no pivot.
We claim that ek is not a linear combination of the rows of D.

We can remove any rows of zeros from D without affecting the question, so we
may assume that every row is nonzero, so every row contains a pivot.
Suppose that ek = λ1r1 + · · ·+ λmrm say.
By looking in the column that contains the first pivot, we see that λ1 = 0.
By looking in the column that contains the second pivot, we see that λ2 = 0.
Continuing in this way, we see that all the coefficients λi are zero, so∑

i λi ri = 0, which contradicts the assumption that ek = λ1r1 + · · ·+ λmrm.

We conclude that in fact it is impossible to write ek as λ1r1 + · · ·+ λmrm, so ek
is not a linear combination of the rows of D.



Proof of correctness of the method

Lemma: Let D be an m × n matrix in RREF.

(b) Suppose instead that the k’th column of D does not contain a pivot.
Then the k’th standard basis vector ek cannot be expressed as a linear
combination of the rows of D.

This line of argument works more generally.
Suppose that D is an RREF matrix and that the k’th column has no pivot.
We claim that ek is not a linear combination of the rows of D.
We can remove any rows of zeros from D without affecting the question

, so we
may assume that every row is nonzero, so every row contains a pivot.
Suppose that ek = λ1r1 + · · ·+ λmrm say.
By looking in the column that contains the first pivot, we see that λ1 = 0.
By looking in the column that contains the second pivot, we see that λ2 = 0.
Continuing in this way, we see that all the coefficients λi are zero, so∑

i λi ri = 0, which contradicts the assumption that ek = λ1r1 + · · ·+ λmrm.

We conclude that in fact it is impossible to write ek as λ1r1 + · · ·+ λmrm, so ek
is not a linear combination of the rows of D.



Proof of correctness of the method

Lemma: Let D be an m × n matrix in RREF.

(b) Suppose instead that the k’th column of D does not contain a pivot.
Then the k’th standard basis vector ek cannot be expressed as a linear
combination of the rows of D.

This line of argument works more generally.
Suppose that D is an RREF matrix and that the k’th column has no pivot.
We claim that ek is not a linear combination of the rows of D.
We can remove any rows of zeros from D without affecting the question, so we
may assume that every row is nonzero

, so every row contains a pivot.
Suppose that ek = λ1r1 + · · ·+ λmrm say.
By looking in the column that contains the first pivot, we see that λ1 = 0.
By looking in the column that contains the second pivot, we see that λ2 = 0.
Continuing in this way, we see that all the coefficients λi are zero, so∑

i λi ri = 0, which contradicts the assumption that ek = λ1r1 + · · ·+ λmrm.

We conclude that in fact it is impossible to write ek as λ1r1 + · · ·+ λmrm, so ek
is not a linear combination of the rows of D.



Proof of correctness of the method

Lemma: Let D be an m × n matrix in RREF.

(b) Suppose instead that the k’th column of D does not contain a pivot.
Then the k’th standard basis vector ek cannot be expressed as a linear
combination of the rows of D.

This line of argument works more generally.
Suppose that D is an RREF matrix and that the k’th column has no pivot.
We claim that ek is not a linear combination of the rows of D.
We can remove any rows of zeros from D without affecting the question, so we
may assume that every row is nonzero, so every row contains a pivot.

Suppose that ek = λ1r1 + · · ·+ λmrm say.
By looking in the column that contains the first pivot, we see that λ1 = 0.
By looking in the column that contains the second pivot, we see that λ2 = 0.
Continuing in this way, we see that all the coefficients λi are zero, so∑

i λi ri = 0, which contradicts the assumption that ek = λ1r1 + · · ·+ λmrm.

We conclude that in fact it is impossible to write ek as λ1r1 + · · ·+ λmrm, so ek
is not a linear combination of the rows of D.



Proof of correctness of the method

Lemma: Let D be an m × n matrix in RREF.

(b) Suppose instead that the k’th column of D does not contain a pivot.
Then the k’th standard basis vector ek cannot be expressed as a linear
combination of the rows of D.

This line of argument works more generally.
Suppose that D is an RREF matrix and that the k’th column has no pivot.
We claim that ek is not a linear combination of the rows of D.
We can remove any rows of zeros from D without affecting the question, so we
may assume that every row is nonzero, so every row contains a pivot.
Suppose that ek = λ1r1 + · · ·+ λmrm say.

By looking in the column that contains the first pivot, we see that λ1 = 0.
By looking in the column that contains the second pivot, we see that λ2 = 0.
Continuing in this way, we see that all the coefficients λi are zero, so∑

i λi ri = 0, which contradicts the assumption that ek = λ1r1 + · · ·+ λmrm.

We conclude that in fact it is impossible to write ek as λ1r1 + · · ·+ λmrm, so ek
is not a linear combination of the rows of D.



Proof of correctness of the method

Lemma: Let D be an m × n matrix in RREF.

(b) Suppose instead that the k’th column of D does not contain a pivot.
Then the k’th standard basis vector ek cannot be expressed as a linear
combination of the rows of D.

This line of argument works more generally.
Suppose that D is an RREF matrix and that the k’th column has no pivot.
We claim that ek is not a linear combination of the rows of D.
We can remove any rows of zeros from D without affecting the question, so we
may assume that every row is nonzero, so every row contains a pivot.
Suppose that ek = λ1r1 + · · ·+ λmrm say.
By looking in the column that contains the first pivot, we see that λ1 = 0.

By looking in the column that contains the second pivot, we see that λ2 = 0.
Continuing in this way, we see that all the coefficients λi are zero, so∑

i λi ri = 0, which contradicts the assumption that ek = λ1r1 + · · ·+ λmrm.

We conclude that in fact it is impossible to write ek as λ1r1 + · · ·+ λmrm, so ek
is not a linear combination of the rows of D.



Proof of correctness of the method

Lemma: Let D be an m × n matrix in RREF.

(b) Suppose instead that the k’th column of D does not contain a pivot.
Then the k’th standard basis vector ek cannot be expressed as a linear
combination of the rows of D.

This line of argument works more generally.
Suppose that D is an RREF matrix and that the k’th column has no pivot.
We claim that ek is not a linear combination of the rows of D.
We can remove any rows of zeros from D without affecting the question, so we
may assume that every row is nonzero, so every row contains a pivot.
Suppose that ek = λ1r1 + · · ·+ λmrm say.
By looking in the column that contains the first pivot, we see that λ1 = 0.
By looking in the column that contains the second pivot, we see that λ2 = 0.

Continuing in this way, we see that all the coefficients λi are zero, so∑
i λi ri = 0, which contradicts the assumption that ek = λ1r1 + · · ·+ λmrm.

We conclude that in fact it is impossible to write ek as λ1r1 + · · ·+ λmrm, so ek
is not a linear combination of the rows of D.



Proof of correctness of the method

Lemma: Let D be an m × n matrix in RREF.

(b) Suppose instead that the k’th column of D does not contain a pivot.
Then the k’th standard basis vector ek cannot be expressed as a linear
combination of the rows of D.

This line of argument works more generally.
Suppose that D is an RREF matrix and that the k’th column has no pivot.
We claim that ek is not a linear combination of the rows of D.
We can remove any rows of zeros from D without affecting the question, so we
may assume that every row is nonzero, so every row contains a pivot.
Suppose that ek = λ1r1 + · · ·+ λmrm say.
By looking in the column that contains the first pivot, we see that λ1 = 0.
By looking in the column that contains the second pivot, we see that λ2 = 0.
Continuing in this way, we see that all the coefficients λi are zero

, so∑
i λi ri = 0, which contradicts the assumption that ek = λ1r1 + · · ·+ λmrm.

We conclude that in fact it is impossible to write ek as λ1r1 + · · ·+ λmrm, so ek
is not a linear combination of the rows of D.



Proof of correctness of the method

Lemma: Let D be an m × n matrix in RREF.

(b) Suppose instead that the k’th column of D does not contain a pivot.
Then the k’th standard basis vector ek cannot be expressed as a linear
combination of the rows of D.

This line of argument works more generally.
Suppose that D is an RREF matrix and that the k’th column has no pivot.
We claim that ek is not a linear combination of the rows of D.
We can remove any rows of zeros from D without affecting the question, so we
may assume that every row is nonzero, so every row contains a pivot.
Suppose that ek = λ1r1 + · · ·+ λmrm say.
By looking in the column that contains the first pivot, we see that λ1 = 0.
By looking in the column that contains the second pivot, we see that λ2 = 0.
Continuing in this way, we see that all the coefficients λi are zero, so∑

i λi ri = 0

, which contradicts the assumption that ek = λ1r1 + · · ·+ λmrm.

We conclude that in fact it is impossible to write ek as λ1r1 + · · ·+ λmrm, so ek
is not a linear combination of the rows of D.



Proof of correctness of the method

Lemma: Let D be an m × n matrix in RREF.

(b) Suppose instead that the k’th column of D does not contain a pivot.
Then the k’th standard basis vector ek cannot be expressed as a linear
combination of the rows of D.

This line of argument works more generally.
Suppose that D is an RREF matrix and that the k’th column has no pivot.
We claim that ek is not a linear combination of the rows of D.
We can remove any rows of zeros from D without affecting the question, so we
may assume that every row is nonzero, so every row contains a pivot.
Suppose that ek = λ1r1 + · · ·+ λmrm say.
By looking in the column that contains the first pivot, we see that λ1 = 0.
By looking in the column that contains the second pivot, we see that λ2 = 0.
Continuing in this way, we see that all the coefficients λi are zero, so∑

i λi ri = 0, which contradicts the assumption that ek = λ1r1 + · · ·+ λmrm.

We conclude that in fact it is impossible to write ek as λ1r1 + · · ·+ λmrm

, so ek
is not a linear combination of the rows of D.



Proof of correctness of the method

Lemma: Let D be an m × n matrix in RREF.

(b) Suppose instead that the k’th column of D does not contain a pivot.
Then the k’th standard basis vector ek cannot be expressed as a linear
combination of the rows of D.

This line of argument works more generally.
Suppose that D is an RREF matrix and that the k’th column has no pivot.
We claim that ek is not a linear combination of the rows of D.
We can remove any rows of zeros from D without affecting the question, so we
may assume that every row is nonzero, so every row contains a pivot.
Suppose that ek = λ1r1 + · · ·+ λmrm say.
By looking in the column that contains the first pivot, we see that λ1 = 0.
By looking in the column that contains the second pivot, we see that λ2 = 0.
Continuing in this way, we see that all the coefficients λi are zero, so∑

i λi ri = 0, which contradicts the assumption that ek = λ1r1 + · · ·+ λmrm.

We conclude that in fact it is impossible to write ek as λ1r1 + · · ·+ λmrm, so ek
is not a linear combination of the rows of D.



Duality

Consider an n ×m matrix

P =

 v1 · · · vm



=

 wT
1

...

wT
n



∈ Mn×m(R)

PT =

 w1 · · · wn

 =

 vT
1

...

vT
m

 ∈ Mm×n(R)

I The vectors vi are linearly independent in Rn if and only if P →
[

Im
0

]

,

if and only if the vectors wj span Rm.

I The vectors vi span Rn if and only if PT →
[

In
0

]

,

if and only if the vectors wj are linearly independent in Rm.

In other words:

I The columns of P are independent if and only if the columns of PT span.

I The columns of P span if and only if the columns of PT are independent.
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Lecture 5



Bases

Definition 10.1: A basis for Rn is a linearly independent list of vectors in Rn

that also spans Rn.

Remark 10.2: Any basis for Rn must contain precisely n vectors.

Indeed, we
saw before that a linearly independent list can contain at most n vectors, that a
spanning list must contain at least n vectors. As a basis has both these
properties, it must contain precisely n vectors.
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Basis example

Consider the list U = (u1, u2, u3), where

u1 =

1
0
0

 u2 =

1
1
0

 u3 =

1
1
1

 .

For an arbitrary vector v =
[
x y z

]T
we have

(a− b)u1 + (b − c)u2 + cu3

=

a− b
0
0

+

b − c
b − c

0

+

c
c
c

 =

a
b
c

 = v ,

which expresses v as a linear combination of u1, u2 and u3. This shows that U
spans R3. Now suppose we have a linear relation λ1u1 + λ2u2 + λ3u3 = 0. This
means that λ1 + λ2 + λ3

λ2 + λ3

λ3

 =

0
0
0



,

from which we read off that λ3 = 0, then that λ2 = 0, then that λ1 = 0. This
means that the only linear relation on U is the trivial one, so U is linearly
independent. As it also spans, we conclude that U is a basis.
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means that the only linear relation on U is the trivial one, so U is linearly
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Basis criterion

Proposition 10.4: Given V = (v1, . . . , vn) in Rn, put

A =

 v1 . . . vn

 ∈ Mn×n(R)

Then V is a basis iff Aλ = x has a unique solution for every x ∈ Rn. Proof:
Suppose that V is a basis.

In particular, this means that any vector x ∈ Rn can
be expressed as a linear combination x = λ1v1 + · · ·+ λnvn.

Thus, if we form the vector λ =
[
λ1 · · · λn

]T
, we have

Aλ =

 v1 · · · vn


λ1

...
λn

 = λ1v1 + · · ·+ λnvn = x

,

so λ is a solution to Aλ = x . Suppose that µ is also a solution

, so

µ1v1 + · · ·+ µnvn = x .

By subtracting this from the earlier equation, we get

(λ1 − µ1)v1 + · · ·+ (λn − µn)vn = 0.

This is a linear relation on the independent list V, so it must be the trivial one,
so the coefficients λi − µi are zero, so λ = µ. In other words, λ is the unique
solution to Aλ = x , as required.
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Suppose that for every x ∈ Rn, the
equation Aλ = x has a unique solution. Equivalently, for every x ∈ Rn, there is
a unique sequence of coefficients λ1, . . . , λn such that λ1v1 + . . .+ λnvn = x .
Firstly, we can temporarily ignore the uniqueness, and just note that every
element x ∈ Rn can be expressed as a linear combination of v1, . . . , vn. This
means that the list V spans Rn. Next, consider the case x = 0. The equation
Aλ = 0 has λ = 0 as one solution. By assumption, the equation Aλ = 0 has a
unique solution, so λ = 0 is the only solution. Using the standard equation for
Aλ, we can restate this as follows: the only sequence (λ1, . . . , λn) for which
λ1v1 + · · ·+ λnvn = 0 is the sequence (0, . . . , 0). In other words, the only linear
relation on V is the trivial one. This means that V is linearly independent, and
it also spans Rn, so it is a basis.
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Method to check for a basis

Let V = (v1, . . . , vm) be a list of vectors in Rn.

(a) If m 6= n then V is not a basis.

(b) If m = n then we form the matrix

A =

 v1 . . . vm


and row-reduce it to get a matrix B.

(c) If B = In then V is a basis; otherwise, it is not.

Proof:

(a) Has been discussed already: any basis of Rn has n vectors.

(b) If A→ In then the same steps give [A|x ]→ [In|x ′], then λ = x ′ is the
unique solution to Aλ = x . Thus V is a basis.

(c) If A→ B 6= In then B cannot have a pivot in every column. By our
method for checking independence, the list V is dependent and so is not a
basis.
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Basis example

Consider the vectors

v1 =


1
2
3
2
1

 v2 =


3
2
1
2
3

 v3 =


1
1
1
1
1

 v4 =


1
3
5
3
1

 v5 =


5
3
1
3
5


To decide whether they form a basis, we construct the corresponding matrix A
and start row-reducing it:

1 3 1 1 5
2 2 1 3 3
3 1 1 5 1
2 2 1 3 3
1 3 1 1 5

→


1 3 1 1 5
0 −4 −1 1 −7
0 −8 −2 2 −14
0 −4 −1 1 −7
0 0 0 0 0

→


1 3 1 1 5
0 −4 −1 1 −7
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Already after the first step we have a row of zeros, and it is clear that we will
still have a row of zeros after we complete the row-reduction, so A does not
reduce to the identity matrix, so the vectors vi do not form a basis.
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0 0 0 1



After a few more steps, we obtain the identity matrix. It follows that the list
p1, p2, p3, p4 is a basis.
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Coefficients in terms of a basis

Suppose that the list V = v1, . . . , vn is a basis for Rn, and that w is another
vector in Rn.

By the very definition of a basis, it must be possible to express w
(in a unique way) as a linear combination w = λ1v1 + · · ·+ λnvn. If we want to
find the coefficients λi , we can use the following:

Method 10.8: Let V = v1, . . . , vn be a basis for Rn, and let w be another
vector in Rn.

(a) Let B be the matrix

B =
[

v1 · · · vn w
]
∈ Mn×(n+1)(R).

(b) Let B ′ be the RREF form of B. Then B ′ will have the form [In|λ] for some
column vector

λ =

λ1

...
λn

 .
(c) Now w = λ1v1 + · · ·+ λnvn.

It is clear from our recent discussion that this is valid.
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If we want to
find the coefficients λi , we can use the following:
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B =
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(b) Let B ′ be the RREF form of B. Then B ′ will have the form [In|λ] for some
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λ =
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 .
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Example of coefficients in terms of a basis

We will express q =
[
0.9 0.9 0 10.9

]T
in terms of the basis p1, p2, p3, p4 in

the previous example.

We form the relevant augmented matrix, and apply the
same row-reduction steps as before, except that we now have an extra column.


1 1 1 1 0.9
1 11 1 11 0.9
11 1 1 11 0
1 11 11 11 10.9



→


1 1 1 1 0.9
0 10 0 10 0
0 −10 −10 0 −9.9
0 10 10 10 10

 →


1 1 1 1 0.9
0 1 0 1 0
0 1 1 0 0.99
0 1 1 1 1

 →


1 1 1 1 0.9
0 1 0 1 0
0 1 1 0 0.99
0 0 0 1 0.01

 →


1 1 1 1 0.9
0 1 0 1 0
0 0 1 −1 0.99
0 0 0 1 0.01

 →


1 0 1 0 0.9
0 1 0 1 0
0 0 1 −1 0.99
0 0 0 1 0.01

 →


1 0 1 0 0.9
0 1 0 0 −0.01
0 0 1 0 1
0 0 0 1 0.01

 →


1 0 0 0 −0.1
0 1 0 0 −0.01
0 0 1 0 1
0 0 0 1 0.01



The final result is [I4|λ], where λ =
[
−0.1 −0.01 1 0.01

]T
. This means

that q can be expressed in terms of the vectors pi as follows:

q = −0.1p1 − 0.01p2 + p3 + 0.01p4.
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Example of coefficients in terms of a basis

One can check that the vectors u1, u2, u3 and u4 below form a basis for R4.

u1 =


1

1/2
1/3
1/4

 u2 =


1/2
1/3
1/4
1/5

 u3 =


1/3
1/4
1/5
1/6

 u4 =


1/4
1/5
1/6
1/7



v =


1
1
1
1


We would like to express v in terms of this basis. The matrix formed by the
vectors ui is called the Hilbert matrix; it is notoriously hard to row-reduce.
We will therefore use Maple.
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Example of coefficients in terms of a basis

with(LinearAlgebra):

RREF := ReducedRowEchelonForm;

u[1] := <1,1/2,1/3,1/4>;

u[2] := <1/2,1/3,1/4,1/5>;

u[3] := <1/3,1/4,1/5,1/6>;

u[4] := <1/4,1/5,1/6,1/7>;

v := <1,1,1,1>;

B := <u[1]|u[2]|u[3]|u[4]|v>;

RREF(B);


1 1/2 1/3 1/4 1

1/2 1/3 1/4 1/5 1
1/3 1/4 1/5 1/6 1
1/4 1/5 1/6 1/7 1

→


1 0 0 0 −4
0 1 0 0 60
0 0 1 0 −180
0 0 0 1 140

 .
We conclude that

v = −4u1 + 60u2 − 180u3 + 140u4.
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Duality for bases

Proposition 10.11: Let A be an n × n matrix. Then the columns of A form
a basis for Rn if and only if the columns of AT form a basis for Rn.

Proof.
Recall:

I The colums of A span iff the columns of AT are independent.

I The columns of A are independent iff the columns of AT span.

I A list is a basis iff it is independent and also spans.

The claim is clear from this.
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Numerical criteria

Proposition 10.12: Let V be a list of n vectors in Rn (so the number of
vectors is the same as the number of entries in each vector).

(a) If the list is linearly independent then it also spans, and so is a basis.

(b) If the list spans then it is also linearly independent, and so is a basis.

Proof.
Let A be the matrix whose columns are the vectors in V.

(a) Suppose that V is linearly independent. Let B be the matrix obtained by
row-reducing A. By the standard method for checking (in)dependence, B
must have a pivot in every column. As B is also square, we must have
B = In. It follows that V is a basis.

(b) Suppose instead that V (which is the list of columns of A) spans Rn. By
duality, we conclude that the columns of AT are linearly independent. Now
AT has n columns, so we can apply part (a) to deduce that the columns of
AT form a basis. By duality again, the columns of A must form a basis as
well.
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AT has n columns, so we can apply part (a) to deduce that the columns of
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well.
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Elementary matrices

Definition 11.1: Fix an integer n > 0. We define n × n matrices as follows.

(a) Suppose that 1 ≤ p ≤ n and that λ is a nonzero real number.

We then let
Dp(λ) be the matrix that is the same as In except that (Dp(λ))pp = λ.

(b) Supose that 1 ≤ p, q ≤ n with p 6= q, and that µ is an arbitrary real
number.

We then let Epq(µ) be the matrix that is the same as In except
that (Epq(λ))pq = µ.

(c) Supose again that 1 ≤ p, q ≤ n with p 6= q.

We let Fpq be the matrix that
is the same as In except that (Fpq)pp = (Fpq)qq = 0 and
(Fpq)pq = (Fpq)qp = 1.

An elementary matrix is a matrix of one of these types.
Example 11.2: In the case n = 4, we have

D2(λ) =


1 0 0 0
0 λ 0 0
0 0 1 0
0 0 0 1

 E24(µ) =


1 0 0 0
0 1 0 µ
0 0 1 0
0 0 0 1

 F24 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
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Elementary matrices and row operations

Proposition 11.3: Let A be an n × n matrix, and let A′ be obtained from A
by a single row operation. Then A′ = UA for some elementary matrix U.

In
more detail:

(a) Let A′ be obtained from A by multiplying the p’th row by λ. Then
A′ = Dp(λ)A.

(b) Let A′ be obtained from A by adding µ times the q’th row to the p’th
row. Then A′ = Epq(µ)A.

(c) Let A′ be obtained from A by exchanging the p’th row and the q’th row.
Then A′ = FpqA.

.
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Elementary matrices and row operations

Corollary 11.4: Let A and B be n × n matrices, and suppose that A can be
converted to B by a sequence of row operations. Then B = UA for some
matrix U that can be expressed as a product of elementary matrices.

Proof.
The assumption is that there is a sequence of matrices A0,A1, . . . ,Ar starting
with A0 = A and ending with Ar = B such that Ai is obtained from Ai−1 by a
single row operation.

By the Proposition, this means that there is an
elementary matrix Ui such that Ai = UiAi−1. This gives

A1 = U1A0 = U1A

A2 = U2A1 = U2U1A

A3 = U3A2 = U3U2U1A

and so on. Eventually we get B = Ar = UrUr−1 · · ·U1A. We can thus take
U = UrUr−1 · · ·U1 and we have B = UA as required.



Elementary matrices and row operations

Corollary 11.4: Let A and B be n × n matrices, and suppose that A can be
converted to B by a sequence of row operations. Then B = UA for some
matrix U that can be expressed as a product of elementary matrices.

Proof.
The assumption is that there is a sequence of matrices A0,A1, . . . ,Ar starting
with A0 = A and ending with Ar = B such that Ai is obtained from Ai−1 by a
single row operation.

By the Proposition, this means that there is an
elementary matrix Ui such that Ai = UiAi−1. This gives

A1 = U1A0 = U1A

A2 = U2A1 = U2U1A

A3 = U3A2 = U3U2U1A

and so on. Eventually we get B = Ar = UrUr−1 · · ·U1A. We can thus take
U = UrUr−1 · · ·U1 and we have B = UA as required.



Elementary matrices and row operations

Corollary 11.4: Let A and B be n × n matrices, and suppose that A can be
converted to B by a sequence of row operations. Then B = UA for some
matrix U that can be expressed as a product of elementary matrices.

Proof.
The assumption is that there is a sequence of matrices A0,A1, . . . ,Ar starting
with A0 = A and ending with Ar = B such that Ai is obtained from Ai−1 by a
single row operation. By the Proposition, this means that there is an
elementary matrix Ui such that Ai = UiAi−1.

This gives

A1 = U1A0 = U1A

A2 = U2A1 = U2U1A

A3 = U3A2 = U3U2U1A

and so on. Eventually we get B = Ar = UrUr−1 · · ·U1A. We can thus take
U = UrUr−1 · · ·U1 and we have B = UA as required.



Elementary matrices and row operations

Corollary 11.4: Let A and B be n × n matrices, and suppose that A can be
converted to B by a sequence of row operations. Then B = UA for some
matrix U that can be expressed as a product of elementary matrices.

Proof.
The assumption is that there is a sequence of matrices A0,A1, . . . ,Ar starting
with A0 = A and ending with Ar = B such that Ai is obtained from Ai−1 by a
single row operation. By the Proposition, this means that there is an
elementary matrix Ui such that Ai = UiAi−1. This gives

A1 = U1A0 = U1A

A2 = U2A1 = U2U1A

A3 = U3A2 = U3U2U1A

and so on. Eventually we get B = Ar = UrUr−1 · · ·U1A. We can thus take
U = UrUr−1 · · ·U1 and we have B = UA as required.



Elementary matrices and row operations

Corollary 11.4: Let A and B be n × n matrices, and suppose that A can be
converted to B by a sequence of row operations. Then B = UA for some
matrix U that can be expressed as a product of elementary matrices.

Proof.
The assumption is that there is a sequence of matrices A0,A1, . . . ,Ar starting
with A0 = A and ending with Ar = B such that Ai is obtained from Ai−1 by a
single row operation. By the Proposition, this means that there is an
elementary matrix Ui such that Ai = UiAi−1. This gives

A1 = U1A0 = U1A

A2 = U2A1

= U2U1A

A3 = U3A2 = U3U2U1A

and so on. Eventually we get B = Ar = UrUr−1 · · ·U1A. We can thus take
U = UrUr−1 · · ·U1 and we have B = UA as required.



Elementary matrices and row operations

Corollary 11.4: Let A and B be n × n matrices, and suppose that A can be
converted to B by a sequence of row operations. Then B = UA for some
matrix U that can be expressed as a product of elementary matrices.

Proof.
The assumption is that there is a sequence of matrices A0,A1, . . . ,Ar starting
with A0 = A and ending with Ar = B such that Ai is obtained from Ai−1 by a
single row operation. By the Proposition, this means that there is an
elementary matrix Ui such that Ai = UiAi−1. This gives

A1 = U1A0 = U1A

A2 = U2A1 = U2U1A

A3 = U3A2 = U3U2U1A

and so on. Eventually we get B = Ar = UrUr−1 · · ·U1A. We can thus take
U = UrUr−1 · · ·U1 and we have B = UA as required.



Elementary matrices and row operations

Corollary 11.4: Let A and B be n × n matrices, and suppose that A can be
converted to B by a sequence of row operations. Then B = UA for some
matrix U that can be expressed as a product of elementary matrices.

Proof.
The assumption is that there is a sequence of matrices A0,A1, . . . ,Ar starting
with A0 = A and ending with Ar = B such that Ai is obtained from Ai−1 by a
single row operation. By the Proposition, this means that there is an
elementary matrix Ui such that Ai = UiAi−1. This gives

A1 = U1A0 = U1A

A2 = U2A1 = U2U1A

A3 = U3A2

= U3U2U1A

and so on. Eventually we get B = Ar = UrUr−1 · · ·U1A. We can thus take
U = UrUr−1 · · ·U1 and we have B = UA as required.



Elementary matrices and row operations

Corollary 11.4: Let A and B be n × n matrices, and suppose that A can be
converted to B by a sequence of row operations. Then B = UA for some
matrix U that can be expressed as a product of elementary matrices.

Proof.
The assumption is that there is a sequence of matrices A0,A1, . . . ,Ar starting
with A0 = A and ending with Ar = B such that Ai is obtained from Ai−1 by a
single row operation. By the Proposition, this means that there is an
elementary matrix Ui such that Ai = UiAi−1. This gives

A1 = U1A0 = U1A

A2 = U2A1 = U2U1A

A3 = U3A2 = U3U2U1A

and so on. Eventually we get B = Ar = UrUr−1 · · ·U1A. We can thus take
U = UrUr−1 · · ·U1 and we have B = UA as required.



Elementary matrices and row operations

Corollary 11.4: Let A and B be n × n matrices, and suppose that A can be
converted to B by a sequence of row operations. Then B = UA for some
matrix U that can be expressed as a product of elementary matrices.

Proof.
The assumption is that there is a sequence of matrices A0,A1, . . . ,Ar starting
with A0 = A and ending with Ar = B such that Ai is obtained from Ai−1 by a
single row operation. By the Proposition, this means that there is an
elementary matrix Ui such that Ai = UiAi−1. This gives

A1 = U1A0 = U1A

A2 = U2A1 = U2U1A

A3 = U3A2 = U3U2U1A

and so on.

Eventually we get B = Ar = UrUr−1 · · ·U1A. We can thus take
U = UrUr−1 · · ·U1 and we have B = UA as required.



Elementary matrices and row operations

Corollary 11.4: Let A and B be n × n matrices, and suppose that A can be
converted to B by a sequence of row operations. Then B = UA for some
matrix U that can be expressed as a product of elementary matrices.

Proof.
The assumption is that there is a sequence of matrices A0,A1, . . . ,Ar starting
with A0 = A and ending with Ar = B such that Ai is obtained from Ai−1 by a
single row operation. By the Proposition, this means that there is an
elementary matrix Ui such that Ai = UiAi−1. This gives

A1 = U1A0 = U1A

A2 = U2A1 = U2U1A

A3 = U3A2 = U3U2U1A

and so on. Eventually we get B = Ar = UrUr−1 · · ·U1A.

We can thus take
U = UrUr−1 · · ·U1 and we have B = UA as required.



Elementary matrices and row operations

Corollary 11.4: Let A and B be n × n matrices, and suppose that A can be
converted to B by a sequence of row operations. Then B = UA for some
matrix U that can be expressed as a product of elementary matrices.

Proof.
The assumption is that there is a sequence of matrices A0,A1, . . . ,Ar starting
with A0 = A and ending with Ar = B such that Ai is obtained from Ai−1 by a
single row operation. By the Proposition, this means that there is an
elementary matrix Ui such that Ai = UiAi−1. This gives

A1 = U1A0 = U1A

A2 = U2A1 = U2U1A

A3 = U3A2 = U3U2U1A

and so on. Eventually we get B = Ar = UrUr−1 · · ·U1A. We can thus take
U = UrUr−1 · · ·U1 and we have B = UA as required.



Invertibility

Theorem 11.5: Let A be an n× n matrix. Then the following statements are
equivalent: if any one of them is true then they are all true, and if any one of
them is false then they are all false.

(a) A can be row-reduced to In.

(b) The columns of A are linearly independent.

(c) The columns of A span Rn.

(d) The columns of A form a basis for Rn.

(e) AT can be row-reduced to In.

(f) The columns of AT are linearly independent.

(g) The columns of AT span Rn.

(h) The columns of AT form a basis for Rn.

(i) There is a matrix U such that UA = In.

(j) There is a matrix V such that AV = In.

Moreover, if these statements are all true then there is a unique matrix U that
satisfies UA = In, and this is also the unique matrix that satisfies AU = In (so
the matrix V in (j) is necessarily the same as the matrix U in (i)).
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Invertibility — what we already know

(a) A can be row-reduced to In.

(b) The columns of A are linearly independent.

(c) The columns of A span Rn.

(d) The columns of A form a basis for Rn.

(e),(f),(g),(h): same for AT

(i) There is a matrix U such that UA = In.

(j) There is a matrix V such that AV = In.

Statements (a) to (d) are equivalent to each other by the “numerical criteria”
(Proposition 10.12).

Similarly statements (e) to (h) are equivalent to each other.

Moreover, (a) to (d) are equivalent to (e) to (h) by “duality for bases”
(Proposition 10.11).

The real issue is to prove that (a) to (h) are equivalent to (i) and (j).
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I If (a) holds then each row operation corresponds to an elementary matrix,
and the product of those is a matrix U with UA = In; so (i) holds.

I Similarly, if (e) holds then there exists W with WAT = In

, so AW T = In,
so can take V = W T to see that (j) holds.

I Conversely, suppose that (i) holds.

Let v1, . . . , vr be the columns of A. A
linear relation λ1v1 + · · ·+ λnvn = 0 gives a a vector λ with Aλ = 0. As
UA = In this gives λ = UAλ = U0 = 0, so our linear relation is the trivial
one. Thus the columns vi are linearly independent, so (b) holds.

I Similarly, (j) implies (f).

I Now (a)⇔ · · · ⇔(h)

and (a)⇒(i)⇒(b) and (e)⇒(j)⇒(f); so (a) to (j) are
all equivalent.
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Invertibility

(a) A can be row-reduced to In.

(b) The columns of A are linearly independent.

(c) The columns of A span Rn.

(d) The columns of A form a basis for Rn.

(e),(f),(g),(h): same for AT

(i) There is a matrix U such that UA = In.

(j) There is a matrix V such that AV = In.

Definition 11.6:
We say that A is invertible if (any one of) the conditions (a) to (j) hold.

If so, we write A−1 for the unique matrix satisfying A−1A = In = AA−1

(which exists by the Theorem).

Remark 11.7: It is clear that A is invertible if and only if AT is invertible.
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Elementary matrices are invertible

All elementary matrices are invertible.

More precisely:

(a) Dp(λ−1)Dp(λ) = In

, so Dp(λ) is invertible with inverse Dp(λ−1).
For example, when n = 4 and p = 2 we have

D2(λ)D2(λ−1)

=


1 0 0 0
0 λ 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 λ−1 0 0
0 0 1 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I4.

(b) Epq(µ)Epq(−µ) = In

, so Epq(µ) is invertible with inverse Epq(−µ).
For example, when n = 4 and p = 2 and q = 4 we have

E24(µ)E24(−µ)

=


1 0 0 0
0 1 0 µ
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 −µ
0 0 1 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I4.

(c) F 2
pq = In

, so Fpq is invertible and is its own inverse. For example, when
n = 4 and p = 2 and q = 4 we have

F 2
24

=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I4.
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Products of invertible matrices are invertible

Proposition 11.9:
If A and B are invertible n × n matrices, then AB is also invertible

,
and (AB)−1 = B−1A−1.

Proof.
Put C = AB and D = B−1A−1.

DC = B−1A−1AB = B−1InB = B−1B = In

CD = ABB−1A = AInA−1 = AA−1 = In

This shows that D is an inverse for C , so C is invertible with C−1 = D as
claimed.

More generally, if A1,A2, . . . ,Ar are invertible n × n matrices, then the product
A1A2 · · ·Ar is also invertible, with

(A1A2 · · ·Ar )
−1 = A−1

r · · ·A−1
2 A−1

1 .

The proof is similar.
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Row reduction and invertible matrices

Corollary 11.10: Let A and B be n × n matrices,
and suppose that A can be converted to B by a sequence of row operations.

Then B = UA for some invertible matrix U.

Proof.

I Corollary 11.4 tells us that B = UA for some matrix U that is a product of
elementary matrices.

I Example 11.8 tells us that elementary matrices are invertible.

I Proposition 11.9 tells us that products of invertible matrices are invertible.

I Thus, U is invertible.
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Finding inverses by row-reduction

To check whether A is invertible, row-reduce it and see whether you get the
identity. We can find the inverse by a closely related procedure.

Method 11.11: Let A be an n × n matrix.

(a) Form the augmented matrix [A|In] and row-reduce it.

(b) If the result has the form [In|B], then A is invertible with A−1 = B.

(c) If the result has any other form then A is not invertible.

Proof of correctness.
Let [T |B] be the row-reduction of [A|In].

Then T is the row-reduction of A, so A is invertible if and only if T = In.
Suppose that this holds, so [A|In] reduces to [In|B]. As in Corollary 11.4 we see
that there is a matrix U such that [In|B] = U[A|In]

= [UA|U].

This gives
B = U and UA = In so BA = In, so B = A−1.
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(c) If the result has any other form then A is not invertible.

Proof of correctness.
Let [T |B] be the row-reduction of [A|In].
Then T is the row-reduction of A, so A is invertible if and only if T = In.
Suppose that this holds, so [A|In] reduces to [In|B].

As in Corollary 11.4 we see
that there is a matrix U such that [In|B] = U[A|In]

= [UA|U].

This gives
B = U and UA = In so BA = In, so B = A−1.
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Example of finding an inverse

Consider the matrix A =

1 a b
0 1 c
0 0 1

.

We have the following row-reduction:

[A|I3] =

 1 a b 1 0 0
0 1 c 0 1 0
0 0 1 0 0 1



→

 1 0 b − ac 1 −a 0
0 1 c 0 1 0
0 0 1 0 0 1


→

 1 0 0 1 −a ac − b
0 1 0 0 1 −c
0 0 1 0 0 1



We conclude that A−1 =

1 −a ac − b
0 1 −c
0 0 1

.

It is a straightforward exercise to check this directly:1 a b
0 1 c
0 0 1

1 −a ac − b
0 1 −c
0 0 1



=

1 0 0
0 1 0
0 0 1

 =

1 −a ac − b
0 1 −c
0 0 1

1 a b
0 1 c
0 0 1
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Example of finding an inverse

Consider the matrix A =

1 1 1
1 2 4
1 3 9

.

We have the following row-reduction:

 1 1 1 1 0 0
1 2 4 0 1 0
1 3 9 0 0 1

 →
 1 1 1 1 0 0

0 1 3 −1 1 0
0 2 8 −1 0 1

 →
 1 0 −2 2 −1 0

0 1 3 −1 1 0
0 0 2 1 −2 1

 →
 1 0 0 3 −3 1

0 1 0 −5/2 4 −3/2
0 0 1 1/2 −1 1/2


We conclude that

A−1 =

 3 −3 1
−5/2 4 −3/2
1/2 −1 1/2

 .
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Lecture 7



Determinants

Definition : For a 2× 2 matrix A =

[
a b
c d

]
, the determinant is defined as

det(A) = ad − bc.

For a 3× 3 matrix A =

a b c
d e f
g h i

 the determinant is defined by

det(A) = a det

[
e f
h i

]
− b det

[
d f
g i

]
+ c det

[
d e
g h

]

= aei + bfg + cdh − afh − bdi − ceg .

We will now discuss determinants for square matrices of any size. There are
more details in an appendix to the printed notes, which will not be examined.
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Determinants

Definition 12.1: Let A be an n × n matrix,
and let aij denote the entry in the i ’th row of the j ’th column.

We define

det(A) =
∑
σ

sgn(σ)
n∏

i=1

ai,σ(i),

where the sum runs over all permutations σ of the set {1, . . . , n}. Here sgn(σ)
is the signature of σ. This means that sgn(σ) = +1 if σ can be written as the
product of an even number of transpositions, and sgn(σ) = −1 otherwise.

One can check that this agrees with the standard formulae on the previous
slide, if n = 2 or n = 3.
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Determinants of triangular matrices

Example 12.4: Let A be an n × n matrix.

(a) If all the entries below the diagonal are zero, then the determinant is just
the product of the diagonal entries: det(A) = a11a22 · · · ann =

∏n
i=1 aii .

For example, we have

det


1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10

 = 1× 5× 8× 10 = 400.

(b) Similarly, if all the entries above the diagonal are zero, then the
determinant is just the product of the diagonal entries.

(c) In particular, if A is a diagonal matrix (so all entries off the diagonal are
zero) then both (a) and (b) apply and we have det(A) =

∏n
i=1 aii .

(d) In particular, we have det(In) = 1.
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Basic facts about determinants

Example 12.5: If any row or column of A is zero, then det(A) = 0.

Proposition 12.6: The determinants of elementary matrices are
det(Dp(λ)) = λ

and det(Epq(µ)) = 1 and det(Fpq) = −1.

D2(λ) =


1 0 0 0
0 λ 0 0
0 0 1 0
0 0 0 1

 E24(µ) =


1 0 0 0
0 1 0 µ
0 0 1 0
0 0 0 1

 F24 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



Proposition 12.7: For any square matrix A, we have det(AT ) = det(A).

Theorem 12.8: If A and B are n × n matrices,
then det(AB) = det(A) det(B).
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Determinants and row operations

Method 12.9: Let A be an n × n matrix.

We can calculate det(A) by
applying row operations to A until we reach a matrix B for which we know
det(B), keeping track of some factors as we go along.

(a) Every time we multiply a row by a number λ, we record the factor λ.

(b) Every time we exchange two rows, we record the factor −1.

Let µ be the product of these factors: then det(A) = det(B)/µ.

Most obvious approach: continue until we reach B in RREF.

I If B = In then det(B) = 1

and det(A) = 1/µ.

I If B 6= In then B must have a row of zeros

so det(B) = 0 and det(A) = 0.

It will often be more efficient to stop the row-reduction at an earlier stage.
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Example determinant by row-reduction

A =


3 5 5 5
1 3 5 5
1 1 3 5
1 1 1 3



−→


0 2 2 −4
0 2 4 2
0 0 2 2
1 1 1 3

 1
8−→


0 1 1 −2
0 1 2 1
0 0 1 1
1 1 1 3

 −→


0 1 1 −2
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0 0 1 1
1 1 1 3

 −→
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1 1 1 3

 −1−−→


0 1 1 −2
1 1 1 3
0 0 1 1
0 0 0 2

 −1−−→


1 1 1 3
0 1 1 −2
0 0 1 1
0 0 0 2


I Add multiples of row 4 to the other rows: no factor.

I Multiply each of the first three rows by 1
2
: overall factor of 1

2
× 1

2
× 1

2
= 1

8
.

I Subtract row 1 from row 2: no factor.

I Subtract row 3 from row 2: no factor.

I Exchange rows 2 and 4: factor of −1.

I Exchange rows 1 and 2: another factor of −1.

The final matrix B is upper-triangular, so the determinant is just the product of
the diagonal entries, which is det(B) = 2. The product of the factors is
µ = 1/8, so det(A) = det(B)/µ = 16.
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the diagonal entries, which is det(B) = 2. The product of the factors is
µ = 1/8

, so det(A) = det(B)/µ = 16.
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As B has two rows of zeros, we see that det(B) = 0.
The method therefore tells us that det(A) = det(B)/µ = 0 as well.
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Minors and the adjugate

Definition 12.12: Let A be an n× n matrix, and let p and q be integers with
1 ≤ p, q ≤ n.

(a) We let Mpq be the matrix obtained by deleting the p’th row and the q’th
column from A.

This is a square matrix of shape (n − 1)× (n − 1).

(b) We put mpq = det(Mpq).

(c) We let adj(A) denote the n × n matrix with entries
adj(A)qp = (−1)p+qmpq.

The matrices Mpq the minor matrices for A, and the numbers mpq the minor
determinants. The matrix adj(A) is the adjugate (or classical adjoint) of A.

adj(A) =

 m11 −m21 m31

−m12 m22 −m32

m13 −m23 m33

 =



ei − fh − bi + ch bf − ce
− di + fg ai − cg − af + cd
dh − eg − ah + bg ae − bd
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Expanding the determinant

Proposition 12.13: det(A) can be “expanded along the first row”:

det(A) = a11m11 − a12m12 + · · · ± a1nm1n =
n∑

j=1

(−1)1+ja1jm1j .

More generally, it can be expanded along the p’th row for any p, in the sense
that

det(A) =
n∑

j=1

(−1)p+japjmpj .

Similarly, it can be expanded down the q’th column for any q, in the sense that

det(A) =
n∑

i=1

(−1)i+qaiqmiq.
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More generally, it can be expanded along the p’th row for any p, in the sense
that

det(A) =
n∑

j=1

(−1)p+japjmpj .

Similarly, it can be expanded down the q’th column for any q, in the sense that

det(A) =
n∑
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(−1)i+qaiqmiq.
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Example of expanding a determinant

Consider det(A), where

A =


a 0 b c
0 0 0 d
e f g h
i 0 j k

 B =

a 0 b
e f g
i 0 j

 C =

[
a b
i j

]

I Expand det(A) along the second row to get
det(A) = (−1)2+4d det(B) = d det(B).

I Expand det(B) down the middle column to get
det(B) = (−1)2+2f det(C) = f det(C)

I det(C) = aj − bi

I So det(A) = df (aj − bi) = adfi − bdfj .
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Example of expanding a determinant

Consider the matrix U =


1 0 1 0
0 1 1 1
1 1 1 0
1 1 1 1



Expanding along the top row gives

det(U) = det(V1)

− 0× det(V2) + det(V3)− 0× det(V4)

where

V1 =

1 1 1
1 1 0
1 1 1



V2 =

0 1 1
1 1 0
1 1 1

 V3 =

0 1 1
1 1 0
1 1 1

 V4 =

0 1 1
1 1 1
1 1 1



In V1 the first and last rows are the same, so after a single row operation we
have a row of zeros, which means that det(V1) = 0. We need not work out
det(V2) and det(V4) because they will be multiplied by zero anyway. This just
leaves det(U) = det(V3), which we can expand along the top row again:

det(V3) = 0× det

[
1 0
1 1

]
− det

[
1 0
1 1

]
+ det

[
1 1
1 1

]
= 0− 1 + 0 = −1.

We conclude that det(U) = −1.
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Determinants and invertibility

Theorem 12.16: Let A be an n × n matrix.

(a) If det(A) 6= 0 then A has an inverse

, A−1 = adj(A)/ det(A);
also, the only v ∈ Rn with Av = 0 is v = 0.

(b) If det(A) = 0 then A has no inverse

;
also, there exists a vector v 6= 0 with Av = 0.

Example 12.17: For a 2× 2 matrix A =, the minor matrices are 1× 1
matrices or in other words just numbers, so mij = det(Mij) = Mij .

m11 = d m12 = c

m21 = b m22 = a

so

adj(A) =

[
+m11 −m21

−m12 +m22

]

=

[
d −b
−c a

]

so we get the well-known formula

A−1 = adj(A)/ det(A) =

1

ad − bc

[
d −b
−c a

]
.
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m21 = b m22 = a
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−m12 +m22

]

=

[
d −b
−c a

]

so we get the well-known formula

A−1 = adj(A)/ det(A) =

1

ad − bc

[
d −b
−c a

]
.
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The inverse of an upper-triangular matrix

Consider an upper triangular matrix A =

1 a b
0 1 c
0 0 1

.

This has det(A) = 1 by Example 12.4. The minor determinants are

m11 = det

[
1 c
0 1

]
= 1 m12 = det

[
0 c
0 1

]
= 0 m13 = det

[
0 1
0 0

]
= 0

m21 = det

[
a b
0 1

]
= a m22 = det

[
1 b
0 1

]
= 1 m23 = det

[
1 a
0 0

]
= 0

m31 = det

[
a b
1 c

]
= ac − b m32 = det

[
1 b
0 c

]
= c m33 = det

[
1 a
0 1

]
= 1

adj(A) =

+m11 −m21 +m31

−m12 +m22 −m32

+m13 −m23 +m33

 =



1 − a ac − b
0 1 − c
0 0 1

 .
We also have A−1 = adj(A)/ det(A) but det(A) = 1 so A−1 = adj(A).

Note that this is the same answer as we obtained in Example 11.12.
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Inverse of a Jordan block

Consider the matrix P =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

.

The minor matrices are:

M11 =

1 1 0
0 1 1
0 0 1

 M12 =

0 1 0
0 1 1
0 0 1

 M13 =

0 1 0
0 0 1
0 0 1

 M14 =

0 1 1
0 0 1
0 0 0


M21 =

1 0 0
0 1 1
0 0 1

 M22 =

1 0 0
0 1 1
0 0 1

 M23 =

1 1 0
0 0 1
0 0 1

 M24 =

1 1 0
0 0 1
0 0 0


M31 =

1 0 0
1 1 0
0 0 1

 M32 =

1 0 0
0 1 0
0 0 1

 M33 =

1 1 0
0 1 0
0 0 1

 M34 =

1 1 0
0 1 1
0 0 0


M41 =

1 0 0
1 1 0
0 1 1

 M42 =

1 0 0
0 1 0
0 1 1

 M43 =

1 1 0
0 1 0
0 0 1

 M44 =

1 1 0
0 1 1
0 0 1


Each of these matrices is either upper triangular or lower triangular,

so the determinant is the product of the diagonal entries.
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Lecture 8



Eigenvalues and eigenvectors

Definition 13.1: Let A be an n × n matrix, and let λ be a real number.

A λ-eigenvector for A is a nonzero n-vector v with the property that Av = λv .
We say that λ is an eigenvalue of A if there exists a λ-eigenvector for A.

I This is for square matrices only.

I If v is a λ-eigenvector, then Av points in the same direction as v

(if λ > 0) or the opposite direction (if λ < 0) or Av = 0 (if λ = 0).

I Some things would work better if we considered complex eigenvalues, and
eigenvectors in Cn, even if the entries in A are real.

However, we will stick
with the real case for the moment.

I The equation Av = λv is equivalent to the homogeneous equation
(A− λIn)v = 0.

We can solve this by row-reducing A− λIn to get a matrix
B say. If B has a pivot in every column then (because it is square) it
must be the identity, so the reduced equation Bv = 0 says v = 0, so there
are no λ-eigenvectors. If B does not have a pivot in every column then
there will be at least one independent variable, so the equation Bv = 0
will have some nonzero solutions, which are the λ-eigenvectors for A.
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Eigenvector example

Consider the case

A =

[
1 1
1 1

]
a =

[
1
1

]
b =

[
1
−1

]
.

We have

Aa =

[
1 1
1 1

] [
1
1

]
=

[
2
2

]

= 2a Ab =

[
1 1
1 1

] [
1
−1

]
=

[
0
0

]
= 0b

so a is a 2-eigenvector and b is a 0-eigenvector, so 2 and 0 are eigenvalues.
We claim that these are the only eigenvalues, or equivalently that when
λ 6∈ {0, 2} the only solution to (A− λI2)v = 0 is v = 0, or equivalently that the

matrix A− λI2 =

[
1− λ 1

1 1− λ

]
row-reduces to I2.

Subtract 1− λ times row 2 from row 1 to get

[
0 1− (1− λ)2
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Eigenvector example

Consider

A =


1 1 1 1
0 2 2 2
0 0 3 3
0 0 0 4



a =


1
0
0
0

 b =


1
1
0
0

 c =


3
4
2
0

 d =


8

12
9
3

 .
We have

Ad =


1 1 1 1
0 2 2 2
0 0 3 3
0 0 0 4




8
12
9
3



=


32
48
36
12

 = 4d ,

which means that d is a 4-eigenvector for A, and 4 is an eigenvalue of A.
Equally direct calculation shows that Aa = a and Ab = 2b and Ac = 3c, so a,
b and c are also eigenvectors, and 1, 2 and 3 are also eigenvalues of A. Using
the general theory that we will discuss below, we can show that

(a) The only 1-eigenvectors are the nonzero multiples of a.
(b) The only 2-eigenvectors are the nonzero multiples of b.
(c) The only 3-eigenvectors are the nonzero multiples of c.
(d) The only 4-eigenvectors are the nonzero multiples of d .
(e) There are no more eigenvalues

: if λ is a real number other than 1, 2, 3
and 4, then the equation Av = λv has v = 0 as the only solution, so there
are no λ-eigenvectors.
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The characteristic polynomial

Definition 13.8: Let A be an n × n matrix. We define χA(t) = det(A− t In)
(where In is the identity matrix). This is the characteristic polynomial of A.

Example 13.9: For A =

[
a b
c d

]

we have A− tI2 =

[
a− t b

c d − t

]
so

χA(t) = det

[
a− t b

c d − t

]

= (a− t)(d − t)− bc = t2− (a + d)t + (ad − bc).

When A =

[
1 2
3 4

]
we have

χA(t) = t2 − (1 + 4)t + (1× 4− 2× 3) = t2 − 5t − 2.

Theorem 13.11: The eigenvalues of A are the roots of the characteristic
polynomial.
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Characteristic polynomial example

Consider A =

 2 −1 2
−1 3 −1
2 −1 2



, so χA(t) = det

2− t −1 2
−1 3− t −1
2 −1 2− t


= (2− t) det

[
3− t −1
−1 2− t

]
− (−1) det

[
−1 −1
2 2− t

]
+ 2 det

[
−1 3− t
2 −1

]

det

[
3− t −1
−1 2− t

]
= (3− t)(2− t)− (−1)(−1) = t2 − 5t + 5

det

[
−1 −1
2 2− t

]
= (−1)(2− t)− (−1)(2) = t

det

[
−1 3− t
2 −1

]
= (−1)(−1)− (3− t)(2) = 2t − 5

χA(t) = (2− t)(t2 − 5t + 5) + t + 2(2t − 5) = −t3 + 7t2 − 10t

= −t(t − 2)(t − 5).

The eigenvalues of A are the roots of χA(t), namely 0, 2 and 5.
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−1 1 1
−1 0 1

x
y
z

 =

0
0
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,

or (y = 0 and −x + y + z = 0 and −x + z = 0). These equations reduce to
x = z with y = 0, so

[
x y z

]
= z
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1 0 1

]
. This means that the

(−1)-eigenvectors are just the nonzero multiples of the vector
[
1 0 1

]T
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General method for eigenvectors

Method 13.14: Suppose we have an n× n matrix A, and we want to find the
eigenvalues and eigenvectors.

(a) Calculate the characteristic polynomial χA(t) = det(A− tIn).

(b) Find all the real roots of χA(t), and list them as λ1, . . . , λk . These are the
eigenvalues of A.

(c) For each eigenvalue λi , row reduce the matrix A− λi In to get a matrix B.

(d) Read off solutions to the equation Bu = 0 (which is easy because B is in
RREF). These are the λi -eigenvectors of the matrix A.
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Eigenvector example

Consider the matrix

A =


16 2 1 1
2 16 1 1
1 1 16 2
1 1 2 16



We will take it as given here that χA(t) = (t − 14)2(t − 16)(t − 20).
Thus, the eigenvalues of A are 14, 16 and 20. To find the eigenvectors of
eigenvalue 14, we write down the matrix A− 14I4 and row-reduce it to get a
matrix B as follows:

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

 −→


0 0 −3 −3
0 0 −3 −3
1 1 2 2
0 0 0 0

 −→


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 −→


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0


If we write u =

[
a b c d

]T
, then the equation Bu = 0 just gives

a + b = c + d = 0, so a = −b and c = −d (with b and d arbitrary), so

u =
[
−b b −d d

]T
for some b, d ∈ R. The eigenvectors of eigenvalue 14 are precisely the nonzero
vectors of the above form. (Recall that eigenvectors are nonzero, by definition.)



Eigenvector example

Consider the matrix

A =


16 2 1 1
2 16 1 1
1 1 16 2
1 1 2 16


We will take it as given here that χA(t) = (t − 14)2(t − 16)(t − 20).

Thus, the eigenvalues of A are 14, 16 and 20. To find the eigenvectors of
eigenvalue 14, we write down the matrix A− 14I4 and row-reduce it to get a
matrix B as follows:

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

 −→


0 0 −3 −3
0 0 −3 −3
1 1 2 2
0 0 0 0

 −→


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 −→


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0


If we write u =

[
a b c d

]T
, then the equation Bu = 0 just gives

a + b = c + d = 0, so a = −b and c = −d (with b and d arbitrary), so

u =
[
−b b −d d

]T
for some b, d ∈ R. The eigenvectors of eigenvalue 14 are precisely the nonzero
vectors of the above form. (Recall that eigenvectors are nonzero, by definition.)



Eigenvector example

Consider the matrix

A =


16 2 1 1
2 16 1 1
1 1 16 2
1 1 2 16


We will take it as given here that χA(t) = (t − 14)2(t − 16)(t − 20).
Thus, the eigenvalues of A are 14, 16 and 20.

To find the eigenvectors of
eigenvalue 14, we write down the matrix A− 14I4 and row-reduce it to get a
matrix B as follows:

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

 −→


0 0 −3 −3
0 0 −3 −3
1 1 2 2
0 0 0 0

 −→


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 −→


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0


If we write u =

[
a b c d

]T
, then the equation Bu = 0 just gives

a + b = c + d = 0, so a = −b and c = −d (with b and d arbitrary), so

u =
[
−b b −d d

]T
for some b, d ∈ R. The eigenvectors of eigenvalue 14 are precisely the nonzero
vectors of the above form. (Recall that eigenvectors are nonzero, by definition.)



Eigenvector example

Consider the matrix

A =


16 2 1 1
2 16 1 1
1 1 16 2
1 1 2 16


We will take it as given here that χA(t) = (t − 14)2(t − 16)(t − 20).
Thus, the eigenvalues of A are 14, 16 and 20. To find the eigenvectors of
eigenvalue 14, we write down the matrix A− 14I4 and row-reduce it to get a
matrix B as follows:


2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

 −→


0 0 −3 −3
0 0 −3 −3
1 1 2 2
0 0 0 0

 −→


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 −→


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0


If we write u =

[
a b c d

]T
, then the equation Bu = 0 just gives

a + b = c + d = 0, so a = −b and c = −d (with b and d arbitrary), so

u =
[
−b b −d d

]T
for some b, d ∈ R. The eigenvectors of eigenvalue 14 are precisely the nonzero
vectors of the above form. (Recall that eigenvectors are nonzero, by definition.)



Eigenvector example

Consider the matrix

A =


16 2 1 1
2 16 1 1
1 1 16 2
1 1 2 16


We will take it as given here that χA(t) = (t − 14)2(t − 16)(t − 20).
Thus, the eigenvalues of A are 14, 16 and 20. To find the eigenvectors of
eigenvalue 14, we write down the matrix A− 14I4 and row-reduce it to get a
matrix B as follows:

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2



−→


0 0 −3 −3
0 0 −3 −3
1 1 2 2
0 0 0 0

 −→


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 −→


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0


If we write u =

[
a b c d

]T
, then the equation Bu = 0 just gives

a + b = c + d = 0, so a = −b and c = −d (with b and d arbitrary), so

u =
[
−b b −d d

]T
for some b, d ∈ R. The eigenvectors of eigenvalue 14 are precisely the nonzero
vectors of the above form. (Recall that eigenvectors are nonzero, by definition.)



Eigenvector example

Consider the matrix

A =


16 2 1 1
2 16 1 1
1 1 16 2
1 1 2 16


We will take it as given here that χA(t) = (t − 14)2(t − 16)(t − 20).
Thus, the eigenvalues of A are 14, 16 and 20. To find the eigenvectors of
eigenvalue 14, we write down the matrix A− 14I4 and row-reduce it to get a
matrix B as follows:

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

 −→


0 0 −3 −3
0 0 −3 −3
1 1 2 2
0 0 0 0



−→


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 −→


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0


If we write u =

[
a b c d

]T
, then the equation Bu = 0 just gives

a + b = c + d = 0, so a = −b and c = −d (with b and d arbitrary), so

u =
[
−b b −d d

]T
for some b, d ∈ R. The eigenvectors of eigenvalue 14 are precisely the nonzero
vectors of the above form. (Recall that eigenvectors are nonzero, by definition.)



Eigenvector example

Consider the matrix

A =


16 2 1 1
2 16 1 1
1 1 16 2
1 1 2 16


We will take it as given here that χA(t) = (t − 14)2(t − 16)(t − 20).
Thus, the eigenvalues of A are 14, 16 and 20. To find the eigenvectors of
eigenvalue 14, we write down the matrix A− 14I4 and row-reduce it to get a
matrix B as follows:

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

 −→


0 0 −3 −3
0 0 −3 −3
1 1 2 2
0 0 0 0

 −→


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0



−→


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0


If we write u =

[
a b c d

]T
, then the equation Bu = 0 just gives

a + b = c + d = 0, so a = −b and c = −d (with b and d arbitrary), so

u =
[
−b b −d d

]T
for some b, d ∈ R. The eigenvectors of eigenvalue 14 are precisely the nonzero
vectors of the above form. (Recall that eigenvectors are nonzero, by definition.)



Eigenvector example

Consider the matrix

A =


16 2 1 1
2 16 1 1
1 1 16 2
1 1 2 16


We will take it as given here that χA(t) = (t − 14)2(t − 16)(t − 20).
Thus, the eigenvalues of A are 14, 16 and 20. To find the eigenvectors of
eigenvalue 14, we write down the matrix A− 14I4 and row-reduce it to get a
matrix B as follows:

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

 −→


0 0 −3 −3
0 0 −3 −3
1 1 2 2
0 0 0 0

 −→


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 −→


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0



If we write u =
[
a b c d

]T
, then the equation Bu = 0 just gives

a + b = c + d = 0, so a = −b and c = −d (with b and d arbitrary), so

u =
[
−b b −d d

]T
for some b, d ∈ R. The eigenvectors of eigenvalue 14 are precisely the nonzero
vectors of the above form. (Recall that eigenvectors are nonzero, by definition.)



Eigenvector example

Consider the matrix

A =


16 2 1 1
2 16 1 1
1 1 16 2
1 1 2 16


We will take it as given here that χA(t) = (t − 14)2(t − 16)(t − 20).
Thus, the eigenvalues of A are 14, 16 and 20. To find the eigenvectors of
eigenvalue 14, we write down the matrix A− 14I4 and row-reduce it to get a
matrix B as follows:

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

 −→


0 0 −3 −3
0 0 −3 −3
1 1 2 2
0 0 0 0

 −→


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 −→


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0


If we write u =

[
a b c d

]T
, then the equation Bu = 0 just gives

a + b = c + d = 0

, so a = −b and c = −d (with b and d arbitrary), so

u =
[
−b b −d d

]T
for some b, d ∈ R. The eigenvectors of eigenvalue 14 are precisely the nonzero
vectors of the above form. (Recall that eigenvectors are nonzero, by definition.)



Eigenvector example

Consider the matrix

A =


16 2 1 1
2 16 1 1
1 1 16 2
1 1 2 16


We will take it as given here that χA(t) = (t − 14)2(t − 16)(t − 20).
Thus, the eigenvalues of A are 14, 16 and 20. To find the eigenvectors of
eigenvalue 14, we write down the matrix A− 14I4 and row-reduce it to get a
matrix B as follows:

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

 −→


0 0 −3 −3
0 0 −3 −3
1 1 2 2
0 0 0 0

 −→


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 −→


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0


If we write u =

[
a b c d

]T
, then the equation Bu = 0 just gives

a + b = c + d = 0, so a = −b and c = −d (with b and d arbitrary)

, so

u =
[
−b b −d d

]T
for some b, d ∈ R. The eigenvectors of eigenvalue 14 are precisely the nonzero
vectors of the above form. (Recall that eigenvectors are nonzero, by definition.)



Eigenvector example

Consider the matrix

A =


16 2 1 1
2 16 1 1
1 1 16 2
1 1 2 16


We will take it as given here that χA(t) = (t − 14)2(t − 16)(t − 20).
Thus, the eigenvalues of A are 14, 16 and 20. To find the eigenvectors of
eigenvalue 14, we write down the matrix A− 14I4 and row-reduce it to get a
matrix B as follows:

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

 −→


0 0 −3 −3
0 0 −3 −3
1 1 2 2
0 0 0 0

 −→


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 −→


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0


If we write u =

[
a b c d

]T
, then the equation Bu = 0 just gives

a + b = c + d = 0, so a = −b and c = −d (with b and d arbitrary), so

u =
[
−b b −d d

]T
for some b, d ∈ R. The eigenvectors of eigenvalue 14 are precisely the nonzero
vectors of the above form.

(Recall that eigenvectors are nonzero, by definition.)



Eigenvector example

Consider the matrix

A =


16 2 1 1
2 16 1 1
1 1 16 2
1 1 2 16


We will take it as given here that χA(t) = (t − 14)2(t − 16)(t − 20).
Thus, the eigenvalues of A are 14, 16 and 20. To find the eigenvectors of
eigenvalue 14, we write down the matrix A− 14I4 and row-reduce it to get a
matrix B as follows:

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

 −→


0 0 −3 −3
0 0 −3 −3
1 1 2 2
0 0 0 0

 −→


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 −→


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0


If we write u =

[
a b c d

]T
, then the equation Bu = 0 just gives

a + b = c + d = 0, so a = −b and c = −d (with b and d arbitrary), so

u =
[
−b b −d d

]T
for some b, d ∈ R. The eigenvectors of eigenvalue 14 are precisely the nonzero
vectors of the above form. (Recall that eigenvectors are nonzero, by definition.)



Nasty eigenvalues

Using Maple, we find that one eigenvalue of the matrix

A =


−1 0 0 −1
1 1 −1 −1
1 1 −1 0
−1 −1 −1 −1
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This level of complexity is quite normal, even for matrices whose entries are all
0 or ±1. Most examples in this course are carefully constructed to have simple
eigenvalues and eigenvectors, but you should be aware that this is not typical.
The methods that we discuss will work perfectly well for all matrices, but in
practice we need to use computers to do the calculations. Also, it is rarely
useful to work with exact expressions for the eigenvalues when they are as
complicated as those above. Instead we should use the numerical
approximation λ ' 1.496698205.
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Eigenvector example

Consider A =


3 0 0 2
0 0 2 0
0 2 0 0
2 0 0 0

 .

We will take it as given that

χA(t) = (t + 1)(t + 2)(t − 2)(t − 4), so the eigenvalues are −1, −2, 2 and 4.
To find the eigenvectors of eigenvalue 2, we write down the matrix A− 2I4 and
row-reduce it to get a matrix B in RREF:

1 0 0 2
0 −2 2 0
0 2 −2 0
2 0 0 −2

 −→

1 0 0 2
0 −2 2 0
0 2 −2 0
0 0 0 −4

 −→

1 0 0 2
0 2 −2 0
0 0 0 0
0 0 0 −4

 −→

1 0 0 0
0 1 −1 0
0 0 0 1
0 0 0 0

 = B.

If we write u =
[
a b c d

]T
, then the equation Bu = 0 just gives

a = b − c = d = 0, so

u =
[
0 c c 0

]T
= c

[
0 1 1 0

]T
.

for some c ∈ R. The eigenvectors of eigenvalue 2 are precisely the nonzero

vectors of the above form. In particular, the vector
[
0 1 1 0

]T
is an

eigenvector of eigenvalue 2.
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Independence of eigenvectors

Proposition 13.19: Let A be a d × d matrix, and let v1, . . . , vn be
eigenvectors of A.

Suppose that the corresponding eigenvalues λ1, . . . , λn are
all different.
Then the list v1, . . . , vn is linearly independent.

Proof for n = 2.

Suppose we have a linear relation α1v1 + α2v2 = 0. (P)
We now multiply both sides of this vector equation by the matrix A− λ2I .

As the number λ1 − λ2 and the vector v1 are nonzero, we can conclude that
α1 = 0. If we instead multiply equation (P) by A− λ1I we get

α2(λ2 − λ1)v2 = 0.

As the number λ2 − λ1 and the vector v2 are nonzero, we can conclude that
α2 = 0. We have now seen that α1 = α2 = 0, so the relation (P) is the trivial
relation. As this works for any linear relation between v1 and v2, we see that
these vectors are linearly independent.
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A generalisation

Suppose we have:

I A d × d matrix A

I A list λ1, . . . , λr of distinct eigenvalues

I A linearly independent list V1 = (v1,1, . . . , v1,h1) of eigenvectors, all with
eigenvalue λ1

I A linearly independent list V2 = (v2,1, . . . , v2,h2) of eigenvectors, all with
eigenvalue λ2

I · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
I A linearly independent list Vr = (vr,1, . . . , vr,hr ) of eigenvectors, all with

eigenvalue λr

We can then combine the lists V1, . . . ,Vr into a single list

W = (v1,1, · · · , v1,h1 , v2,1, · · · , v2,h2 , · · · , vr,1, · · · , vr,hr ).

One can show that the combined list W is linearly independent.
The problem sheet asks you to prove this.
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Lecture 9



Eigenvector bases

Let A be an n × n matrix.

Recall:

(a) If u1, . . . , uk are eigenvectors, with eigenvalues λ1, . . . , λk , and these
eigenvalues are all different, then the vectors u1, . . . , uk are independent.

(b) The eigenvalues are the roots of χA(t), which is a polynomial of degree n.

Thus, there are at most n different eigenvalues.

(c) Suppose there are exactly n distinct eigenvalues, say λ1, . . . , λn.

We can
then choose an eigenvector ui for each eigenvalue λi , and part (a) says
that the list U = u1, . . . , un is independent. As U is an independent list of
n vectors in Rn, it is in fact a basis.
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Eigenvector basis example

Consider A =

1 1 1
0 2 2
0 0 3



, so χA(t) = det(A− tI ) = (1− t)(2− t)(3− t),

so the eigenvalues are 1, 2 and 3. Suppose we have eigenvectors u1, u2 and u3,
where uk has eigenvalue k. By the previous slide: the list u1, u2, u3 is a basis for
R3. We can find the eigenvectors explicitly by row-reduction:

A− I =

0 1 1
0 1 2
0 0 2

 →

0 1 0
0 0 1
0 0 0

 u1 =

1
0
0


A− 2I =

−1 1 1
0 0 2
0 0 1

 →

1 −1 0
0 0 1
0 0 0

 u2 =

1
1
0


A− 3I =

−2 1 1
0 −1 2
0 0 0

 →

1 0 −3/2
0 1 −2
0 0 0

 u3 =

3/2
2
1

 .
We can check more directly that the ui form a basis:

[u1|u2|u3] =

1 1 3/2
0 1 2
0 0 1

 →
1 1 0

0 1 0
0 0 1

 →
1 0 0

0 1 0
0 0 1

 = I3.
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Eigenvector basis example

Consider A =

[
0 1
−1 0

]

, so χA(t) = det

[
−t 1
−1 −t

]
= t2 + 1.

For all t ∈ R we have t2 + 1 ≥ 1 > 0, so the characteristic polynomial has no
real roots, so there are no real eigenvalues or eigenvectors.

However, there are complex eigenvalues i and −i , with corresponding

eigenvectors u1 =

[
1
i

]
and u2 =

[
1
−i

]
, which form a basis for C2.

This example and the previous one are typical. If we pick an n × n matrix at
random, it will usually have n different eigenvalues (some of which will usually
be complex), and so the corresponding eigenvectors will form a basis for Cn.
However, there are some exceptions, as we will see soon. Such exceptions
usually arise because of some symmetry or other interesting feature of the
problem that gives rise to the matrix.
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Consider A =

5 5 0
0 5 5
0 0 5



, so χA(t) = (5− t)3, so the only eigenvalue is 5.

The eigenvectors are the solutions of
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0 0 5
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 =

0
0
0

, which reduces

to 5y = 5z = 0 so y = z = 0, so the eigenvectors are the multiples of

1
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.

This means that any two eigenvectors are multiples of each other, and so are
linearly dependent. Thus, we cannot find a basis consisting of eigenvectors.
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Diagonalisation

Definition 14.1: We write diag(λ1, . . . , λn) for the n× n matrix such that the
entries on the diagonal are λ1, . . . , λn and the entries off the diagonal are zero.

Example 14.2: diag(5, 6, 7, 8) =


5 0 0 0
0 6 0 0
0 0 7 0
0 0 0 8


Definition 14.3: Let A be an n × n matrix.

I To diagonalise A means to give an invertible matrix U and a diagonal
matrix D such that U−1AU = D

(or equivalently A = UDU−1).

I We say that A is diagonalisable if there exist matrices U and D with these
properties.
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Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say.

Put U = [u1| · · · |un] and D = diag(λ1, . . . , λn).

Then U−1AU = D, so we have a diagonalisation of A.

Moreover, every diagonalisation of A occurs in this way.
The proof will be given after a lemma.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say.

Put U = [u1| · · · |un] and D = diag(λ1, . . . , λn).

Then U−1AU = D, so we have a diagonalisation of A.

Moreover, every diagonalisation of A occurs in this way.
The proof will be given after a lemma.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say.

Put U = [u1| · · · |un] and D = diag(λ1, . . . , λn).

Then U−1AU = D, so we have a diagonalisation of A.

Moreover, every diagonalisation of A occurs in this way.
The proof will be given after a lemma.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say.

Put U = [u1| · · · |un] and D = diag(λ1, . . . , λn).

Then U−1AU = D, so we have a diagonalisation of A.

Moreover, every diagonalisation of A occurs in this way.

The proof will be given after a lemma.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say.

Put U = [u1| · · · |un] and D = diag(λ1, . . . , λn).

Then U−1AU = D, so we have a diagonalisation of A.

Moreover, every diagonalisation of A occurs in this way.
The proof will be given after a lemma.



A matrix multiplication lemma

Lemma 14.5: Let A and U be n× n matrices, let λ1, . . . , λn be real numbers,
and put D = diag(λ1, . . . , λn).

Let u1, . . . , un be the columns of U. Then

AU =

 Au1 · · · Aun



UD =

 λ1u1 · · · λnun

 .

Proof: Let the rows of A be aT
1 , . . . , a

T
n .

By the definition of matrix
multiplication, we have

AU =

a1.u1 · · · a1.un

· · · · · · · · ·
an.u1 · · · an.un



The p’th column is

a1.up

...
an.up

, and this is just the definition of Aup. In other

words, we have

AU =

 Au1 · · · Aun
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Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say. Put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have a diagonalisation of
A. Moreover, every diagonalisation arises in this way.

Proof.

I The columns ui of U form a basis for Rn, so U is invertible.

I First half of the lemma: AU = [Au1| · · · |Aun].

But ui is an eigenvector of
eigenvalue λi , so Aui = λiui , so AU = [λ1u1| · · · |λnun].

I Second half of the lemma: UD = [λ1u1| · · · |λnun].

So AU = UD.

I It follows that U−1AU = U−1UD

= D and UDU−1 = AUU−1 = A.

Conversely: suppose we have an invertible matrix U and a diagonal matrix
D = diag(λ1, . . . , λn) such that U−1AU = D. Let u1, . . . , un be the columns of
U. By reversing the above steps: ui is an eigenvector of eigenvalue λi , and
u1, . . . , un is a basis for Rn.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say. Put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have a diagonalisation of
A. Moreover, every diagonalisation arises in this way.

Proof.

I The columns ui of U form a basis for Rn, so U is invertible.

I First half of the lemma: AU = [Au1| · · · |Aun].

But ui is an eigenvector of
eigenvalue λi , so Aui = λiui , so AU = [λ1u1| · · · |λnun].

I Second half of the lemma: UD = [λ1u1| · · · |λnun].

So AU = UD.

I It follows that U−1AU = U−1UD

= D and UDU−1 = AUU−1 = A.

Conversely: suppose we have an invertible matrix U and a diagonal matrix
D = diag(λ1, . . . , λn) such that U−1AU = D. Let u1, . . . , un be the columns of
U. By reversing the above steps: ui is an eigenvector of eigenvalue λi , and
u1, . . . , un is a basis for Rn.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say. Put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have a diagonalisation of
A. Moreover, every diagonalisation arises in this way.

Proof.

I The columns ui of U form a basis for Rn, so U is invertible.

I First half of the lemma: AU = [Au1| · · · |Aun].

But ui is an eigenvector of
eigenvalue λi , so Aui = λiui , so AU = [λ1u1| · · · |λnun].

I Second half of the lemma: UD = [λ1u1| · · · |λnun].

So AU = UD.

I It follows that U−1AU = U−1UD

= D and UDU−1 = AUU−1 = A.

Conversely: suppose we have an invertible matrix U and a diagonal matrix
D = diag(λ1, . . . , λn) such that U−1AU = D. Let u1, . . . , un be the columns of
U. By reversing the above steps: ui is an eigenvector of eigenvalue λi , and
u1, . . . , un is a basis for Rn.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say. Put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have a diagonalisation of
A. Moreover, every diagonalisation arises in this way.

Proof.

I The columns ui of U form a basis for Rn, so U is invertible.

I First half of the lemma: AU = [Au1| · · · |Aun].

But ui is an eigenvector of
eigenvalue λi , so Aui = λiui , so AU = [λ1u1| · · · |λnun].

I Second half of the lemma: UD = [λ1u1| · · · |λnun].

So AU = UD.

I It follows that U−1AU = U−1UD

= D and UDU−1 = AUU−1 = A.

Conversely: suppose we have an invertible matrix U and a diagonal matrix
D = diag(λ1, . . . , λn) such that U−1AU = D. Let u1, . . . , un be the columns of
U. By reversing the above steps: ui is an eigenvector of eigenvalue λi , and
u1, . . . , un is a basis for Rn.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say. Put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have a diagonalisation of
A. Moreover, every diagonalisation arises in this way.

Proof.

I The columns ui of U form a basis for Rn, so U is invertible.

I First half of the lemma: AU = [Au1| · · · |Aun]. But ui is an eigenvector of
eigenvalue λi , so Aui = λiui

, so AU = [λ1u1| · · · |λnun].

I Second half of the lemma: UD = [λ1u1| · · · |λnun].

So AU = UD.

I It follows that U−1AU = U−1UD

= D and UDU−1 = AUU−1 = A.

Conversely: suppose we have an invertible matrix U and a diagonal matrix
D = diag(λ1, . . . , λn) such that U−1AU = D. Let u1, . . . , un be the columns of
U. By reversing the above steps: ui is an eigenvector of eigenvalue λi , and
u1, . . . , un is a basis for Rn.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say. Put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have a diagonalisation of
A. Moreover, every diagonalisation arises in this way.

Proof.

I The columns ui of U form a basis for Rn, so U is invertible.

I First half of the lemma: AU = [Au1| · · · |Aun]. But ui is an eigenvector of
eigenvalue λi , so Aui = λiui , so AU = [λ1u1| · · · |λnun].

I Second half of the lemma: UD = [λ1u1| · · · |λnun].

So AU = UD.

I It follows that U−1AU = U−1UD

= D and UDU−1 = AUU−1 = A.

Conversely: suppose we have an invertible matrix U and a diagonal matrix
D = diag(λ1, . . . , λn) such that U−1AU = D. Let u1, . . . , un be the columns of
U. By reversing the above steps: ui is an eigenvector of eigenvalue λi , and
u1, . . . , un is a basis for Rn.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say. Put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have a diagonalisation of
A. Moreover, every diagonalisation arises in this way.

Proof.

I The columns ui of U form a basis for Rn, so U is invertible.

I First half of the lemma: AU = [Au1| · · · |Aun]. But ui is an eigenvector of
eigenvalue λi , so Aui = λiui , so AU = [λ1u1| · · · |λnun].

I Second half of the lemma: UD = [λ1u1| · · · |λnun].

So AU = UD.

I It follows that U−1AU = U−1UD

= D and UDU−1 = AUU−1 = A.

Conversely: suppose we have an invertible matrix U and a diagonal matrix
D = diag(λ1, . . . , λn) such that U−1AU = D. Let u1, . . . , un be the columns of
U. By reversing the above steps: ui is an eigenvector of eigenvalue λi , and
u1, . . . , un is a basis for Rn.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say. Put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have a diagonalisation of
A. Moreover, every diagonalisation arises in this way.

Proof.

I The columns ui of U form a basis for Rn, so U is invertible.

I First half of the lemma: AU = [Au1| · · · |Aun]. But ui is an eigenvector of
eigenvalue λi , so Aui = λiui , so AU = [λ1u1| · · · |λnun].

I Second half of the lemma: UD = [λ1u1| · · · |λnun]. So AU = UD.

I It follows that U−1AU = U−1UD

= D and UDU−1 = AUU−1 = A.

Conversely: suppose we have an invertible matrix U and a diagonal matrix
D = diag(λ1, . . . , λn) such that U−1AU = D. Let u1, . . . , un be the columns of
U. By reversing the above steps: ui is an eigenvector of eigenvalue λi , and
u1, . . . , un is a basis for Rn.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say. Put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have a diagonalisation of
A. Moreover, every diagonalisation arises in this way.

Proof.

I The columns ui of U form a basis for Rn, so U is invertible.

I First half of the lemma: AU = [Au1| · · · |Aun]. But ui is an eigenvector of
eigenvalue λi , so Aui = λiui , so AU = [λ1u1| · · · |λnun].

I Second half of the lemma: UD = [λ1u1| · · · |λnun]. So AU = UD.

I It follows that U−1AU = U−1UD

= D and UDU−1 = AUU−1 = A.

Conversely: suppose we have an invertible matrix U and a diagonal matrix
D = diag(λ1, . . . , λn) such that U−1AU = D. Let u1, . . . , un be the columns of
U. By reversing the above steps: ui is an eigenvector of eigenvalue λi , and
u1, . . . , un is a basis for Rn.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say. Put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have a diagonalisation of
A. Moreover, every diagonalisation arises in this way.

Proof.

I The columns ui of U form a basis for Rn, so U is invertible.

I First half of the lemma: AU = [Au1| · · · |Aun]. But ui is an eigenvector of
eigenvalue λi , so Aui = λiui , so AU = [λ1u1| · · · |λnun].

I Second half of the lemma: UD = [λ1u1| · · · |λnun]. So AU = UD.

I It follows that U−1AU = U−1UD = D

and UDU−1 = AUU−1 = A.

Conversely: suppose we have an invertible matrix U and a diagonal matrix
D = diag(λ1, . . . , λn) such that U−1AU = D. Let u1, . . . , un be the columns of
U. By reversing the above steps: ui is an eigenvector of eigenvalue λi , and
u1, . . . , un is a basis for Rn.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say. Put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have a diagonalisation of
A. Moreover, every diagonalisation arises in this way.

Proof.

I The columns ui of U form a basis for Rn, so U is invertible.

I First half of the lemma: AU = [Au1| · · · |Aun]. But ui is an eigenvector of
eigenvalue λi , so Aui = λiui , so AU = [λ1u1| · · · |λnun].

I Second half of the lemma: UD = [λ1u1| · · · |λnun]. So AU = UD.

I It follows that U−1AU = U−1UD = D and UDU−1 = AUU−1 = A.

Conversely: suppose we have an invertible matrix U and a diagonal matrix
D = diag(λ1, . . . , λn) such that U−1AU = D. Let u1, . . . , un be the columns of
U. By reversing the above steps: ui is an eigenvector of eigenvalue λi , and
u1, . . . , un is a basis for Rn.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say. Put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have a diagonalisation of
A. Moreover, every diagonalisation arises in this way.

Proof.

I The columns ui of U form a basis for Rn, so U is invertible.

I First half of the lemma: AU = [Au1| · · · |Aun]. But ui is an eigenvector of
eigenvalue λi , so Aui = λiui , so AU = [λ1u1| · · · |λnun].

I Second half of the lemma: UD = [λ1u1| · · · |λnun]. So AU = UD.

I It follows that U−1AU = U−1UD = D and UDU−1 = AUU−1 = A.

Conversely: suppose we have an invertible matrix U and a diagonal matrix
D = diag(λ1, . . . , λn) such that U−1AU = D.

Let u1, . . . , un be the columns of
U. By reversing the above steps: ui is an eigenvector of eigenvalue λi , and
u1, . . . , un is a basis for Rn.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say. Put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have a diagonalisation of
A. Moreover, every diagonalisation arises in this way.

Proof.

I The columns ui of U form a basis for Rn, so U is invertible.

I First half of the lemma: AU = [Au1| · · · |Aun]. But ui is an eigenvector of
eigenvalue λi , so Aui = λiui , so AU = [λ1u1| · · · |λnun].

I Second half of the lemma: UD = [λ1u1| · · · |λnun]. So AU = UD.

I It follows that U−1AU = U−1UD = D and UDU−1 = AUU−1 = A.

Conversely: suppose we have an invertible matrix U and a diagonal matrix
D = diag(λ1, . . . , λn) such that U−1AU = D. Let u1, . . . , un be the columns of
U.

By reversing the above steps: ui is an eigenvector of eigenvalue λi , and
u1, . . . , un is a basis for Rn.



Diagonalisation and eigenvectors

Proposition 14.4: Suppose we have a basis u1, . . . , un for Rn such that each
vector ui is an eigenvector for A, with eigenvalue λi say. Put U = [u1| · · · |un]
and D = diag(λ1, . . . , λn). Then U−1AU = D, so we have a diagonalisation of
A. Moreover, every diagonalisation arises in this way.

Proof.

I The columns ui of U form a basis for Rn, so U is invertible.

I First half of the lemma: AU = [Au1| · · · |Aun]. But ui is an eigenvector of
eigenvalue λi , so Aui = λiui , so AU = [λ1u1| · · · |λnun].

I Second half of the lemma: UD = [λ1u1| · · · |λnun]. So AU = UD.

I It follows that U−1AU = U−1UD = D and UDU−1 = AUU−1 = A.

Conversely: suppose we have an invertible matrix U and a diagonal matrix
D = diag(λ1, . . . , λn) such that U−1AU = D. Let u1, . . . , un be the columns of
U. By reversing the above steps: ui is an eigenvector of eigenvalue λi , and
u1, . . . , un is a basis for Rn.



Diagonalisation example

Example 13.23: the matrix A =

1 1 1
0 2 2
0 0 3

 has

eigenvalues λ1 = 1 and λ2 = 2 and λ3 = 3; and eigenvectors

u1 =
[
1 0 0

]T
u2 =

[
1 1 0

]T
u3 =

[
3/2 2 1

]T
.

It follows that A = UDU−1, where

U =

 u1 u2 u3



=

1 1 3/2
0 1 2
0 0 1

 D =

λ1 0 0
0 λ2 0
0 0 λ3

 =

1 0 0
0 2 0
0 0 3



1 a b
0 1 c
0 0 1

−1

=

1 −a ac − b
0 1 −c
0 0 1

 ; U−1 =

1 −1 1/2
0 1 −2
0 0 1

 .
We thus have

DU−1 =

1 0 0
0 2 0
0 0 3

1 −1 1/2
0 1 −2
0 0 1



=

1 −1 1/2
0 2 −4
0 0 3


UDU−1 =

1 1 3/2
0 1 2
0 0 1

1 −1 1/2
0 2 −4
0 0 3

 =

1 1 1
0 2 2
0 0 3

 = A.
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Lecture 10



Non-diagonalisation example

Consider the matrix A =

5 5 0
0 5 5
0 0 5

.

The characteristic poly is (t − 5)3, so the only eigenvalue is λ = 5.

Any eigenvector u =
[
x y z

]T
must satisfy (A− 5I3)u = 0 so0 5 0

0 0 5
0 0 0

x
y
z

 =

0
0
0



5y = 0
5z = 0

0 = 0

so u =
[
x 0 0

]T
.

It follows that there is no basis of eigenvectors, so A is not diagonalisable.

It is possible to understand non-diagonalisable matrices using the theory of
“Jordan blocks”. However, we will not cover Jordan blocks in this course.
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Powers and eigenvectors

Let A be an n × n matrix.

We can form the powers A2 = AA, A3 = AAA and
so on, and these are again n × n matrices. It is conventional to take A0 = In
and A1 = A.

Now let u be an eigenvector of eigenvalue λ.

A0u = Inu = u

A1u = Au = λu

A2u = A.Au = A.λu = λAu = λ2u

A3u = A.A2u = A.λ2u = λ2Au = λ3u

A4u = A.A3u = A.λ3u = λ3Au = λ4u

and in general Aku = λku for all k ≥ 0.

This is a key point in many applications of eigenvalues and eigenvectors.
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Powers of diagonalised matrices

Proposition 14.9: Suppose we have a diagonalisation A = UDU−1, where
D = diag(λ1, . . . , λn) say.

Then for all k ≥ 0 we have Dk = diag(λk
1 , . . . , λ

k
n)

and
Ak = UDkU−1 = U diag(λk

1 , . . . , λ
k
n) U−1.

Proof: For example:

A4 = (UDU−1)4

= (UDU−1)(UDU−1)(UDU−1)(UDU−1)

= UD(U−1U)D(U−1U)D(U−1U)DU−1 = UDDDDU−1 = UD4U−1

It is clear that the general case works the same way, so Ak = UDkU−1 for all k.
(More formal proof by induction.) Next:

diag(λ1, . . . , λn) diag(µ1, . . . , µn) = diag(λ1µ1, . . . , λnµn).

It follows that

Dk = diag(λ1, . . . , λn)k = diag(λk
1 , . . . , λ

k
n).

(Again, a formal proof would go by induction on k.)
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Diagonalisation example

We will diagonalise the matrix A =


3 2 1 0
0 0 0 −1
0 0 0 −2
0 0 0 −3

 and thus find Ak .

As A− tI4 is upper-triangular we see that the determinant is just the product of
the diagonal terms. This gives

χA(t) = det(A− tI4) = t2(t − 3)(t + 3)

,

and it follows that the eigenvalues are λ1 = λ2 = 0 and λ3 = 3 and λ4 = −3.
Consider the vectors

u1 =


1
0
−3
0

 u2 =


2
−3
0
0

 u3 =


1
0
0
0

 u4 =


2
−3
−6
−9


It is straightforward to check that Au1 = Au2 = 0 and Au3 = 3u3 and

Au4 = −3u4, so the vectors ui are eigenvectors for A, with eigenvalues 0, 0, 3
and −3 respectively.
(These vectors were found by row-reducing the matrices A− λi I4.)
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Diagonalisation example

We will diagonalise the matrix A =


2 2 2 2
2 5 5 2
2 5 5 2
2 2 2 2

.

Recall χA(t) = det(B),

where

B = A− tI4 =


2− t 2 2 2

2 5− t 5 2
2 5 5− t 2
2 2 2 2− t

 .
Method 12.9: row-reduce B and keep track of row operation factors.

2 − t 2 2 2

2 5 − t 5 2
2 5 5 − t 2
2 2 2 2 − t

 −→

2 − t 2 2 2

2 5 − t 5 2
0 t −t 0
t 0 0 −t

 1/t2
−−−→


2 − t 2 2 2

2 5 − t 5 2
0 1 −1 0
1 0 0 −1

 −→

0 0 4 4 − t
0 0 10 − t 4
0 1 −1 0
1 0 0 −1

 −1−−→


1 0 0 −1
0 0 10 − t 4
0 1 −1 0
0 0 4 4 − t

 −1−−→


1 0 0 −1
0 1 −1 0
0 0 10 − t 4
0 0 4 4 − t



I Subtract row 1 from row 4, and row 2 from row 3.

I Multiply rows 3 and 4 by 1/t (factor 1/t2)

I Subtract multiples of rows 3 and 4 from rows 1 and 2.

I Swap rows 1 and 4 (factor −1);

Swap rows 2 and 3 (factor −1).
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Diagonalisation example

B = A− tI4 → C =


1 0 0 −1
0 1 −1 0
0 0 10− t 4
0 0 4 4− t

 ; product of factors µ = 1/t2

Expand down the columns to get

det(C) = det

[
10− t 4

4 4− t

]

= (10−t)(4−t)−16 = t2−14t+24 = (t−2)(t−12).

Thus χA(t) = det(B) = det(C)/µ = (t − 2)(t − 12)t2.
This means that the eigenvalues of A are 2, 12 and 0.
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B = A− tI4 → C =


1 0 0 −1
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0 0 4 4− t
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Finally, we need to find the eigenvectors of eigenvalue 0. Our reduction B → C
involved division by t, so it is not valid in this case where t = 0. We must
therefore start again and row-reduce the matrix A− 0I4 = A directly, but that
is easy:
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2 5 5 2
2 5 5 2
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space, and the vectors

u3 =
[
1 0 0 −1

]T
u4 =
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0 1 −1 0

]T
form a basis.
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Lecture 11



Systems of differential equations

I If ẋ = ax with x = c at t = 0, then x = c eat .

I If ẋi = aixi with xi = ci at t = 0 (for i = 1, 2, 3), then xi = ci eai t

I Put

x =

x1
x2
x3



c =

c1
c2
c3

 D =

a1 0 0
0 a2 0
0 0 a3

 eDt =

ea1t 0 0
0 ea2t 0
0 0 ea3t


The equations are ẋ = Dx with x = c at t = 0; the solution is x = eDtc.

I Suppose instead x = c at t = 0 with

ẋ1 = a11x1 + a12x2 + a13x3
ẋ2 = a21x1 + a22x2 + a23x3
ẋ3 = a31x1 + a32x2 + a33x3

so ẋ = Ax where A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

I To solve this, diagonalise A = UDU−1 with D = diag(λ1, λ2, λ3) say

, so
ẋ = UDU−1x . Put y = U−1x and d = U−1c so
ẏ = U−1ẋ = DU−1x = Dy , with y = d at t = 0. This gives y = eDtd ,
where

eDt = diag(eλ1t , eλ2t , eλ3t)

;

so x = Uy = UeDtd = UeDtU−1c.
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The equations are ẋ = Dx with x = c at t = 0; the solution is x = eDtc.

I Suppose instead x = c at t = 0 with
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ẋ = UDU−1x . Put y = U−1x and d = U−1c so
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so ẋ = Ax where A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

I To solve this, diagonalise A = UDU−1 with D = diag(λ1, λ2, λ3) say

, so
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The equations are ẋ = Dx with x = c at t = 0; the solution is x = eDtc.

I Suppose instead x = c at t = 0 with
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I If ẋi = aixi with xi = ci at t = 0 (for i = 1, 2, 3), then xi = ci eai t

I Put

x =

x1
x2
x3

 c =

c1
c2
c3

 D =

a1 0 0
0 a2 0
0 0 a3

 eDt =

ea1t 0 0
0 ea2t 0
0 0 ea3t
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with x1 = x2 = 0 and x3 = 1 at t = 0. This can be written as ẋ = Ax , where
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If ẋ = Ax , x = c at t = 0, A = UDU−1, then x = UeDtU−1c where
D = diag(λ1, . . . , λn) and eDt = diag(eλ1t , . . . , eλnt).
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Differential equations example

Suppose ẋ = ẏ = ż = x + y + z with x = z = 0 and y = 1 at t = 0.

Thus v̇ = Av , where v =

x
y
z

 and A =

1 1 1
1 1 1
1 1 1



; v =

0
1
0

 at t = 0

The characteristic polynomial is

χA(t) = det

1− t 1 1
1 1− t 1
1 1 1− t



= 3t2 − t3 = t2(3− t).

Eigenvalues are λ1 = 0, λ2 = 0 and λ3 = 3. If we put

u1 =

 1
−1
0

 u2 =

 0
1
−1

 u3 =

1
1
1


we find that Au1 = Au2 = 0 and Au3 = 3u3. Thus, the vectors ui form a basis
for R3 consisting of eigenvectors for A. This means that we have a
diagonalisation A = UDU−1, where

U =

 1 0 1
−1 1 1
0 −1 1

 D =

0 0 0
0 0 0
0 0 3

 .
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Suppose ẋ = ẏ = ż = x + y + z with x = z = 0 and y = 1 at t = 0.

Thus v̇ = Av , where v =

x
y
z

 and A =

1 1 1
1 1 1
1 1 1

; v =

0
1
0

 at t = 0

The characteristic polynomial is

χA(t) = det

1− t 1 1
1 1− t 1
1 1 1− t



= 3t2 − t3 = t2(3− t).

Eigenvalues are λ1 = 0, λ2 = 0 and λ3 = 3. If we put

u1 =

 1
−1
0

 u2 =

 0
1
−1

 u3 =

1
1
1


we find that Au1 = Au2 = 0 and Au3 = 3u3. Thus, the vectors ui form a basis
for R3 consisting of eigenvectors for A. This means that we have a
diagonalisation A = UDU−1, where

U =

 1 0 1
−1 1 1
0 −1 1

 D =

0 0 0
0 0 0
0 0 3

 .



Differential equations example
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Solving difference equations

Problem: find a formula for the sequence where a0 = −1, a1 = 0, and
ai+2 = 6ai+1 − 8ai for all i ≥ 0.

a2 = 6a1 − 8a0 = 6× 0− 8× (−1) = 8

a3 = 6a2 − 8a1 = 6× 8− 8× 0 = 48

a4 = 6a3 − 8a2 = 6× 48− 8× 8 = 224 etc.

Vector formulation: put vi =

[
ai

ai+1

]
∈ R2, so v0 =

[
−1
0

]
and

vn+1 =

[
an+1

an+2

]

=

[
an+1

6an+1 − 8an

]
=

[
0 1
−8 6

] [
an

an+1

]
=

[
0 1
−8 6

]
vn.

We write A =

[
0 1
−8 6

]
, so the above reads vn+1 = Avn. Thus v1 = Av0,

v2 = Av1 = A2v0, v3 = Av2 = A3v0, vn = Anv0.

We can be more explicit by finding the eigenvalues and eigenvectors of A.
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Solving difference equations

vn =

[
an

an+1

]
= Anv0 A =

[
0 1
−8 6

]
v0 =

[
−1
0

]
.

The characteristic polynomial is

χA(t)

= det

[
−t 1
−8 6− t

]
= t2 − 6t + 8 = (t − 2)(t − 4),

so the eigenvectors are 2 and 4. Using the row-reductions

A− 2I =

[
−2 1
−8 4

]
→
[

1 −1/2
0 0

]
A− 4I =

[
−4 1
−8 2

]
→
[

1 −1/4
0 0

]
we see that u1 =

[
1
2

]
and u2 =

[
1
4

]
are eigenvectors of eigenvalues 2 and 4

(forming a basis for R2). Recall that Anu1 = 2nu1 and Anu2 = 4nu2. We can

express v0 =

[
−1
0

]
in terms of this basis by row-reducing [u1|u2|v0]:[

1 1 −1
2 4 0

]

→
[

1 1 −1
0 2 2

]
→
[

1 1 −1
0 1 1

]
→
[

1 0 −2
0 1 1

]
.

By reading off the last column, we deduce that v0 = −2u1 + u2 (which could
also have been obtained by inspection).
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v0 = −2u1 + u2 vn = Anv0 Anu1 = 2nu1, Anu2 = 4nu2

It follows that
vn = Anv0

= Anu2 − 2Anu1 = 4nu2 − 2× 2nu1

= 22n

[
1
4

]
− 2n+1

[
1
2

]
=

[
22n − 2n+1

22n+2 − 2n+2

]
.

Moreover, vn was defined to be

[
an

an+1

]
, so an is the top entry in vn, so we

conclude that
an = 22n − 2n+1.

We will check that this formula does indeed give the required properties:

a0 = 20 − 21 = 1− 2 = −1

a1 = 22 − 22 = 0

6ai+1 − 8ai = 6(22i+2 − 2i+2)− 8(22i − 2i+1) = 24× 22i − 24× 2i − 8× 22i + 16× 2i

= 16× 22i − 8× 2i = 22i+4 − 2i+3 = 22(i+2) − 2(i+2)+1 = ai+2.
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Another difference equation

We will find the sequence satisfying b0 = 3 and b1 = 6 and b2 = 14 and

bi+3 = 6bi − 11bi+1 + 6bi+2.

The vectors vi =
[
bi bi+1 bi+2

]T

satisfy v0 =
[
3 6 14

]T
and

vi+1 =

bi+1

bi+2

bi+3



=

 bi+1

bi+2

6bi − 11bi+1 + 6bi+2

 =

0 1 0
0 0 1
6 −11 6

 bi

bi+1

bi+2

 = Bvi .

It follows that vn = Bnv0 for all n, and bn is the top entry in the vector vn.
Now write v0 in terms of the eigenvectors of B. The characteristic polynomial is

χB(t) = det

−t 1 0
0 −t 1
6 −11 6− t



= −t det

[
−t 1
−11 6− t

]
− det

[
0 1
6 6− t

]
= −t(t2 − 6t + 11)− (−6) = 6− 11t + 6t2 − t3 = (1− t)(2− t)(3− t),

so the eigenvalues are 1, 2 and 3.
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Fibonacci numbers

The Fibonacci numbers are given by F0 = 0 and F1 = 1 and Fn+2 = Fn + Fn+1.

The vectors vi =

[
Fi

Fi+1

]
therefore satisfy v0 =

[
0
1

]
and

vn+1 =

[
Fn+1

Fn+2

]
=

[
Fn+1

Fn + Fn+1

]

= Avn, where A =

[
0 1
1 1

]
.

It follows that vn = Anv0. We have χA(t) = t2 − t − 1, which has roots
λ1 = (1 +

√
5)/2 and λ2 = (1−

√
5)/2. To find an eigenvector of eigenvalue

λ1, we must solve[
0 1
1 1

] [
x
y

]
= λ1

[
x
y

]

or
y = λ1x

x + y = λ1y

Substituting y = λ1x in x + y = λ1y gives x + λ1x = λ2
1x , or

(λ2
1 − λ1 − 1)x = 0, which is automatic, because λ1 is a root of t2 − t − 1 = 0.

Take x = 1 to get an eigenvector u1 =

[
1
λ1

]
of eigenvalue λ1.

Similarly, we have an eigenvector u2 =

[
1
λ2

]
of eigenvalue λ2.
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Fibonacci numbers

vn = An

[
0
1

]
uk =

[
1
λk

]
Auk = λkuk

λ1 = (1 +
√

5)/2

λ2 = (1−
√

5)/2

We now need to find α and β such that αu1 + βu2 = v0, or equivalently

α

[
1
λ1

]
+ β

[
1
λ2

]
=

[
0
1

]

or
β = −α

α(λ1 − λ2) = 1.

Now λ1 − λ2 =
√

5 so α = 1/
√

5 and β = −1/
√

5 and v0 = (u1 − u2)/
√

5.

vn = Anv0

=
Anu1 − Anu2√

5
=
λn
1u1 − λn

2u2√
5

=
1√
5

[
λn
1 − λn

2

λn+1
1 − λn+1

2

]
.

Moreover, Fn is the top entry in vn, so we obtain the formula

Fn =
λn
1 − λn

2√
5

=
(1 +

√
5)n − (1−

√
5)n

2n
√

5
.

It is also useful to note here that λ1 ' 1.618033988 and λ2 ' −0.6180339880.
As |λ1| > 1 and |λ2| < 1 we see that |λn

1| → ∞ and |λn
2| → 0 as n→∞. When

n is large we can neglect the λ2 term and we have Fn ' λn
1/
√

5.
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Lecture 12



Markov chains

Consider a system that can be in three different states.

1 2 3

0.7

0.3

0.6

0.4 1.0

Once per second, it can change state in a random way.

If it is in state 1, it
jumps to state 2 with probability 0.7 and stays in state 1 with probability 0.3.
If it is in state 2, it jumps to state 3 with probability 0.6 and stays in state 1
with probability 0.4. If it is in state 3, it stays there (with probability 1).

This is an example of a Markov chain. These are widely used to model
(pseudo)-random processes in economics, population biology, information
technology and other areas. Some questions about a Markov chain:

I How much time to we spend in state i , on average?

I If we start in state i , what is the average wait before reaching j?

I If we start in state i , what is the probability of reaching j before k?

We will take the first steps towards answering such questions.
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Notation: pj←−i is the probability of jumping from state i to state j .
The transition matrix has pj←−i in the i ’th column of the j ’th row.

P =

p1←−1 p1←−2 p1←−3

p2←−1 p2←−2 p2←−3

p3←−1 p3←−2 p3←−3

 =

0.3 0.0 0.0
0.7 0.4 0.0
0.0 0.6 1.0

 .
All entries are probabilities so they lie between 0 and 1.
The entries in column 1 are the probabilities of all possible steps when we start
in state 1, so they must add up to 1.
Similarly, each column has nonnegative entries adding up to 1, in other words it
is a probability vector. By definition, this means that P is a stochastic matrix.
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Distribution vectors

Suppose that the probability of being in state i (at a certain time) is qi .
Let q′j be the probability of being in state j one second later. Then
q′j =

∑
i pj←−iqi .

In terms of distribution vectors q =
[
q1 · · · qn

]T
and q′ =

[
q′1 · · · q′n

]T
this says that q′ = Pq. For example, when there are three states we have

q′ =

q′1
q′2
q′3



=

p1←−1q1 + p1←−2q2 + p1←−3q3

p2←−1q1 + p2←−2q2 + p2←−3q3

p3←−1q1 + p3←−2q2 + p3←−3q3

 =

p1←−1 p1←−2 p1←−3

p2←−1 p2←−2 p2←−3

p3←−1 p3←−2 p3←−3

q1

q2

q3

 =Pq.

Thus, if rt is the distribution vector at time t we have rt = P tr0. This can be
calculated using the eigenvalues and eigenvectors of P.
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Markov chain example

1 2

0.2

0.2

0.8 0.8 Pn =

[
0.5(1 + 0.6n) 0.5(1− 0.6n)
0.5(1− 0.6n) 0.5(1− 0.6n)

]

Suppose we are given that the system starts at t = 0 in state 1, so r0 =

[
1
0

]
. It

follows that

rn = Pnr0

=

[
0.5(1 + 0.6n) 0.5(1− 0.6n)
0.5(1− 0.6n) 0.5(1− 0.6n)

] [
1
0

]
=

[
0.5(1 + 0.6n)
0.5(1− 0.6n)

]
.

Thus, at time n the probability of being in state 1 is 0.5(1 + 0.6n), and the
probability of being in state 2 is 0.5(1− 0.6n).

When n is large, we observe that (0.6)n will be very small, so rn '
[

0.5
0.5

]
, so it

is almost equally probable that X will be in either of the two states. This
should be intuitively plausible, given the symmetry of the situation.
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Markov chain example

1 2 3
0.7

0.3

0.6

0.4 1.0

P =

0.3 0.0 0.0
0.7 0.4 0.0
0.0 0.6 1.0

 .

We start in state 1 at t = 0. What is the probability that we are in state 3 at

t = 5? We are given r0 =
[
1 0 0

]T
and we need to find r5 = P5r0.

χP(t) = det

0.3− t 0.0 0.0
0.7 0.4− t 0.0
0.0 0.6 1.0− t



= (0.3− t)(0.4− t)(1− t),

so the eigenvalues are 0.3, 0.4 and 1.
To find an eigenvector of eigenvalue 0.3, we row-reduce the matrix P − 0.3I :

 0 0 0
7/10 1/10 0

0 6/10 7/10

 →
0 0 0

1 1/7 0
0 1 7/6

 →
1 1/7 0

0 1 7/6
0 0 0

 →
1 0 −1/6

0 1 7/6
0 0 0

 .

Thus take u1 =
[
1 −7 6

]T
as an eigenvector of eigenvalue 0.3.

Eigenvectors u2 and u3 can be found similarly.
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 1
−7
6

 u2 =

 0
1
−1

 u3 =

0
0
1


λ1 = 0.3 λ2 = 0.4 λ3 = 1

We have P = UDU−1 where

D = diag(λ1, λ2, λ3)

=

0.3 0 0
0 0.4 0
0 0 1.0

 U = [u1|u2|u3] =

 1 0 0
−7 1 0
6 −1 1



Now find U−1 by row-reducing [U|I3]: 1 0 0 1 0 0
−7 1 0 0 1 0
6 −1 1 0 0 1



→

 1 0 0 1 0 0
0 1 0 7 1 0
0 −1 1 −6 0 1

 →
 1 0 0 1 0 0

0 1 0 7 1 0
0 0 1 1 1 1



Pk = UDkU−1 =

 1 0 0
−7 1 0
6 −1 1

(0.3)k 0 0
0 (0.4)k 0
0 0 1

1 0 0
7 1 0
1 1 1


=
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1
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 u3 =

0
0
1
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We are definitely in state 1 at t = 0, so r0 =
[
1 0 0

]T
. It follows that

rk = Pk r0
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7(0.4)k − 7(0.3)k
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For the probability p that X is in state 3 at time t = 5, we need to take k = 5
and look at the third component

, giving

p = 6(0.3)5 − 7(0.4)5 + 1

' 0.94290.
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Stochastic matrices have eigenvalue 1

In both of the last two examples, one of the eigenvalues of the transition
matrix P was equal to one.

This was not a coincidence.

Proposition 17.10: If P is an n × n stochastic matrix, then 1 is an
eigenvalue of P.

We will prove this after two lemmas.
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A and AT have the same eigenvalues

Lemma: Let B be an n × n matrix.
Then 0 is an eigenvalue of B iff 0 is an eigenvalue of BT .

Proof:

We can divide B and BT into columns, say

B =

 v1 · · · vn

 BT =

 w1 · · · wn


Now 0 is an eigenvalue of B

iff ∃α 6= 0 with Bα = 0

or α1v1 + · · ·+ αnvn = 0

iff the columns vi are linearly dependent
iff the vi are not a basis (using the fact that there are n columns)
iff the wj are not a basis (by duality)
iff the wj are linearly dependent (using the fact that there are n columns)
iff ∃β 6= 0 with β1w1 + · · ·+ βnwn = 0

or BTβ = 0

iff 0 is an eigenvalue of BT .
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A and AT have the same eigenvalues

Corollary: For any n × n matrix A, the eigenvalues of A are the same as the
eigenvalues of AT .

Proof.
Let λ be an eigenvalue of A, so there is a nonzero vector u with Au = λu.

This means that (A− λIn)u = 0, so 0 is an eigenvalue of A− λIn.
The lemma then tells us that 0 is also an eigenvalue of (A− λIn)T

= AT − λIn.

This means that there is a nonzero vector v with (AT − λIn)v = 0, or
equivalently AT v = λv .
This proves that λ is also an eigenvalue of AT .

The whole argument can be reversed to prove the converse as well: if λ is an
eigenvalue of AT , then it is also an eigenvalue of A.
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Stochastic matrices have eigenvalue 1

Corollary: For any n × n matrix A, the eigenvalues of A are the same as the
eigenvalues of AT .

Proposition 17.10: If P is an n × n stochastic matrix, then 1 is an
eigenvalue of P.

Proof.
Let the columns of P be v1, . . . , vn.

Put d =
[
1 1 · · · 1 1

]T ∈ Rn.
Because P is stochastic we know that the sum of the entries in vi is one, or in
other words that vi .d = 1. This means that

PTd =

 vT
1

...

vT
n


1

...
1



=

v1.d
...

vn.d

 =

1
...
1

 = d .

Thus, d is an eigenvector of PT with eigenvalue 1.
It follows by the Corollary that 1 is also an eigenvalue of P, as required.
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Stationary distribution

Definition 17.11: A stationary distribution for a Markov chain is a probability
vector q that satisfies Pq = q

(so q is an eigenvector of eigenvalue 1).

Remark 17.12: It often happens that the distribution vectors rn converge (as
n→∞) to a distribution r∞

, whose i ’th component is the long term average
probability of the system being in state i . Because Prn = rn+1 we then have

Pr∞

= P lim
n→∞

rn = lim
n→∞

Prn = lim
n→∞

rn+1 = r∞,

so r∞ is a stationary distribution. Moreover, it often happens that there is
only one stationary distribution. There are many theorems about this sort of
thing, but we will not explore them in this course.
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Stationary distribution example

We will use a heuristic argument to guess
what the stationary distribution should
be, and then give a rigorous proof that
it is correct.
At each time there is a (small but)
nonzero probability of leaving state 1 and
entering the square, so if we wait long
enough we can expect this to happen.
After we have entered the square there is
no way we can ever return to state 1, so
the long-run average probability of being
in state 1 is zero.

1 2 3

45

0.01 0.2

0.2

0.2

0.2
0.99

0.8 0.8

0.80.8

Once we have entered the square things are symmetric so we spend 1
4

of the

time in each of states 2, . . . , 5. Thus q =
[
0 0.25 0.25 0.25 0.25

]T
should be a stationary distribution. It is a probability vector and

Pq =


0.99 0 0 0 0
0.01 0.8 0 0 0.2

0 0.2 0.8 0 0
0 0 0.2 0.8 0
0 0 0 0.2 0.8




0
0.25
0.25
0.25
0.25



=


0

0.25
0.25
0.25
0.25

 = q as required.
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Lecture 13



Page rank



PageRank

Google assigns to each web page a number called the PageRank, calculated
using eigenvectors; pages with higher rank come higher in search results.
We will describe a simplified version.

I Imagine pages S1, . . . , Sn, with some links between them.

I Say Sj links to Nj different pages, and assume Nj > 0.

I We want rankings ri ≥ 0, normalised so that
∑

i ri = 1

; so r is a
probability vector in Rn.

I A link from Sj to Si is a vote by Sj that Si is important.

I Links from important pages should count for more

;
links from pages with many links should count for less.

I We use this rule: a link from Sj to Si contributes rj/Nj to ri .

I Thus, the following consistency condition should be satisfied:

ri =
∑

pages Sj that link to Si

rj/Nj .
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PageRank as an eigenvector

Pages S1, . . . , Sn; rankings ri ≥ 0 with
∑

i ri = 1; Sj links to Nj pages;

Consistency condition ri =
∑

pages Sj that link to Si

rj/Nj .

Define matrix P by Pij =

{
1/Nj if there is a link from Sj to Si

0 otherwise.

Consistency condition is ri =
∑

j Pij rj , so r = Pr , so r is an eigenvector for P
with eigenvalue 1. Column j has Nj entries of 1/Nj so P is stochastic.

1 2

3

4

5

P =


0 0 0 0 0

1/3 0 0 1/2 1/2
1/3 0 0 1/2 0
1/3 1/2 1/2 0 1/2

0 1/2 1/2 0 0

 .
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PageRank as a Markov chain

1 2

3

4

5

P =


0 0 0 0 0

1/3 0 0 1/2 1/2
1/3 0 0 1/2 0
1/3 1/2 1/2 0 1/2

0 1/2 1/2 0 0

 .

Imagine a surfer who clicks a randomly chosen link on the current page once
per minute. This gives a Markov chain X with transition matrix P.
The PageRank vector r must satisfy ri ≥ 0 and

∑
i ri = 1 and Pr = r , so it is a

stationary distribution for X .

Take q =
[
1/n · · · 1/n

]T
(distribution for a uniformly random page).

Typically there is a unique stationary distribution r , and Pkq converges quickly
to r as k →∞. When n is millions or billions, this is the best way to find r .
Conceptually: ri is the long run average proportion of time that a random
surfer spends on page i .
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Calculating PageRank in Maple

with(LinearAlgebra):

n := 5;

P := << 0 | 0 | 0 | 0 | 0 >,

<1/3 | 0 | 0 | 1/2 | 1/2 >,

<1/3 | 0 | 0 | 1/2 | 0 >,

<1/3 | 1/2 | 1/2 | 0 | 1/2 >,

< 0 | 1/2 | 1/2 | 0 | 0 >>;

NS := NullSpace(P - IdentityMatrix(n));

r := NS[1];

r := r / add(r[i],i=1..n);

r := evalf(r);

Result: r =


0.0

0.2777777778
0.1666666667
0.3333333333
0.2222222222

; so

page 1 has rank 0.0
page 2 has rank 0.2777777778
page 3 has rank 0.1666666667
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just divide by

∑
i ri .
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It is more convenient to have the answer in decimals rather than fractions, so
we use evalf().
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Calculating PageRank as a limit
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0.0

0.2783203125
0.1667317708
0.3332682292
0.2216796875

, close to the exact value of


0.0

0.2777777778
0.1666666667
0.3333333333
0.2222222222


q is a vector of length n, whose entries are 1/n, repeated n times.
We have seen that r = limk→∞ Pkq, so r = P10q should be approximately
right.
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Damping

Google found it useful to modify the PageRank algorithm with a damping
factor d , where 0 < d < 1.

Consider a surfer who clicks a random link on the
current page with probability d , but with probability 1− d chooses a uniformly
random page (whether or not there is a link to it).
This gives a new transition matrix:

Qij =

{
d
Nj

+ 1−d
n

if there is a link from Sj to Si

1−d
n

otherwise.

Equivalently: let R be the stochastic matrix with Rij = 1/n for all i and j ;
then Q = dP + (1− d)R. Now the PageRank vector r should satisfy
(Q − In)r = 0. We can approximate r by finding Qkq for large q.

d := 0.85;

R := Matrix(n,n,[1/n $ n^2]);

Q := d * P + (1-d) * R;

NS := NullSpace(Q - IdentityMatrix(n));

r := NS[1];

r := r / add(r[i],i=1..n);

or
r := Q^10 . q;
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Lecture 14



Subspaces

In R2 and R3, lines and planes are important, especially through the origin. We
now discuss analogous structures in Rn, where n may be bigger than 3.

Definition 19.1: A subset V ⊆ Rn is a subspace if

(a) The zero vector is an element of V .

(b) Whenever v and w are two elements of V , the sum v + w is also an
element of V .

(In other words, V is closed under addition.)

(c) Whenever v is an element of V and t is a real number, the vector tv is
again an element of V .

(In other words, V is closed under scalar
multipication.)
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again an element of V .

(In other words, V is closed under scalar
multipication.)
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Subspace example

A subspace must contain 0, and be closed under addition and scalar
multiplication.

Let L be the line in R2 with equation y = x/π.

L

0
v

w

v+w

I The point 0 =
[
0 0

]T
lies on L.

I Suppose we have v ,w ∈ L, so v =
[
a a/π

]T
and w =

[
b b/π

]T
for

some numbers a and b.

Then v + w =
[
a + b (a + b)/π

]T
, which again

lies on L. Thus, L is closed under addition.

I Suppose again that v ∈ L, so v =
[
a a/π

]T
for some a. Suppose also

that t ∈ R. Then tv =
[
ta ta/π

]T
, which again lies on L, so L is closed

under scalar multiplication.

So L is a subspace.
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Subspace non-examples

Consider the following subsets of R2:

V1 = Z2 =

{[
x
y

]
∈ R2 | x and y are integers

}
V2 =

{[
x
y

]
∈ R2 | x ≤ 0 ≤ y

}
V3 =

{[
x
y

]
∈ R2 | x2 = y 2

}
=

{[
x
y

]
∈ R2 | x = ±y

}
.

V1 V2 V3

None of these are subspaces.
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V1 is not a subspace

v∈V1

tv 6∈V1

V1 =

{[
x
y

]
∈ R2 | x and y are integers

}

It is clear that the zero vector has integer coordinates and so lies in V1. Next, if
v and w both have integer coordinates then so does v + w . In other words, if
v ,w ∈ V1 then also v + w ∈ V1, so V1 is closed under addition. However, it is

not closed under scalar multiplication. Indeed, if we take v =

[
1
0

]
and t = 0.5

then v ∈ V1 and t ∈ R but the vector tv =

[
0.5
0

]
does not lie in V1.

(This is generally the best way to prove that a set is not a subspace: provide a
completely specific and explicit example where one of the conditions is not
satisfied.)
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V2 is not a subspace

v∈V2

tv 6∈V2

V2 =

{[
x
y

]
∈ R2 | x ≤ 0 ≤ y

}

As 0 ≤ 0 ≤ 0 we see that 0 ∈ V2.
Suppose we have vectors v =

[
x y

]T
and v ′ =

[
x ′ y ′

]T
in V2,

so x ≤ 0 ≤ y and x ′ ≤ 0 ≤ y ′. As x , x ′ ≤ 0 it follows that x + x ′ ≤ 0.
As y , y ′ ≥ 0 it follows that y + y ′ ≥ 0. This means that the sum

v + v ′ =
[
x + x ′ y + y ′

]T
is again in V2, so V2 is closed under addition.

However, it is not closed under scalar multiplication.

Indeed, if we take v =
[
−1 1

]T
and t = −1 then v ∈ V2 and t ∈ R but the

vector tv =
[
1 −1

]T
does not lie in V2.
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[
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]T
again lies in V3.

This means that V3 is closed under scalar multiplication.
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1
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and w =
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]
lie in V3,

but v + w does not.
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(b) The whole set Rn is a subspace of itself.
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Linear combinations in subspaces

Proposition 19.6: Let V be a subspace of Rn. Then any linear combination
of elements of V is again in V .

Proof.

Suppose we have elements v1, . . . , vk ∈ V , and suppose that w is a linear
combination of the vi , say w =

∑
i λivi for some λ1, . . . , λk ∈ R. As vi ∈ V

and λi ∈ R and V is closed under scalar multiplication we have λivi ∈ V . Now
λ1v1 and λ2v2 are elements of V , and V is closed under addition, so
λ1v1 + λ2v2 ∈ V . Next, as λ1v1 + λ2v2 ∈ V and λ3v3 ∈ V and V is closed
under addition we have λ1v1 + λ2v2 + λ3v3 ∈ V . By extending this in the
obvious way, we eventually conclude that the vector w = λ1v1 + · · ·+ λkvk lies
in V as claimed.
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Dependent lists of length two

Lemma 8.5: Let v and w be vectors in Rn, and suppose that v 6= 0 and that
the list (v ,w) is linearly dependent.

Then there is a number α such that
w = αv .

Proof.
Because the list is dependent, there is a linear relation λv + µw = 0 where λ
and µ are not both zero.

There are apparently three possibilities: (a) λ 6= 0 and
µ 6= 0; (b) λ = 0 and µ 6= 0; (c) λ 6= 0 and µ = 0. However, case (c) is not
really possible. Indeed, in case (c) the equation λv + µw = 0 would reduce to
λv = 0, and we could multiply by λ−1 to get v = 0; but v 6= 0 by assumption.
In case (a) or (b) we can take α = −λ/µ and we have w = αv .
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Subspaces of R2

Proposition 19.7: Let V be a subspace of R2. Then V is either {0} or all of
R2 or a straight line through the origin.
The proof will rely on two lemmas from last week.
Proposition 19.6: Let V be a subspace of Rn.

Then any linear combination
of elements of V is again in V .

Lemma 8.5: Let v and w be vectors in Rn, and suppose that v 6= 0 and that
the list (v ,w) is linearly dependent.

Then there is a number α such that
w = αv .
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R2 or a straight line through the origin.

Proof.

(a) If V = {0} then there is nothing more to say.

(b) Suppose that V contains two vectors v and w such that the list (v ,w) is
linearly independent.

As this is a linearly independent list of two vectors in
R2, it must be a basis. Thus, every vector x ∈ R2 is a linear combination
of v and w , and therefore lies in V by the last Proposition. Thus, we have
V = R2.

(c) Suppose instead that neither (a) nor (b) holds.

As (a) does not hold, we
can choose a nonzero vector v ∈ V . Let L be the set of all scalar multiples
of v , which is a straight line through the origin. As V is a subspace and
v ∈ V we know that every multiple of v lies in V , or in other words that
L ⊆ V . Now let w be any vector in V . As (b) does not hold, the list
(v ,w) is linearly dependent, so the last Lemma tells us that w is a
multiple of v and so lies in L. This shows that V ⊆ L, so V = L.
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Lecture 15



Spans and annihilators

Definition 19.8: Let W = (w1, . . . ,wr ) be a list of vectors in Rn.

(a) span(W) is the set of all vectors v ∈ Rn that can be expressed as a linear
combination of the list W.

(b) ann(W) is the set of all vectors u ∈ Rn such that u.w1 = · · · = u.wr = 0.

Remark 19.9: The terminology in (a) is related in an obvious way to the
terminology used earlier: the list W spans Rn if and only if every vector in Rn is
a linear combination of W, or in other words span(W) = Rn.
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Span and annihilator example

span(w1, . . . ,wr ) = { linear combinations of w1, . . . ,wr};
ann(w1, . . . ,wr ) = {v | v .w1 = · · · = v .wr = 0}

Consider the plane P in R3 with equation x + y + z = 0. More formally:

P =


x

y
z

 ∈ R3 | x + y + z = 0

 .

If we put v =
[
x y z

]T
and t =

[
1 1 1

]T
, then we have

v .t = x + y + z . It follows that

P = {v ∈ R3 | v .t = 0}

= ann(t).

On the other hand, if x + y + z = 0 then z = −x − y sox
y
z

 =

 x
y

−x − y



= x

 1
0
−1

+ y

 0
1
−1

 .

Thus, if we put u1 =
[
1 0 −1

]T
and u2 =

[
0 1 −1

]T
then

P = {x u1+y u2 | x , y ∈ R}

= { linear combinations of u1 and u2} = span(u1, u2).
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Span and annihilator example

Put

V = {
[
w x y z

]T ∈ R4 | w + 2x + 3y + 4z = 4w + 3x + 2y + z = 0}.

If we put a =
[
1 2 3 4

]T
and b =

[
4 3 2 1

]T
then

w+2x+3y+4z = a.
[
w x y z

]T
4w+3x+2y+z = b.

[
w x y z

]T
so we can describe V as ann(a, b).

On the other hand, suppose we have a vector v =
[
w x y z

]T
in V , so

that

w + 2x + 3y + 4z = 0 (A)

4w + 3x + 2y + z = 0 (B)

If we subtract 4 times (A) from (B) and then divide by −15 we get
equation (C) below. Similarly, if we subtract 4 times (B) from (A) and divide
by −15 we get (D).

1
3
x + 2

3
y + z = 0

(C)

w + 2
3
x + 1

3
y = 0

(D)
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Annihilators are subspaces

A subspace must contain 0, and be closed under addition and scalar
multiplication.

Proposition 19.23: For any list W = (w1, . . . ,wr ) of vectors in Rn, the set

ann(W) = {x ∈ Rn | x .w1 = · · · = x .wr = 0}

is a subspace of Rn.

Proof.

(a) The zero vector clearly has 0.wi = 0 for all i , so 0 ∈ ann(W).

(b) Suppose that u, v ∈ ann(W).

This means that u.wi = 0 for all i , and that
v .wi = 0 for all i . It follows that (u + v).wi = u.wi + v .wi = 0 + 0 = 0 for
all i , so u + v ∈ ann(W). Thus, ann(W) is closed under addition.

(c) Suppose instead that u ∈ ann(W) and t ∈ R.

As before, we have u.wi = 0
for all i . It follows that (tu).wi = t(u.wi ) = 0 for all i , so tu ∈ ann(W).
Thus, ann(W) is closed under scalar multiplication.
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Spans are subspaces

A subspace must contain 0, and be closed under addition and scalar
multiplication.

Proposition 19.24: For any list W = (w1, . . . ,wr ) of vectors in Rn, the set
span(W)
(of linear combinations of W) is a subspace of Rn.

Proof.

(a) The zero vector can be written as a linear combination
0 = 0w1 + · · ·+ 0wr , so 0 ∈ span(W).

(b) Suppose that u, v ∈ span(W).

This means that for some sequence of
coefficients λi ∈ R we have u =

∑
i λiwi , and for some sequence of

coefficients µi we have v =
∑

i µiwi . If we put νi = λi + µi we then have
u + v =

∑
i νiwi . This expresses u + v as a linear combination of W, so

u + v ∈ span(W). Thus, span(W) is closed under addition.

(c) Suppose instead that u ∈ span(W) and t ∈ R.

As before, we have
u =

∑
i λiwi for some sequence of coefficients λi . If we put κi = tλi we

find that tu =
∑

i κiwi , which expresses tu as a linear combination of W,
so tu ∈ span(W). Thus, span(W) is closed under scalar multiplication.
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coefficients λi ∈ R we have u =

∑
i λiwi , and for some sequence of

coefficients µi we have v =
∑

i µiwi . If we put νi = λi + µi we then have
u + v =

∑
i νiwi . This expresses u + v as a linear combination of W, so

u + v ∈ span(W). Thus, span(W) is closed under addition.

(c) Suppose instead that u ∈ span(W) and t ∈ R.

As before, we have
u =

∑
i λiwi for some sequence of coefficients λi . If we put κi = tλi we

find that tu =
∑

i κiwi , which expresses tu as a linear combination of W,
so tu ∈ span(W). Thus, span(W) is closed under scalar multiplication.
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Bases for subspaces

Definition 20.1: Let V be a subspace of Rn.

A basis for V is a linearly
independent list V = (v1, . . . , vr ) of vectors in Rn such that span(V) = V .

Definition 20.2: Let V be a subspace of Rn.

The dimension of V (written
dim(V )) is the maximum possible length of any linearly independent list in V.

The empty list always counts as linearly independent, so dim(V ) ≥ 0.
Any linearly independent list in Rn has length at most n, so dim(V ) ≤ n.
Proposition 20.3: Let V be a subspace of Rn, and put d = dim(V ).

Then any linearly independent list of length d in V is automatically a basis.
In particular, V has a basis.
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Independent lists of the right length are bases

Proposition: Let V be a subspace of Rn, and put d = dim(V ). Then any
linearly independent list V = (v1, · · · , vd) of length d in V is a basis.

Proof.
Let u be an arbitrary vector in V .

Consider the list V ′ = (v1, . . . , vd , u). This is
a list in V of length d + 1, but d is the maximum possible length for any
linearly independent list in V , so the list V ′ must be dependent. This means
that there is a nontrivial relation

λ1v1 + · · ·+ λdvd + µu = 0.

We claim that µ cannot be zero. Indeed, if µ = 0 then the relation would
become λ1v1 + · · ·+ λdvd = 0, but V is linearly independent so this would give
λ1 = · · · = λd = 0 as well as µ = 0, so the original relation would be trivial,
contrary to our assumption. Thus µ 6= 0, so the relation can be rearranged as

u = −λ1

µ
v1 − · · · −

λd

µ
vd

,

which expresses u as a linear combination of V. This shows that an arbitrary
vector u ∈ V can be expressed as a linear combination of V, or in other words
V = span(V). As V is also linearly independent, it is a basis for V .
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Any d-dimensional subspace is Rd in disguise

Proposition 20.4: Let V be a subspace of Rn

, and let V = (v1, . . . , vd) be a
basis for V .
Define a function φ : Rd → V by φ(λ) = λ1v1 + · · ·+ λdvd .
Then there is an inverse function ψ : V → Rd with φ(ψ(v)) = v for all v ∈ V ,
and ψ(φ(λ)) = λ for all λ ∈ Rd . Moreover, both φ and ψ respect addition and
scalar multiplication:

φ(λ+ µ) = φ(λ) + φ(µ) φ(tλ) = tφ(λ)

ψ(v + w) = ψ(v) + ψ(w) ψ(tv) = tψ(v).

Proof.
By assumption the list V is linearly independent and span(V) = V .

Consider an
arbitrary vector u ∈ V . As u ∈ span(V) we can write u as a linear combination
u =

∑
i λivi say, which means that u = φ(λ) for some λ. We claim that this λ

is unique. Indeed, if we also have u = φ(µ) =
∑

i µivi then we can subtract to
get

∑
i (λi − µi )vi = 0. This is a linear relation on the list V, but V is assumed

to be independent, so it must be the trivial relation. This means that all the
coefficients λi − µi are zero, so λ = µ as required. It is now meaningful to
define ψ(u) to be the unique vector λ with ψ(λ) = u. Properties are left as an
exercise.
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Numerical criteria

Corollary: Let V be a d-dimensional subspace of Rn.

(a) Any linearly independent list in V has at most d elements.

(b) Any list that spans V has at least d elements.

(c) Any basis of V has exactly d elements.

(d) Any linearly independent list of length d in V is a basis.

(e) Any list of length d that spans V is a basis.

Proof:

(a) This is just the definition of dim(V ).

(b) Recall: we have inverse functions Rd φ−→ V
ψ−→ Rd with φ(λ) =

∑
i λivi .

Let W = (w1, . . . ,wr ) be a list that spans V . We claim that the list
(ψ(w1), . . . , ψ(wr )) spans Rd . Indeed, for any x ∈ Rd we have φ(x) ∈ V ,
and W spans V so φ(x) =

∑
j µjwj say. We can apply ψ to this to get

x = ψ(φ(x))

= ψ(
∑
j

µjwj) =
∑
j

µjψ(wj),

which expresses x as a linear combination of the vectors ψ(wj), as
required. We saw earlier that any list that spans Rd must have length at
least d , so r ≥ d as claimed.

(c) This holds by combining (a) and (b).

(d) This was proved two slides ago.
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As in (b) we use φ and ψ to see that the list (ψ(w1), . . . , ψ(wd)) spans Rd .
This is a list of length d that spans Rd , so it must be a basis.
In particular, it is linearly independent.
Claim: the original list W is also linearly independent.
To see this, consider a linear relation

∑
j λjwj = 0.

By applying ψ to both sides, we get
∑
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Lecture 16



Canonical bases

Proposition 20.6: Let V be a subspace of Rn.

Then there is a unique RREF
matrix B such that the columns of BT form a basis for V .
(We call this basis the canonical basis for V .)

Proof of existence.

Let U = (u1, . . . , ud) be any basis for V , and let A be the matrix with rows
uT
1 , . . . , u

T
d .

A =

 uT
1

...

uT
d

 → B =

 vT
1

...

vT
d

 BT =

 v1 · · · vd


Let B be the row-reduction of A, let vT

1 , . . . , v
T
d be the rows of B, and put

V = (v1, . . . , vd) = the list of columns of BT . We saw earlier that a row
vector can be expressed as a linear combination of the rows of A if and only if
it can be expressed as a linear combination of the rows of B. This implies that
span(V) = span(U) = V . As V is a list of length d that spans the
d-dimensional space V , we see that V is actually a basis for V .
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Canonical bases — towards uniqueness

Definition 20.9: Let x =
[
x1 · · · xn

]T
be a nonzero vector in Rn.

We say that x starts in slot k if x1, . . . , xk−1 are zero, but xk is not.

Given a subspace V ⊆ Rn, we say that k is a jump for V if there is a nonzero
vector x ∈ V that starts in slot k. We write J(V ) for the set of all jumps for
V .

Example

20.10

I The vector
[
0 0 1 11 111

]T
starts in slot 3;

I The vector
[
1 2 3 4 5

]T
starts in slot 1;

I The vector
[
0 0 0 0 0.1234

]T
starts in slot 5.
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Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T
and this starts in slot 3.

If s = t = 0 then x = 0 and x does not start anywhere.
Thus, the possible starting slots for x are 1 and 3, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.

Any vector w =
[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.
Thus, the possible starting slots for w are 2, 4 and 5, so J(W ) = {2, 4, 5}.



Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T
and this starts in slot 3.

If s = t = 0 then x = 0 and x does not start anywhere.
Thus, the possible starting slots for x are 1 and 3, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.

Any vector w =
[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.
Thus, the possible starting slots for w are 2, 4 and 5, so J(W ) = {2, 4, 5}.



Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T

and this starts in slot 3.
If s = t = 0 then x = 0 and x does not start anywhere.
Thus, the possible starting slots for x are 1 and 3, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.

Any vector w =
[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.
Thus, the possible starting slots for w are 2, 4 and 5, so J(W ) = {2, 4, 5}.



Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T
and this starts in slot 3.

If s = t = 0 then x = 0 and x does not start anywhere.
Thus, the possible starting slots for x are 1 and 3, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.

Any vector w =
[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.
Thus, the possible starting slots for w are 2, 4 and 5, so J(W ) = {2, 4, 5}.



Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T
and this starts in slot 3.

If s = t = 0 then x = 0 and x does not start anywhere.

Thus, the possible starting slots for x are 1 and 3, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.

Any vector w =
[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.
Thus, the possible starting slots for w are 2, 4 and 5, so J(W ) = {2, 4, 5}.



Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T
and this starts in slot 3.

If s = t = 0 then x = 0 and x does not start anywhere.
Thus, the possible starting slots for x are 1 and 3

, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.

Any vector w =
[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.
Thus, the possible starting slots for w are 2, 4 and 5, so J(W ) = {2, 4, 5}.



Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T
and this starts in slot 3.

If s = t = 0 then x = 0 and x does not start anywhere.
Thus, the possible starting slots for x are 1 and 3, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.

Any vector w =
[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.
Thus, the possible starting slots for w are 2, 4 and 5, so J(W ) = {2, 4, 5}.



Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T
and this starts in slot 3.

If s = t = 0 then x = 0 and x does not start anywhere.
Thus, the possible starting slots for x are 1 and 3, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.

Any vector w =
[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.
Thus, the possible starting slots for w are 2, 4 and 5, so J(W ) = {2, 4, 5}.



Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T
and this starts in slot 3.

If s = t = 0 then x = 0 and x does not start anywhere.
Thus, the possible starting slots for x are 1 and 3, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.
Any vector w =

[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.
Thus, the possible starting slots for w are 2, 4 and 5, so J(W ) = {2, 4, 5}.



Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T
and this starts in slot 3.

If s = t = 0 then x = 0 and x does not start anywhere.
Thus, the possible starting slots for x are 1 and 3, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.
Any vector w =

[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.
Thus, the possible starting slots for w are 2, 4 and 5, so J(W ) = {2, 4, 5}.



Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T
and this starts in slot 3.

If s = t = 0 then x = 0 and x does not start anywhere.
Thus, the possible starting slots for x are 1 and 3, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.
Any vector w =

[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.
Thus, the possible starting slots for w are 2, 4 and 5, so J(W ) = {2, 4, 5}.



Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T
and this starts in slot 3.

If s = t = 0 then x = 0 and x does not start anywhere.
Thus, the possible starting slots for x are 1 and 3, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.
Any vector w =

[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.
Thus, the possible starting slots for w are 2, 4 and 5, so J(W ) = {2, 4, 5}.



Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T
and this starts in slot 3.

If s = t = 0 then x = 0 and x does not start anywhere.
Thus, the possible starting slots for x are 1 and 3, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.
Any vector w =

[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.

Thus, the possible starting slots for w are 2, 4 and 5, so J(W ) = {2, 4, 5}.



Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T
and this starts in slot 3.

If s = t = 0 then x = 0 and x does not start anywhere.
Thus, the possible starting slots for x are 1 and 3, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.
Any vector w =

[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.
Thus, the possible starting slots for w are 2, 4 and 5

, so J(W ) = {2, 4, 5}.



Examples of jumps

Example: Consider V = {
[
s −s t + s t − s

]T | s, t ∈ R} ⊆ R4.

If s 6= 0 then the vector x =
[
s −s t + s t − s

]T
starts in slot 1.

If s = 0 but t 6= 0 then x =
[
0 0 t t

]T
and this starts in slot 3.

If s = t = 0 then x = 0 and x does not start anywhere.
Thus, the possible starting slots for x are 1 and 3, which means that
J(V ) = {1, 3}.

Example: Consider the subspace

W = {
[
a b c d e f

]T ∈ R6 | a = b + c = d + e + f = 0}.
Any vector w =

[
a b c d e f

]T
in W can be written as

w =
[
0 b −b d e −d − e

]T
, where b, d and e are arbitrary.

If b 6= 0 then w starts in slot 2.

If b = 0 but d 6= 0 then w =
[
0 0 0 d e −d − e

]T
starts in slot 4.

If b = d = 0 but e 6= 0 then w =
[
0 0 0 0 e −e

]T
starts in slot 5.

If b = d = e = 0 then w = 0 and w does not start anywhere.
Thus, the possible starting slots for w are 2, 4 and 5, so J(W ) = {2, 4, 5}.



Jumps and pivots

Lemma: Let B be an RREF matrix, and suppose that the columns of BT form
a basis for a subspace V ⊆ Rn. Then J(V ) = {cols of B that contain pivots}.

Example proof: Consider B =

 vT
1

vT
2

vT
3

 =

0 1 α 0 β 0 γ
0 0 0 1 δ 0 ε
0 0 0 0 0 1 ζ

 .

Put V = span(v1, v2, v3) ⊆ R7, so the vi (= cols of BT ) form a basis for V .
There are pivots in columns 2, 4 and 6, so we must show that
J(V ) = {2, 4, 6}. Any x ∈ V has the form x = λ1v1 + λ2v2 + λ3v3

=
[
0 λ1 λ1α1 λ2 λ1β + λ2δ λ3 λ1γ + λ2ε+ λ3ζ

]T
.

Note that λk occurs on its own in the k’th pivot column, and all entries to the
left of that involve only λ1, . . . , λk−1. Thus, if λ1, . . . , λk−1 are all zero but
λk 6= 0 then x starts in the k’th pivot column. In more detail:

I If λ1 6= 0 then x =
[
0 λ1 ∗ ∗ ∗ ∗ ∗

]T

and so x starts in slot 2
(the first pivot column).

I If λ1 = 0 6= λ2 then x =
[
0 0 0 λ2 ∗ ∗ ∗

]T

and so x starts in
slot 4 (the second pivot column).

I If λ1 = λ2 = 0 6= λ3 then x =
[
0 0 0 0 0 λ3 ∗

]T

and so x starts
in slot 6 (the third pivot column).

I If λ1 = λ2 = λ3 = 0 then x = 0 and so x does not start anywhere.
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Canonical bases — proof of uniqueness

Proposition 20.6: Let V be a subspace of Rn. Then there is a unique RREF
matrix B such that the columns of BT form a basis for V .

Sketch proof of uniqueness.

Suppose we have a subspace V ⊆ Rn and two RREF matrices B and C such
that the columns of BT form a basis for V , and the columns of CT also form a
basis for V . Both B and C must be d × n matrices, where d = dim(V ). Let
v1, . . . , vd be the columns of B and let w1, . . . ,wd be the columns of C . Both
B and C have all rows nonzero, and so have d pivots each. The pivot columns
are the jumps for V and so are the same for B and C : say columns p1, . . . , pd .

Now consider one of the vectors vi . As vi ∈ V and V = span(w1, . . . ,wd) we
can write vi as a linear combination of the vectors wj , say
vi = λ1w1 + · · ·+ λdwd . By looking in slot pi we see that 1 = λi . By looking
in slot pj (where j 6= i) we see that λj = 0. Thus, the sum on the right is just
wi and we get vi = wi . This holds for all i , so we have B = C as claimed.
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Finding the canonical basis for a span

Method: To find the canonical basis for a subspace V = span(v1, . . . , vr )

, form
the matrix

A =

 vT
1

...

vT
r


Then row-reduce to get an RREF matrix B, and discard any rows of zeros to

get another RREF matrix C . The columns of CT are the canonical basis for V .

Proof of correctness.
We showed earlier that row operations do not change the span of the rows

, and
it is clear that discarding rows of zeros does not change the span of the rows
either, so the rows of C have the same span as the rows of A. Equivalently, the
span of the columns of CT is the same as the span of the columns of AT ,
namely V . Moreover, as each pivot column of C contains a single one, it is easy
to see that the rows of C are linearly independent or equivalently the columns
of CT are linearly independent. As they are linearly independent and span V ,
they form a basis for V . As C is in RREF, this must be the canonical basis.



Finding the canonical basis for a span

Method: To find the canonical basis for a subspace V = span(v1, . . . , vr ), form
the matrix

A =

 vT
1

...

vT
r



Then row-reduce to get an RREF matrix B, and discard any rows of zeros to
get another RREF matrix C . The columns of CT are the canonical basis for V .

Proof of correctness.
We showed earlier that row operations do not change the span of the rows

, and
it is clear that discarding rows of zeros does not change the span of the rows
either, so the rows of C have the same span as the rows of A. Equivalently, the
span of the columns of CT is the same as the span of the columns of AT ,
namely V . Moreover, as each pivot column of C contains a single one, it is easy
to see that the rows of C are linearly independent or equivalently the columns
of CT are linearly independent. As they are linearly independent and span V ,
they form a basis for V . As C is in RREF, this must be the canonical basis.



Finding the canonical basis for a span

Method: To find the canonical basis for a subspace V = span(v1, . . . , vr ), form
the matrix

A =

 vT
1

...

vT
r


Then row-reduce to get an RREF matrix B

, and discard any rows of zeros to
get another RREF matrix C . The columns of CT are the canonical basis for V .

Proof of correctness.
We showed earlier that row operations do not change the span of the rows

, and
it is clear that discarding rows of zeros does not change the span of the rows
either, so the rows of C have the same span as the rows of A. Equivalently, the
span of the columns of CT is the same as the span of the columns of AT ,
namely V . Moreover, as each pivot column of C contains a single one, it is easy
to see that the rows of C are linearly independent or equivalently the columns
of CT are linearly independent. As they are linearly independent and span V ,
they form a basis for V . As C is in RREF, this must be the canonical basis.



Finding the canonical basis for a span

Method: To find the canonical basis for a subspace V = span(v1, . . . , vr ), form
the matrix

A =

 vT
1

...

vT
r


Then row-reduce to get an RREF matrix B, and discard any rows of zeros to

get another RREF matrix C .

The columns of CT are the canonical basis for V .

Proof of correctness.
We showed earlier that row operations do not change the span of the rows

, and
it is clear that discarding rows of zeros does not change the span of the rows
either, so the rows of C have the same span as the rows of A. Equivalently, the
span of the columns of CT is the same as the span of the columns of AT ,
namely V . Moreover, as each pivot column of C contains a single one, it is easy
to see that the rows of C are linearly independent or equivalently the columns
of CT are linearly independent. As they are linearly independent and span V ,
they form a basis for V . As C is in RREF, this must be the canonical basis.



Finding the canonical basis for a span

Method: To find the canonical basis for a subspace V = span(v1, . . . , vr ), form
the matrix

A =

 vT
1

...

vT
r


Then row-reduce to get an RREF matrix B, and discard any rows of zeros to

get another RREF matrix C . The columns of CT are the canonical basis for V .

Proof of correctness.
We showed earlier that row operations do not change the span of the rows

, and
it is clear that discarding rows of zeros does not change the span of the rows
either, so the rows of C have the same span as the rows of A. Equivalently, the
span of the columns of CT is the same as the span of the columns of AT ,
namely V . Moreover, as each pivot column of C contains a single one, it is easy
to see that the rows of C are linearly independent or equivalently the columns
of CT are linearly independent. As they are linearly independent and span V ,
they form a basis for V . As C is in RREF, this must be the canonical basis.



Finding the canonical basis for a span

Method: To find the canonical basis for a subspace V = span(v1, . . . , vr ), form
the matrix

A =

 vT
1

...

vT
r


Then row-reduce to get an RREF matrix B, and discard any rows of zeros to

get another RREF matrix C . The columns of CT are the canonical basis for V .

Proof of correctness.
We showed earlier that row operations do not change the span of the rows

, and
it is clear that discarding rows of zeros does not change the span of the rows
either, so the rows of C have the same span as the rows of A. Equivalently, the
span of the columns of CT is the same as the span of the columns of AT ,
namely V . Moreover, as each pivot column of C contains a single one, it is easy
to see that the rows of C are linearly independent or equivalently the columns
of CT are linearly independent. As they are linearly independent and span V ,
they form a basis for V . As C is in RREF, this must be the canonical basis.



Finding the canonical basis for a span

Method: To find the canonical basis for a subspace V = span(v1, . . . , vr ), form
the matrix

A =

 vT
1

...

vT
r


Then row-reduce to get an RREF matrix B, and discard any rows of zeros to

get another RREF matrix C . The columns of CT are the canonical basis for V .

Proof of correctness.
We showed earlier that row operations do not change the span of the rows, and
it is clear that discarding rows of zeros does not change the span of the rows
either

, so the rows of C have the same span as the rows of A. Equivalently, the
span of the columns of CT is the same as the span of the columns of AT ,
namely V . Moreover, as each pivot column of C contains a single one, it is easy
to see that the rows of C are linearly independent or equivalently the columns
of CT are linearly independent. As they are linearly independent and span V ,
they form a basis for V . As C is in RREF, this must be the canonical basis.



Finding the canonical basis for a span

Method: To find the canonical basis for a subspace V = span(v1, . . . , vr ), form
the matrix

A =

 vT
1

...

vT
r


Then row-reduce to get an RREF matrix B, and discard any rows of zeros to

get another RREF matrix C . The columns of CT are the canonical basis for V .

Proof of correctness.
We showed earlier that row operations do not change the span of the rows, and
it is clear that discarding rows of zeros does not change the span of the rows
either, so the rows of C have the same span as the rows of A.

Equivalently, the
span of the columns of CT is the same as the span of the columns of AT ,
namely V . Moreover, as each pivot column of C contains a single one, it is easy
to see that the rows of C are linearly independent or equivalently the columns
of CT are linearly independent. As they are linearly independent and span V ,
they form a basis for V . As C is in RREF, this must be the canonical basis.



Finding the canonical basis for a span

Method: To find the canonical basis for a subspace V = span(v1, . . . , vr ), form
the matrix

A =

 vT
1

...

vT
r


Then row-reduce to get an RREF matrix B, and discard any rows of zeros to

get another RREF matrix C . The columns of CT are the canonical basis for V .

Proof of correctness.
We showed earlier that row operations do not change the span of the rows, and
it is clear that discarding rows of zeros does not change the span of the rows
either, so the rows of C have the same span as the rows of A. Equivalently, the
span of the columns of CT is the same as the span of the columns of AT

,
namely V . Moreover, as each pivot column of C contains a single one, it is easy
to see that the rows of C are linearly independent or equivalently the columns
of CT are linearly independent. As they are linearly independent and span V ,
they form a basis for V . As C is in RREF, this must be the canonical basis.



Finding the canonical basis for a span

Method: To find the canonical basis for a subspace V = span(v1, . . . , vr ), form
the matrix

A =

 vT
1

...

vT
r


Then row-reduce to get an RREF matrix B, and discard any rows of zeros to

get another RREF matrix C . The columns of CT are the canonical basis for V .

Proof of correctness.
We showed earlier that row operations do not change the span of the rows, and
it is clear that discarding rows of zeros does not change the span of the rows
either, so the rows of C have the same span as the rows of A. Equivalently, the
span of the columns of CT is the same as the span of the columns of AT ,
namely V .

Moreover, as each pivot column of C contains a single one, it is easy
to see that the rows of C are linearly independent or equivalently the columns
of CT are linearly independent. As they are linearly independent and span V ,
they form a basis for V . As C is in RREF, this must be the canonical basis.



Finding the canonical basis for a span

Method: To find the canonical basis for a subspace V = span(v1, . . . , vr ), form
the matrix

A =

 vT
1

...

vT
r


Then row-reduce to get an RREF matrix B, and discard any rows of zeros to

get another RREF matrix C . The columns of CT are the canonical basis for V .

Proof of correctness.
We showed earlier that row operations do not change the span of the rows, and
it is clear that discarding rows of zeros does not change the span of the rows
either, so the rows of C have the same span as the rows of A. Equivalently, the
span of the columns of CT is the same as the span of the columns of AT ,
namely V . Moreover, as each pivot column of C contains a single one, it is easy
to see that the rows of C are linearly independent

or equivalently the columns
of CT are linearly independent. As they are linearly independent and span V ,
they form a basis for V . As C is in RREF, this must be the canonical basis.



Finding the canonical basis for a span

Method: To find the canonical basis for a subspace V = span(v1, . . . , vr ), form
the matrix

A =

 vT
1

...

vT
r


Then row-reduce to get an RREF matrix B, and discard any rows of zeros to

get another RREF matrix C . The columns of CT are the canonical basis for V .

Proof of correctness.
We showed earlier that row operations do not change the span of the rows, and
it is clear that discarding rows of zeros does not change the span of the rows
either, so the rows of C have the same span as the rows of A. Equivalently, the
span of the columns of CT is the same as the span of the columns of AT ,
namely V . Moreover, as each pivot column of C contains a single one, it is easy
to see that the rows of C are linearly independent or equivalently the columns
of CT are linearly independent.

As they are linearly independent and span V ,
they form a basis for V . As C is in RREF, this must be the canonical basis.



Finding the canonical basis for a span

Method: To find the canonical basis for a subspace V = span(v1, . . . , vr ), form
the matrix

A =

 vT
1

...

vT
r


Then row-reduce to get an RREF matrix B, and discard any rows of zeros to

get another RREF matrix C . The columns of CT are the canonical basis for V .

Proof of correctness.
We showed earlier that row operations do not change the span of the rows, and
it is clear that discarding rows of zeros does not change the span of the rows
either, so the rows of C have the same span as the rows of A. Equivalently, the
span of the columns of CT is the same as the span of the columns of AT ,
namely V . Moreover, as each pivot column of C contains a single one, it is easy
to see that the rows of C are linearly independent or equivalently the columns
of CT are linearly independent. As they are linearly independent and span V ,
they form a basis for V .

As C is in RREF, this must be the canonical basis.



Finding the canonical basis for a span

Method: To find the canonical basis for a subspace V = span(v1, . . . , vr ), form
the matrix

A =

 vT
1

...

vT
r


Then row-reduce to get an RREF matrix B, and discard any rows of zeros to

get another RREF matrix C . The columns of CT are the canonical basis for V .

Proof of correctness.
We showed earlier that row operations do not change the span of the rows, and
it is clear that discarding rows of zeros does not change the span of the rows
either, so the rows of C have the same span as the rows of A. Equivalently, the
span of the columns of CT is the same as the span of the columns of AT ,
namely V . Moreover, as each pivot column of C contains a single one, it is easy
to see that the rows of C are linearly independent or equivalently the columns
of CT are linearly independent. As they are linearly independent and span V ,
they form a basis for V . As C is in RREF, this must be the canonical basis.



Example of finding the canonical basis for a span

Consider again the plane

P =


x

y
z

 ∈ R3 | x + y + z = 0

 .

We showed before that P = span(u1, u2), where

u1 =

 1
0
−1

 u2 =

 0
1
−1


As the matrix

A =

[
uT
1

uT
2

]
=

[
1 0 −1
0 1 −1

]
is already in RREF, we see that the list U = (u1, u2) is the canonical basis for P.
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Example of finding the canonical basis for a span

Consider again the subspace

V = {
[
w x y z

]T ∈ R4 | w + 2x + 3y + 4z = 4w + 3x + 2y + z = 0}.

We showed previously that the vectors

c =
[
− 2

3
1 0 − 1

3

]T
and d =

[
− 1

3
0 1 − 2

3

]T
.

give a (non-canonical) basis for V . To find the canonical basis, we perform the
following row-reduction:[

cT

dT

]
=

[
− 2

3
1 0 − 1

3

− 1
3

0 1 − 2
3

]
→
[

1 − 3
2

0 1
2

− 1
3

0 1 − 2
3

]
→

[
1 − 3

2
0 1

2

0 − 1
2

1 − 1
2

]
→
[

1 − 3
2

0 1
2

0 1 −2 1

]
→
[

1 0 −3 2
0 1 −2 1

]
We conclude that the vectors u1 =

[
1 0 −3 2

]T
and

u2 =
[
0 1 −2 1

]T
form the canonical basis for V .
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Finding the canonical basis for an annihilator

Method: Suppose V = ann(u1, . . . , ur ) = {x ∈ Rn | x .u1 = · · · = x .ur = 0}.

To find the canonical basis for V :

I Write out the equations x .u1 = 0, . . . , x .ur = 0, listing the variables in
backwards order (xr down to x1)

; then solve by row-reduction.

I Write the general solution as a sum of terms, each of which is an
independent variable times a constant vector.

I These constant vectors form the canonical basis for V .
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Finding the canonical basis for an annihilator

Example: Put V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

The equations x .u3 = x .u2 = x .u1 = 0 can be written as follows:

x4+3x3+11x2+7x1 = 0 x4+x3+x2+x1 = 0 3x4+5x3+13x2+9x1 = 0

We can row-reduce the matrix of coefficients as follows:1 3 11 7
1 1 1 1
3 5 13 9



→

0 2 10 6
1 1 1 1
0 2 10 6

 →
0 1 5 3

1 1 1 1
0 0 0 0

 →
1 0 −4 −2

0 1 5 3
0 0 0 0

 .
This gives x4 − 4x2 − 2x1 = x3 + 5x2 + 3x1 = 0

so x4 = 4x2 + 2x1 and x3 = −5x2 − 3x1. We thus have

x =


x1
x2
x3
x4



=


x1
x2

−5x2 − 3x1
4x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−5
4

 .

so
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
form the canonical basis for V .
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Pure matrix method for annihilators

Method: Let A be a k × n matrix, and let V ⊆ Rn be the annihilator of the
columns of AT .

We can find the canonical basis for V as follows:

(a) Rotate A through 180◦ to get a matrix A∗.

(b) Row-reduce A∗ and discard any rows of zeros to obtain a matrix B∗ in
RREF. This will have shape m × n for some m with m ≤ min(k, n).

(c) The matrix B∗ will have m pivots (one in each row). Let columns
p1, . . . , pm be the ones with pivots, and let columns q1, . . . , qn−m be the
ones without pivots.

(d) Delete the pivot columns from B∗ to leave an m × (n −m) matrix, which
we call C∗. Let the i ’th row of C∗ be cT

i (so ci ∈ Rn−m for 1 ≤ i ≤ m).

(e) Now construct a new matrix D∗ of shape (n−m)× n as follows: the pi ’th
column is −ci , and the qj ’th column is the standard basis vector ej .

(f) Rotate D through 180◦ to get a matrix D.

(g) The columns of DT then form the canonical basis for V .
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Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3



=

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .

The matrix A∗ is the the matrix of coefficients appearing in our previous
approach; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9



→

1 0 −4 −2
0 1 5 3
0 0 0 0

 → [
1 0 −4 −2
0 1 5 3

]
= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4. We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2



=

[
4 −5 1 0
2 −3 0 1

]
;

D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3



=

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .
The matrix A∗ is the the matrix of coefficients appearing in our previous

approach; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9



→

1 0 −4 −2
0 1 5 3
0 0 0 0

 → [
1 0 −4 −2
0 1 5 3

]
= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4. We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2



=

[
4 −5 1 0
2 −3 0 1

]
;

D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3

 =

9 13 5 3
1 1 1 1
7 11 3 1



A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .
The matrix A∗ is the the matrix of coefficients appearing in our previous

approach; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9



→

1 0 −4 −2
0 1 5 3
0 0 0 0

 → [
1 0 −4 −2
0 1 5 3

]
= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4. We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2



=

[
4 −5 1 0
2 −3 0 1

]
;

D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3

 =

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .

The matrix A∗ is the the matrix of coefficients appearing in our previous
approach; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9



→

1 0 −4 −2
0 1 5 3
0 0 0 0

 → [
1 0 −4 −2
0 1 5 3

]
= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4. We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2



=

[
4 −5 1 0
2 −3 0 1

]
;

D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3

 =

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .
The matrix A∗ is the the matrix of coefficients appearing in our previous

approach

; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9



→

1 0 −4 −2
0 1 5 3
0 0 0 0

 → [
1 0 −4 −2
0 1 5 3

]
= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4. We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2



=

[
4 −5 1 0
2 −3 0 1

]
;

D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3

 =

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .
The matrix A∗ is the the matrix of coefficients appearing in our previous

approach; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9



→

1 0 −4 −2
0 1 5 3
0 0 0 0

 → [
1 0 −4 −2
0 1 5 3

]
= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4. We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2



=

[
4 −5 1 0
2 −3 0 1

]
;

D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3

 =

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .
The matrix A∗ is the the matrix of coefficients appearing in our previous

approach; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 →
1 0 −4 −2

0 1 5 3
0 0 0 0



→
[

1 0 −4 −2
0 1 5 3

]
= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4. We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2



=

[
4 −5 1 0
2 −3 0 1

]
;

D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3

 =

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .
The matrix A∗ is the the matrix of coefficients appearing in our previous

approach; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 →
1 0 −4 −2

0 1 5 3
0 0 0 0

 → [
1 0 −4 −2
0 1 5 3

]

= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4. We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2



=

[
4 −5 1 0
2 −3 0 1

]
;

D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3

 =

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .
The matrix A∗ is the the matrix of coefficients appearing in our previous

approach; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 →
1 0 −4 −2

0 1 5 3
0 0 0 0

 → [
1 0 −4 −2
0 1 5 3

]
= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4. We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2



=

[
4 −5 1 0
2 −3 0 1

]
;

D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3

 =

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .
The matrix A∗ is the the matrix of coefficients appearing in our previous

approach; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 →
1 0 −4 −2

0 1 5 3
0 0 0 0

 → [
1 0 −4 −2
0 1 5 3

]
= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4.

We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2



=

[
4 −5 1 0
2 −3 0 1

]
;

D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3

 =

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .
The matrix A∗ is the the matrix of coefficients appearing in our previous

approach; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 →
1 0 −4 −2

0 1 5 3
0 0 0 0

 → [
1 0 −4 −2
0 1 5 3

]
= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4. We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2



=

[
4 −5 1 0
2 −3 0 1

]
;

D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3

 =

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .
The matrix A∗ is the the matrix of coefficients appearing in our previous

approach; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 →
1 0 −4 −2

0 1 5 3
0 0 0 0

 → [
1 0 −4 −2
0 1 5 3

]
= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4. We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2



=

[
4 −5 1 0
2 −3 0 1

]
; D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3

 =

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .
The matrix A∗ is the the matrix of coefficients appearing in our previous

approach; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 →
1 0 −4 −2

0 1 5 3
0 0 0 0

 → [
1 0 −4 −2
0 1 5 3

]
= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4. We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2

 =

[
4 −5 1 0
2 −3 0 1

]

; D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3

 =

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .
The matrix A∗ is the the matrix of coefficients appearing in our previous

approach; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 →
1 0 −4 −2

0 1 5 3
0 0 0 0

 → [
1 0 −4 −2
0 1 5 3

]
= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4. We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2

 =

[
4 −5 1 0
2 −3 0 1

]
; D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
9 13 5 3

]T
u2 =

[
1 1 1 1

]T
u3 =

[
7 11 3 1

]T
.

A =

 uT
1

uT
2

uT
3

 =

9 13 5 3
1 1 1 1
7 11 3 1

 A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 .
The matrix A∗ is the the matrix of coefficients appearing in our previous

approach; as we saw we can row-reduce and delete zeros as follows:

A∗ =

1 3 11 7
1 1 1 1
3 5 13 9

 →
1 0 −4 −2

0 1 5 3
0 0 0 0

 → [
1 0 −4 −2
0 1 5 3

]
= B∗.

The pivot columns are p1 = 1 and p2 = 2, whereas the non-pivot columns are
q1 = 3 and q2 = 4. We now delete the pivot columns to get

C∗ =

[
cT
1

cT
2

]
=

[
−4 −2
5 3

]
.

D∗ =

 −c1 −c2 e1 e2

 =

[
4 −5 1 0
2 −3 0 1

]
; D =

[
1 0 −3 2
0 1 −5 4

]
.

Canonical basis for V :
[
1 0 −3 2

]T
and

[
0 1 −5 4

]T
.



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
1 2 3 4 5

]T
u2 =

[
1 2 3 3 3

]T
u3 =

[
1 1 1 1 1

]T
.

A =

1 2 3 4 5
1 2 3 3 3
1 1 1 1 1



A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1



A∗ = matrix of coefficients in previous approach. As before:

A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1

→
1 0 −1 0 1

0 1 2 0 −2
0 0 0 1 2

 = B∗.

Pivot cols p1 = 1, p2 = 2 and p3 = 4; non-pivot cols q1 = 3 and q2 = 5.

Deleting pivot columns leaves C∗ =

 cT
1

cT
2

cT
3

 =

−1 −1
2 −2
0 2


D∗ =

 −c1 −c2 e1 −c3 e2



=

[
−1 2 1 0 0
−1 −2 0 −2 1

]
.

Rotate: D =

[
1 −2 0 −2 −1
0 0 1 2 −1

]
. Rows of D give canonical basis for V .



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
1 2 3 4 5

]T
u2 =

[
1 2 3 3 3

]T
u3 =

[
1 1 1 1 1

]T
.

A =

1 2 3 4 5
1 2 3 3 3
1 1 1 1 1



A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1


A∗ = matrix of coefficients in previous approach. As before:

A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1

→
1 0 −1 0 1

0 1 2 0 −2
0 0 0 1 2

 = B∗.

Pivot cols p1 = 1, p2 = 2 and p3 = 4; non-pivot cols q1 = 3 and q2 = 5.

Deleting pivot columns leaves C∗ =

 cT
1

cT
2

cT
3

 =

−1 −1
2 −2
0 2


D∗ =

 −c1 −c2 e1 −c3 e2



=

[
−1 2 1 0 0
−1 −2 0 −2 1

]
.

Rotate: D =

[
1 −2 0 −2 −1
0 0 1 2 −1

]
. Rows of D give canonical basis for V .



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
1 2 3 4 5

]T
u2 =

[
1 2 3 3 3

]T
u3 =

[
1 1 1 1 1

]T
.

A =

1 2 3 4 5
1 2 3 3 3
1 1 1 1 1

 A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1



A∗ = matrix of coefficients in previous approach. As before:

A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1

→
1 0 −1 0 1

0 1 2 0 −2
0 0 0 1 2

 = B∗.

Pivot cols p1 = 1, p2 = 2 and p3 = 4; non-pivot cols q1 = 3 and q2 = 5.

Deleting pivot columns leaves C∗ =

 cT
1

cT
2

cT
3

 =

−1 −1
2 −2
0 2


D∗ =

 −c1 −c2 e1 −c3 e2



=

[
−1 2 1 0 0
−1 −2 0 −2 1

]
.

Rotate: D =

[
1 −2 0 −2 −1
0 0 1 2 −1

]
. Rows of D give canonical basis for V .



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
1 2 3 4 5

]T
u2 =

[
1 2 3 3 3

]T
u3 =

[
1 1 1 1 1

]T
.

A =

1 2 3 4 5
1 2 3 3 3
1 1 1 1 1

 A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1


A∗ = matrix of coefficients in previous approach.

As before:

A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1

→
1 0 −1 0 1

0 1 2 0 −2
0 0 0 1 2

 = B∗.

Pivot cols p1 = 1, p2 = 2 and p3 = 4; non-pivot cols q1 = 3 and q2 = 5.

Deleting pivot columns leaves C∗ =

 cT
1

cT
2

cT
3

 =

−1 −1
2 −2
0 2


D∗ =

 −c1 −c2 e1 −c3 e2



=

[
−1 2 1 0 0
−1 −2 0 −2 1

]
.

Rotate: D =

[
1 −2 0 −2 −1
0 0 1 2 −1

]
. Rows of D give canonical basis for V .



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
1 2 3 4 5

]T
u2 =

[
1 2 3 3 3

]T
u3 =

[
1 1 1 1 1

]T
.

A =

1 2 3 4 5
1 2 3 3 3
1 1 1 1 1

 A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1


A∗ = matrix of coefficients in previous approach. As before:

A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1

→
1 0 −1 0 1

0 1 2 0 −2
0 0 0 1 2

 = B∗.

Pivot cols p1 = 1, p2 = 2 and p3 = 4; non-pivot cols q1 = 3 and q2 = 5.

Deleting pivot columns leaves C∗ =

 cT
1

cT
2

cT
3

 =

−1 −1
2 −2
0 2


D∗ =

 −c1 −c2 e1 −c3 e2



=

[
−1 2 1 0 0
−1 −2 0 −2 1

]
.

Rotate: D =

[
1 −2 0 −2 −1
0 0 1 2 −1

]
. Rows of D give canonical basis for V .



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
1 2 3 4 5

]T
u2 =

[
1 2 3 3 3

]T
u3 =

[
1 1 1 1 1

]T
.

A =

1 2 3 4 5
1 2 3 3 3
1 1 1 1 1

 A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1


A∗ = matrix of coefficients in previous approach. As before:

A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1

→
1 0 −1 0 1

0 1 2 0 −2
0 0 0 1 2

 = B∗.

Pivot cols p1 = 1, p2 = 2 and p3 = 4; non-pivot cols q1 = 3 and q2 = 5.

Deleting pivot columns leaves C∗ =

 cT
1

cT
2

cT
3

 =

−1 −1
2 −2
0 2


D∗ =

 −c1 −c2 e1 −c3 e2



=

[
−1 2 1 0 0
−1 −2 0 −2 1

]
.

Rotate: D =

[
1 −2 0 −2 −1
0 0 1 2 −1

]
. Rows of D give canonical basis for V .



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
1 2 3 4 5

]T
u2 =

[
1 2 3 3 3

]T
u3 =

[
1 1 1 1 1

]T
.

A =

1 2 3 4 5
1 2 3 3 3
1 1 1 1 1

 A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1


A∗ = matrix of coefficients in previous approach. As before:

A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1

→
1 0 −1 0 1

0 1 2 0 −2
0 0 0 1 2

 = B∗.

Pivot cols p1 = 1, p2 = 2 and p3 = 4; non-pivot cols q1 = 3 and q2 = 5.

Deleting pivot columns leaves C∗ =

 cT
1

cT
2

cT
3

 =

−1 −1
2 −2
0 2



D∗ =

 −c1 −c2 e1 −c3 e2



=

[
−1 2 1 0 0
−1 −2 0 −2 1

]
.

Rotate: D =

[
1 −2 0 −2 −1
0 0 1 2 −1

]
. Rows of D give canonical basis for V .



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
1 2 3 4 5

]T
u2 =

[
1 2 3 3 3

]T
u3 =

[
1 1 1 1 1

]T
.

A =

1 2 3 4 5
1 2 3 3 3
1 1 1 1 1

 A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1


A∗ = matrix of coefficients in previous approach. As before:

A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1

→
1 0 −1 0 1

0 1 2 0 −2
0 0 0 1 2

 = B∗.

Pivot cols p1 = 1, p2 = 2 and p3 = 4; non-pivot cols q1 = 3 and q2 = 5.

Deleting pivot columns leaves C∗ =

 cT
1

cT
2

cT
3

 =

−1 −1
2 −2
0 2


D∗ =

 −c1 −c2 e1 −c3 e2



=

[
−1 2 1 0 0
−1 −2 0 −2 1

]
.

Rotate: D =

[
1 −2 0 −2 −1
0 0 1 2 −1

]
. Rows of D give canonical basis for V .



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
1 2 3 4 5

]T
u2 =

[
1 2 3 3 3

]T
u3 =

[
1 1 1 1 1

]T
.

A =

1 2 3 4 5
1 2 3 3 3
1 1 1 1 1

 A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1


A∗ = matrix of coefficients in previous approach. As before:

A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1

→
1 0 −1 0 1

0 1 2 0 −2
0 0 0 1 2

 = B∗.

Pivot cols p1 = 1, p2 = 2 and p3 = 4; non-pivot cols q1 = 3 and q2 = 5.

Deleting pivot columns leaves C∗ =

 cT
1

cT
2

cT
3

 =

−1 −1
2 −2
0 2


D∗ =

 −c1 −c2 e1 −c3 e2

 =

[
−1 2 1 0 0
−1 −2 0 −2 1

]
.

Rotate: D =

[
1 −2 0 −2 −1
0 0 1 2 −1

]
. Rows of D give canonical basis for V .



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
1 2 3 4 5

]T
u2 =

[
1 2 3 3 3

]T
u3 =

[
1 1 1 1 1

]T
.

A =

1 2 3 4 5
1 2 3 3 3
1 1 1 1 1

 A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1


A∗ = matrix of coefficients in previous approach. As before:

A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1

→
1 0 −1 0 1

0 1 2 0 −2
0 0 0 1 2

 = B∗.

Pivot cols p1 = 1, p2 = 2 and p3 = 4; non-pivot cols q1 = 3 and q2 = 5.

Deleting pivot columns leaves C∗ =

 cT
1

cT
2

cT
3

 =

−1 −1
2 −2
0 2


D∗ =

 −c1 −c2 e1 −c3 e2

 =

[
−1 2 1 0 0
−1 −2 0 −2 1

]
.

Rotate: D =

[
1 −2 0 −2 −1
0 0 1 2 −1

]
.

Rows of D give canonical basis for V .



Pure matrix method for annihilators

Example: Again consider V = ann(u1, u2, u3), where

u1 =
[
1 2 3 4 5

]T
u2 =

[
1 2 3 3 3

]T
u3 =

[
1 1 1 1 1

]T
.

A =

1 2 3 4 5
1 2 3 3 3
1 1 1 1 1

 A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1


A∗ = matrix of coefficients in previous approach. As before:

A∗ =

1 1 1 1 1
3 3 3 2 1
5 4 3 2 1

→
1 0 −1 0 1

0 1 2 0 −2
0 0 0 1 2

 = B∗.

Pivot cols p1 = 1, p2 = 2 and p3 = 4; non-pivot cols q1 = 3 and q2 = 5.

Deleting pivot columns leaves C∗ =

 cT
1

cT
2

cT
3

 =

−1 −1
2 −2
0 2


D∗ =

 −c1 −c2 e1 −c3 e2

 =

[
−1 2 1 0 0
−1 −2 0 −2 1

]
.

Rotate: D =

[
1 −2 0 −2 −1
0 0 1 2 −1

]
. Rows of D give canonical basis for V .



Describing spans as annihilators

We have just discussed a method that finds a basis for an annihilator,
and so describes the annihilator as a span.

Opposite problem: describe a span as an annihilator.
In more detail: given v1, . . . , vr find u1, . . . , us such that
span(v1, . . . , vr ) = ann(u1, . . . , us).

Method:

(a) Write out the equations x .vr = 0, . . . , x .v1 = 0, listing the variables in
backwards order (xr down to x1).

(b) Solve by row-reduction in the usual way.

(c) Write the general solution as a sum of terms, each of which is an
independent variable times a constant vector.

(d) Call these constant vectors u1, . . . , us . Then V = ann(u1, . . . , us).
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Lecture 17



Sums and intersections of subspaces

Definition: Let V and W be subspaces of Rn.

We define

V + W = {x ∈ Rn | x can be expressed as v + w for some v ∈ V and w ∈W }

V ∩W = {x ∈ Rn | x ∈ V and also x ∈W }.

Example: Put V =

{[
x
y

]
∈ R2 | y = 2x

}

W =

{[
x
y

]
∈ R2 | 2y = x

}

V

W
a

Then V ∩W is the set of points lying on both lines, but the lines only meet at
the origin, so V ∩W = {0}.
Every point a ∈ R2 can be expressed as the sum of a point on V with a point
on W , so V + W = R2.
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Sum and intersection example

Put
V = {

[
w x y z

]T ∈ R4 | w = y and x = z}

W = {
[
w x y z

]T ∈ R4 | w + z = x + y = 0}.

For a vector u =
[
w x y z

]T
to lie in V ∩W we must have

w = y and x = z and w = −z and x = −y ,

so u =
[
w −w w −w

]T
, so V ∩W is just the set of multiples of[

1 −1 1 −1
]
. Now put

U = {
[
w x y z

]T | w − x − y + z = 0}

= ann(
[
1 −1 −1 1

]T
).

We claim that V + W = U. Proof: consider a u =
[
w x y z

]T
.

I Suppose u ∈ V + W .

Then u = v + w for some v ∈ V and w ∈W , say

v =
[
p q p q

]
and w =

[
−r −s s r

]T
. This gives

u = v + w =
[
p − r q − s p + s q + r

]
, so

w−x−y+z = (p−r)−(q−s)−(p+s)+(q+r)

= p−r−q+s−p−s+q+r = 0,

proving that u ∈ U as required.

I Suppose u ∈ U

, so z = x + y − w . Put v =
[
y x y x

]T
and

w =
[
w − y 0 0 y − w

]T
. We find that v ∈ V and w ∈W and

v + w = u, which proves that u ∈ V + W as required.
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ann(v1, . . . , vr ) ∩ ann(w1, · · · ,ws) iff both sets of equations are satisfied,
or in other words x .v1 = · · · = x .vr = x .w1 = · · · = x .ws = 0.
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Finding sums and intersections

Method 21.5: To find the sum of two subspaces V ,W ⊆ Rn:

(a) Find a list V such that V = span(V).

(If V is given as an annihilator, use
earlier method to find the canonical basis V for V ; then V = span(V).)

(b) Find a list W such that W = span(W) (in the same way).

(c) Now V + W is the span of the combined list V,W.

If desired, we can
make this list the rows of a matrix then row-reduce and discard zeros to
get the canonical basis for V + W .

Method 21.6: To find the intersection of two subspaces V ,W ⊆ Rn:

(a) Find a list V ′ such that V = ann(V ′).

It may be that V is given to us as
the annihilator of some list, in which case there is nothing to do.
Alternatively, if V is given to as as the span of some list, then gave a
method earlier to find a list V ′ such that ann(V ′) = V .

(b) Find a list W ′ such that W = ann(W ′) (in the same way).

(c) Now V ∩W is the annihilator of the combined list V ′,W ′.

Earlier we
described how to find the canonical basis for an annihilator, so we can use
that to get the canonical basis for V ∩W .
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The dimension formula

Dimensions of V , W , V ∩W and V + W are linked by the following formula:

dim(V ∩W ) + dim(V + W ) = dim(V ) + dim(W ).

Example:
V = span(e1, . . . , ep, ep+1, . . . , ep+q)

W = span(e1, . . . , ep, ep+q+1, . . . , ep+q+r )

V ∩W = span(e1, . . . , ep)

V + W = span(e1, . . . , ep+q+r )

dim(V ∩W ) + dim(V + W ) = p + (p + q + r) = 2p + q + r

dim(V ) + dim(W ) = (p + q) + (p + r) = 2p + q + r .

I If we know three of the numbers dim(V ∩W ), dim(V + W ), dim(V ) and
dim(W ), we can rearrange the formula to find the fourth.

I If you believe that you have found bases for V , W , V ∩W and V + W ,
you can use the formula as a check that your bases are correct.

We will not prove the formula, except to say that one can choose bases to
make the proof like the above example. Details would be a digression.
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dim(V ∩W ) + dim(V + W ) = dim(V ) + dim(W ).
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I If you believe that you have found bases for V , W , V ∩W and V + W ,
you can use the formula as a check that your bases are correct.

We will not prove the formula, except to say that one can choose bases to
make the proof like the above example.

Details would be a digression.
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you can use the formula as a check that your bases are correct.

We will not prove the formula, except to say that one can choose bases to
make the proof like the above example. Details would be a digression.



Sum and intersection example

Put V = span(v1, v2, v3) and W = span(w1,w2,w3) where

v1 =


1
0
0
0

 v2 =


1
1
1
0

 v3 =


1
1
1
1

 w1 =


1
1
0
0

 w2 =


0
1
1
0

 w3 =


0
0
1
1



Claim: V + W = R4. Systematic proof: recall
V + W = span(v1, v2, v3,w1,w2,w3)) and row-reduce:



vT
1

vT
2

vT
3

wT
1

wT
2

wT
3

 =


1 0 0 0
1 1 1 0
1 1 1 1
1 1 0 0
0 1 1 0
0 0 1 1

 →


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 =



eT
1

eT
2

eT
3

eT
4

0
0



Conclusion: (e1, e2, e3, e4) is the canonical basis for V + W , so V + W = R4.
More efficiently:

e1 = v1

e2 = w1 − v1 e3 = v2 − w1 e4 = v3 − v2.

It follows that e1, e2, e3 and e4 are all in V + W , so V + W = R4.
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Conclusion: (e1, e2, e3, e4) is the canonical basis for V + W

, so V + W = R4.
More efficiently:

e1 = v1

e2 = w1 − v1 e3 = v2 − w1 e4 = v3 − v2.

It follows that e1, e2, e3 and e4 are all in V + W , so V + W = R4.
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Put V = span(v1, v2, v3) and W = span(w1,w2,w3) where

v1 =


1
0
0
0
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1
1
1
0

 v3 =


1
1
1
1

 w1 =


1
1
0
0

 w2 =


0
1
1
0

 w3 =


0
0
1
1


Claim: V + W = R4. Systematic proof: recall
V + W = span(v1, v2, v3,w1,w2,w3)) and row-reduce:

vT
1

vT
2

vT
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1

wT
2

wT
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 =
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0
0


Conclusion: (e1, e2, e3, e4) is the canonical basis for V + W , so V + W = R4.

More efficiently:
e1 = v1

e2 = w1 − v1 e3 = v2 − w1 e4 = v3 − v2.

It follows that e1, e2, e3 and e4 are all in V + W , so V + W = R4.



Sum and intersection example

Put V = span(v1, v2, v3) and W = span(w1,w2,w3) where

v1 =


1
0
0
0

 v2 =


1
1
1
0

 v3 =


1
1
1
1

 w1 =


1
1
0
0

 w2 =


0
1
1
0

 w3 =


0
0
1
1


Claim: V + W = R4. Systematic proof: recall
V + W = span(v1, v2, v3,w1,w2,w3)) and row-reduce:

vT
1

vT
2

vT
3

wT
1

wT
2

wT
3

 =


1 0 0 0
1 1 1 0
1 1 1 1
1 1 0 0
0 1 1 0
0 0 1 1

 →


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 =



eT
1

eT
2

eT
3

eT
4

0
0


Conclusion: (e1, e2, e3, e4) is the canonical basis for V + W , so V + W = R4.

More efficiently:
e1 = v1

e2 = w1 − v1 e3 = v2 − w1 e4 = v3 − v2.

It follows that e1, e2, e3 and e4 are all in V + W , so V + W = R4.



Sum and intersection example

Put V = span(v1, v2, v3) and W = span(w1,w2,w3) where

v1 =


1
0
0
0

 v2 =


1
1
1
0

 v3 =


1
1
1
1

 w1 =


1
1
0
0

 w2 =


0
1
1
0

 w3 =


0
0
1
1


Claim: V + W = R4. Systematic proof: recall
V + W = span(v1, v2, v3,w1,w2,w3)) and row-reduce:

vT
1

vT
2

vT
3

wT
1

wT
2

wT
3

 =


1 0 0 0
1 1 1 0
1 1 1 1
1 1 0 0
0 1 1 0
0 0 1 1

 →


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 =



eT
1

eT
2

eT
3

eT
4

0
0


Conclusion: (e1, e2, e3, e4) is the canonical basis for V + W , so V + W = R4.

More efficiently:
e1 = v1 e2 = w1 − v1

e3 = v2 − w1 e4 = v3 − v2.

It follows that e1, e2, e3 and e4 are all in V + W , so V + W = R4.



Sum and intersection example

Put V = span(v1, v2, v3) and W = span(w1,w2,w3) where
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 v3 =


1
1
1
1
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1
1
0
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 w2 =


0
1
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0
0
1
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Claim: V + W = R4. Systematic proof: recall
V + W = span(v1, v2, v3,w1,w2,w3)) and row-reduce:
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1
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2
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1
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0
0


Conclusion: (e1, e2, e3, e4) is the canonical basis for V + W , so V + W = R4.

More efficiently:
e1 = v1 e2 = w1 − v1 e3 = v2 − w1

e4 = v3 − v2.

It follows that e1, e2, e3 and e4 are all in V + W , so V + W = R4.
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More efficiently:
e1 = v1 e2 = w1 − v1 e3 = v2 − w1 e4 = v3 − v2.

It follows that e1, e2, e3 and e4 are all in V + W , so V + W = R4.
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Conclusion: (e1, e2, e3, e4) is the canonical basis for V + W , so V + W = R4.

More efficiently:
e1 = v1 e2 = w1 − v1 e3 = v2 − w1 e4 = v3 − v2.

It follows that e1, e2, e3 and e4 are all in V + W

, so V + W = R4.



Sum and intersection example

Put V = span(v1, v2, v3) and W = span(w1,w2,w3) where

v1 =


1
0
0
0

 v2 =


1
1
1
0

 v3 =


1
1
1
1

 w1 =


1
1
0
0

 w2 =


0
1
1
0

 w3 =


0
0
1
1
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More efficiently:
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0
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Now find V ∩W . First step: describe V as an annihilator. Write equations
x .v3 = 0, x .v2 = 0 and x .v1 = 0, with the variables xi in descending order:

x4 + x3 + x2 + x1 = 0

x3 + x2 + x1 = 0

x1 = 0.

Clearly x1 = x4 = 0 and x3 = −x2, with x2 arbitrary. Thus:

x =


x1
x2
x3
x4



=


0
x2
−x2

0

 = x2


0
1
−1
0



We conclude that V = ann(a), where a =
[
0 1 −1 0

]T
.
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Dimension check

We will use the dimension formula to check our calculation.

I V = span(v1, v2, v3) and one can check that this list is independent so
dim(V ) = 3.

I W = span(w1,w2,w3) and one can check that this list is independent so
dim(W ) = 3.

I We showed that V + W = R4 so dim(V + W ) = 4.

I We showed that u1, u2 is a basis for V ∩W so dim(V ∩W ) = 2.

I Now dim(V + W ) + dim(V ∩W ) = 4 + 2 = 6

and
dim(V ) + dim(W ) = 3 + 3 = 6. As expected, these are the same.
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Sum and intersection example

Put V = span(v1, v2) and W = span(w1,w2) where

v1 =


1
1
1
1

 v2 =


1
2
3
4

 w1 =


−3
−1
1
3

 w2 =


0
1
−1
0



We will find the canonical bases for V , W , V + W and V ∩W . For V :[
vT
1

vT
2

]

=

[
1 1 1 1
1 2 3 4

]
→
[

1 1 1 1
0 1 2 3

]
→
[

1 0 −1 −2
0 1 2 3

]

Thus: the vectors v ′1 =
[
1 0 −1 −2

]T
and v ′2 =

[
0 1 2 3

]T
form

the canonical basis for V .
Similarly, the row-reduction[

wT
1

wT
2

]

=

[
−3 −1 1 3
0 1 −1 0

]
→
[
−3 0 0 3
0 1 −1 0

]
→
[

1 0 0 −1
0 1 −1 0

]

shows that the vectors w ′1 =
[
1 0 0 −1

]T
and w ′2 =

[
0 1 −1 0

]T
form the canonical basis for W .
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Sum and intersection example

V = span(v ′1, v
′
2) and W = span(w ′1,w

′
2) where
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1
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 v ′2 =
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2
3
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Next find the canonical basis for V + W = span(v ′1, v
′
2,w

′
1,w

′
2), by

row-reducing either the matrix [v ′1|v ′2|w ′1|w ′2]T :
1 0 −1 −2
0 1 2 3
1 0 0 −1
0 1 −1 0

 →


1 0 −1 −2
0 1 2 3
0 0 1 1
0 0 −3 −3

 →


1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 0

 .
We conclude that the following vectors form the canonical basis for V + W :

u1 =


1
0
0
−1

 u2 =


0
1
0
1

 u3 =


0
0
1
1

 .
In particular, we have dim(V + W ) = 3.



Sum and intersection example

V = span(v ′1, v
′
2) and W = span(w ′1,w

′
2) where

v ′1 =


1
0
−1
−2

 v ′2 =


0
1
2
3

 w ′1 =


1
0
0
−1

 w ′2 =


0
1
−1
0


Next find the canonical basis for V + W = span(v ′1, v

′
2,w

′
1,w

′
2)

, by
row-reducing either the matrix [v ′1|v ′2|w ′1|w ′2]T :

1 0 −1 −2
0 1 2 3
1 0 0 −1
0 1 −1 0

 →


1 0 −1 −2
0 1 2 3
0 0 1 1
0 0 −3 −3

 →


1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 0

 .
We conclude that the following vectors form the canonical basis for V + W :

u1 =


1
0
0
−1

 u2 =


0
1
0
1

 u3 =


0
0
1
1

 .
In particular, we have dim(V + W ) = 3.



Sum and intersection example

V = span(v ′1, v
′
2) and W = span(w ′1,w

′
2) where

v ′1 =


1
0
−1
−2

 v ′2 =


0
1
2
3

 w ′1 =


1
0
0
−1

 w ′2 =


0
1
−1
0


Next find the canonical basis for V + W = span(v ′1, v

′
2,w

′
1,w

′
2), by

row-reducing either the matrix [v ′1|v ′2|w ′1|w ′2]T :


1 0 −1 −2
0 1 2 3
1 0 0 −1
0 1 −1 0

 →


1 0 −1 −2
0 1 2 3
0 0 1 1
0 0 −3 −3

 →


1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 0

 .
We conclude that the following vectors form the canonical basis for V + W :

u1 =


1
0
0
−1

 u2 =


0
1
0
1

 u3 =


0
0
1
1

 .
In particular, we have dim(V + W ) = 3.



Sum and intersection example

V = span(v ′1, v
′
2) and W = span(w ′1,w

′
2) where

v ′1 =


1
0
−1
−2

 v ′2 =


0
1
2
3

 w ′1 =


1
0
0
−1

 w ′2 =


0
1
−1
0


Next find the canonical basis for V + W = span(v ′1, v

′
2,w

′
1,w

′
2), by

row-reducing either the matrix [v ′1|v ′2|w ′1|w ′2]T :
1 0 −1 −2
0 1 2 3
1 0 0 −1
0 1 −1 0



→


1 0 −1 −2
0 1 2 3
0 0 1 1
0 0 −3 −3

 →


1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 0

 .
We conclude that the following vectors form the canonical basis for V + W :

u1 =


1
0
0
−1

 u2 =


0
1
0
1

 u3 =


0
0
1
1

 .
In particular, we have dim(V + W ) = 3.



Sum and intersection example

V = span(v ′1, v
′
2) and W = span(w ′1,w

′
2) where

v ′1 =


1
0
−1
−2

 v ′2 =


0
1
2
3

 w ′1 =


1
0
0
−1

 w ′2 =


0
1
−1
0


Next find the canonical basis for V + W = span(v ′1, v

′
2,w

′
1,w

′
2), by

row-reducing either the matrix [v ′1|v ′2|w ′1|w ′2]T :
1 0 −1 −2
0 1 2 3
1 0 0 −1
0 1 −1 0

 →


1 0 −1 −2
0 1 2 3
0 0 1 1
0 0 −3 −3



→


1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 0

 .
We conclude that the following vectors form the canonical basis for V + W :

u1 =


1
0
0
−1

 u2 =


0
1
0
1

 u3 =


0
0
1
1

 .
In particular, we have dim(V + W ) = 3.



Sum and intersection example

V = span(v ′1, v
′
2) and W = span(w ′1,w

′
2) where

v ′1 =


1
0
−1
−2

 v ′2 =


0
1
2
3

 w ′1 =


1
0
0
−1

 w ′2 =


0
1
−1
0


Next find the canonical basis for V + W = span(v ′1, v

′
2,w

′
1,w

′
2), by

row-reducing either the matrix [v ′1|v ′2|w ′1|w ′2]T :
1 0 −1 −2
0 1 2 3
1 0 0 −1
0 1 −1 0

 →


1 0 −1 −2
0 1 2 3
0 0 1 1
0 0 −3 −3

 →


1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 0

 .

We conclude that the following vectors form the canonical basis for V + W :

u1 =


1
0
0
−1

 u2 =


0
1
0
1

 u3 =


0
0
1
1

 .
In particular, we have dim(V + W ) = 3.



Sum and intersection example

V = span(v ′1, v
′
2) and W = span(w ′1,w

′
2) where

v ′1 =


1
0
−1
−2

 v ′2 =


0
1
2
3

 w ′1 =


1
0
0
−1

 w ′2 =


0
1
−1
0


Next find the canonical basis for V + W = span(v ′1, v

′
2,w

′
1,w

′
2), by

row-reducing either the matrix [v ′1|v ′2|w ′1|w ′2]T :
1 0 −1 −2
0 1 2 3
1 0 0 −1
0 1 −1 0

 →


1 0 −1 −2
0 1 2 3
0 0 1 1
0 0 −3 −3

 →


1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 0

 .
We conclude that the following vectors form the canonical basis for V + W :

u1 =


1
0
0
−1

 u2 =


0
1
0
1

 u3 =


0
0
1
1

 .

In particular, we have dim(V + W ) = 3.



Sum and intersection example

V = span(v ′1, v
′
2) and W = span(w ′1,w

′
2) where

v ′1 =


1
0
−1
−2

 v ′2 =


0
1
2
3

 w ′1 =


1
0
0
−1

 w ′2 =


0
1
−1
0


Next find the canonical basis for V + W = span(v ′1, v

′
2,w

′
1,w

′
2), by

row-reducing either the matrix [v ′1|v ′2|w ′1|w ′2]T :
1 0 −1 −2
0 1 2 3
1 0 0 −1
0 1 −1 0

 →


1 0 −1 −2
0 1 2 3
0 0 1 1
0 0 −3 −3

 →


1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 0

 .
We conclude that the following vectors form the canonical basis for V + W :

u1 =


1
0
0
−1

 u2 =


0
1
0
1

 u3 =


0
0
1
1

 .
In particular, we have dim(V + W ) = 3.



Sum and intersection example

V = span(v ′1, v
′
2) v ′1 =

[
1 0 −1 −2

]T
v ′2 =

[
0 1 2 3

]T
W = span(w ′1,w

′
2) w ′1 =

[
1 0 0 −1

]T
w ′2 =

[
0 1 −1 0

]T

Next, to understand V ∩W , we need to write V and W as annihilators.
For W : put b1 =

[
1 0 0 1

]T
and b2 =

[
0 1 1 0

]T
.

After considering the form of the vectors w ′1 and w ′2 we see that

W =




x1
x2
−x2
−x1

 | x1, x2 ∈ R



=




x1
x2
x3
x4

 | x1 + x4 = x2 + x3 = 0

 = ann(b1, b2).

For V : the equations x .v ′1 = 0 and x .v ′2 = 0 are
−2x4 − x3 + x1 = 0 and 3x4 + 2x3 + x2 = 0. Solution:

x3 = −2x2 − 3x1 x4 = x2 + 2x1 ( x2 and x1 arbitrary)

x =


x1
x2
x3
x4



=


x1
x2

−2x2 − 3x1
x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−2
1

 = x1a1 + x2a2 say.

Thus V = ann(a1, a2), where a1 =
[
1 0 −3 2

]T
, a2 =

[
0 1 −2 1

]T
.



Sum and intersection example

V = span(v ′1, v
′
2) v ′1 =

[
1 0 −1 −2

]T
v ′2 =

[
0 1 2 3

]T
W = span(w ′1,w

′
2) w ′1 =

[
1 0 0 −1

]T
w ′2 =

[
0 1 −1 0

]T
Next, to understand V ∩W , we need to write V and W as annihilators.

For W : put b1 =
[
1 0 0 1

]T
and b2 =

[
0 1 1 0

]T
.

After considering the form of the vectors w ′1 and w ′2 we see that

W =




x1
x2
−x2
−x1

 | x1, x2 ∈ R



=




x1
x2
x3
x4

 | x1 + x4 = x2 + x3 = 0

 = ann(b1, b2).

For V : the equations x .v ′1 = 0 and x .v ′2 = 0 are
−2x4 − x3 + x1 = 0 and 3x4 + 2x3 + x2 = 0. Solution:

x3 = −2x2 − 3x1 x4 = x2 + 2x1 ( x2 and x1 arbitrary)

x =


x1
x2
x3
x4



=


x1
x2

−2x2 − 3x1
x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−2
1

 = x1a1 + x2a2 say.

Thus V = ann(a1, a2), where a1 =
[
1 0 −3 2

]T
, a2 =

[
0 1 −2 1

]T
.



Sum and intersection example

V = span(v ′1, v
′
2) v ′1 =

[
1 0 −1 −2

]T
v ′2 =

[
0 1 2 3

]T
W = span(w ′1,w

′
2) w ′1 =

[
1 0 0 −1

]T
w ′2 =

[
0 1 −1 0

]T
Next, to understand V ∩W , we need to write V and W as annihilators.
For W : put b1 =

[
1 0 0 1

]T
and b2 =

[
0 1 1 0

]T
.

After considering the form of the vectors w ′1 and w ′2 we see that

W =




x1
x2
−x2
−x1

 | x1, x2 ∈ R



=




x1
x2
x3
x4

 | x1 + x4 = x2 + x3 = 0

 = ann(b1, b2).

For V : the equations x .v ′1 = 0 and x .v ′2 = 0 are
−2x4 − x3 + x1 = 0 and 3x4 + 2x3 + x2 = 0. Solution:

x3 = −2x2 − 3x1 x4 = x2 + 2x1 ( x2 and x1 arbitrary)

x =


x1
x2
x3
x4



=


x1
x2

−2x2 − 3x1
x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−2
1

 = x1a1 + x2a2 say.

Thus V = ann(a1, a2), where a1 =
[
1 0 −3 2

]T
, a2 =

[
0 1 −2 1

]T
.



Sum and intersection example

V = span(v ′1, v
′
2) v ′1 =

[
1 0 −1 −2

]T
v ′2 =

[
0 1 2 3

]T
W = span(w ′1,w

′
2) w ′1 =

[
1 0 0 −1

]T
w ′2 =

[
0 1 −1 0

]T
Next, to understand V ∩W , we need to write V and W as annihilators.
For W : put b1 =

[
1 0 0 1

]T
and b2 =

[
0 1 1 0

]T
.

After considering the form of the vectors w ′1 and w ′2 we see that

W =




x1
x2
−x2
−x1

 | x1, x2 ∈ R



=




x1
x2
x3
x4

 | x1 + x4 = x2 + x3 = 0

 = ann(b1, b2).

For V : the equations x .v ′1 = 0 and x .v ′2 = 0 are
−2x4 − x3 + x1 = 0 and 3x4 + 2x3 + x2 = 0. Solution:

x3 = −2x2 − 3x1 x4 = x2 + 2x1 ( x2 and x1 arbitrary)

x =


x1
x2
x3
x4



=


x1
x2

−2x2 − 3x1
x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−2
1

 = x1a1 + x2a2 say.

Thus V = ann(a1, a2), where a1 =
[
1 0 −3 2

]T
, a2 =

[
0 1 −2 1

]T
.



Sum and intersection example

V = span(v ′1, v
′
2) v ′1 =

[
1 0 −1 −2

]T
v ′2 =

[
0 1 2 3

]T
W = span(w ′1,w

′
2) w ′1 =

[
1 0 0 −1

]T
w ′2 =

[
0 1 −1 0

]T
Next, to understand V ∩W , we need to write V and W as annihilators.
For W : put b1 =

[
1 0 0 1

]T
and b2 =

[
0 1 1 0

]T
.

After considering the form of the vectors w ′1 and w ′2 we see that

W =




x1
x2
−x2
−x1

 | x1, x2 ∈ R

 =




x1
x2
x3
x4

 | x1 + x4 = x2 + x3 = 0



= ann(b1, b2).

For V : the equations x .v ′1 = 0 and x .v ′2 = 0 are
−2x4 − x3 + x1 = 0 and 3x4 + 2x3 + x2 = 0. Solution:

x3 = −2x2 − 3x1 x4 = x2 + 2x1 ( x2 and x1 arbitrary)

x =


x1
x2
x3
x4



=


x1
x2

−2x2 − 3x1
x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−2
1

 = x1a1 + x2a2 say.

Thus V = ann(a1, a2), where a1 =
[
1 0 −3 2

]T
, a2 =

[
0 1 −2 1

]T
.



Sum and intersection example

V = span(v ′1, v
′
2) v ′1 =

[
1 0 −1 −2

]T
v ′2 =

[
0 1 2 3

]T
W = span(w ′1,w

′
2) w ′1 =

[
1 0 0 −1

]T
w ′2 =

[
0 1 −1 0

]T
Next, to understand V ∩W , we need to write V and W as annihilators.
For W : put b1 =

[
1 0 0 1

]T
and b2 =

[
0 1 1 0

]T
.

After considering the form of the vectors w ′1 and w ′2 we see that

W =




x1
x2
−x2
−x1

 | x1, x2 ∈ R

 =




x1
x2
x3
x4

 | x1 + x4 = x2 + x3 = 0

 = ann(b1, b2).

For V : the equations x .v ′1 = 0 and x .v ′2 = 0 are
−2x4 − x3 + x1 = 0 and 3x4 + 2x3 + x2 = 0. Solution:

x3 = −2x2 − 3x1 x4 = x2 + 2x1 ( x2 and x1 arbitrary)

x =


x1
x2
x3
x4



=


x1
x2

−2x2 − 3x1
x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−2
1

 = x1a1 + x2a2 say.

Thus V = ann(a1, a2), where a1 =
[
1 0 −3 2

]T
, a2 =

[
0 1 −2 1

]T
.



Sum and intersection example

V = span(v ′1, v
′
2) v ′1 =

[
1 0 −1 −2

]T
v ′2 =

[
0 1 2 3

]T
W = span(w ′1,w

′
2) w ′1 =

[
1 0 0 −1

]T
w ′2 =

[
0 1 −1 0

]T
Next, to understand V ∩W , we need to write V and W as annihilators.
For W : put b1 =

[
1 0 0 1

]T
and b2 =

[
0 1 1 0

]T
.

After considering the form of the vectors w ′1 and w ′2 we see that

W =




x1
x2
−x2
−x1

 | x1, x2 ∈ R

 =




x1
x2
x3
x4

 | x1 + x4 = x2 + x3 = 0

 = ann(b1, b2).

For V : the equations x .v ′1 = 0 and x .v ′2 = 0 are
−2x4 − x3 + x1 = 0 and 3x4 + 2x3 + x2 = 0.

Solution:

x3 = −2x2 − 3x1 x4 = x2 + 2x1 ( x2 and x1 arbitrary)

x =


x1
x2
x3
x4



=


x1
x2

−2x2 − 3x1
x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−2
1

 = x1a1 + x2a2 say.

Thus V = ann(a1, a2), where a1 =
[
1 0 −3 2

]T
, a2 =

[
0 1 −2 1

]T
.



Sum and intersection example

V = span(v ′1, v
′
2) v ′1 =

[
1 0 −1 −2

]T
v ′2 =

[
0 1 2 3

]T
W = span(w ′1,w

′
2) w ′1 =

[
1 0 0 −1

]T
w ′2 =

[
0 1 −1 0

]T
Next, to understand V ∩W , we need to write V and W as annihilators.
For W : put b1 =

[
1 0 0 1

]T
and b2 =

[
0 1 1 0

]T
.

After considering the form of the vectors w ′1 and w ′2 we see that

W =




x1
x2
−x2
−x1

 | x1, x2 ∈ R

 =




x1
x2
x3
x4

 | x1 + x4 = x2 + x3 = 0

 = ann(b1, b2).

For V : the equations x .v ′1 = 0 and x .v ′2 = 0 are
−2x4 − x3 + x1 = 0 and 3x4 + 2x3 + x2 = 0. Solution:

x3 = −2x2 − 3x1 x4 = x2 + 2x1 ( x2 and x1 arbitrary)

x =


x1
x2
x3
x4



=


x1
x2

−2x2 − 3x1
x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−2
1

 = x1a1 + x2a2 say.

Thus V = ann(a1, a2), where a1 =
[
1 0 −3 2

]T
, a2 =

[
0 1 −2 1

]T
.



Sum and intersection example

V = span(v ′1, v
′
2) v ′1 =

[
1 0 −1 −2

]T
v ′2 =

[
0 1 2 3

]T
W = span(w ′1,w

′
2) w ′1 =

[
1 0 0 −1

]T
w ′2 =

[
0 1 −1 0

]T
Next, to understand V ∩W , we need to write V and W as annihilators.
For W : put b1 =

[
1 0 0 1

]T
and b2 =

[
0 1 1 0

]T
.

After considering the form of the vectors w ′1 and w ′2 we see that

W =




x1
x2
−x2
−x1

 | x1, x2 ∈ R

 =




x1
x2
x3
x4

 | x1 + x4 = x2 + x3 = 0

 = ann(b1, b2).

For V : the equations x .v ′1 = 0 and x .v ′2 = 0 are
−2x4 − x3 + x1 = 0 and 3x4 + 2x3 + x2 = 0. Solution:

x3 = −2x2 − 3x1 x4 = x2 + 2x1 ( x2 and x1 arbitrary)

x =


x1
x2
x3
x4



=


x1
x2

−2x2 − 3x1
x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−2
1

 = x1a1 + x2a2 say.

Thus V = ann(a1, a2), where a1 =
[
1 0 −3 2

]T
, a2 =

[
0 1 −2 1

]T
.



Sum and intersection example

V = span(v ′1, v
′
2) v ′1 =

[
1 0 −1 −2

]T
v ′2 =

[
0 1 2 3

]T
W = span(w ′1,w

′
2) w ′1 =

[
1 0 0 −1

]T
w ′2 =

[
0 1 −1 0

]T
Next, to understand V ∩W , we need to write V and W as annihilators.
For W : put b1 =

[
1 0 0 1

]T
and b2 =

[
0 1 1 0

]T
.

After considering the form of the vectors w ′1 and w ′2 we see that

W =




x1
x2
−x2
−x1

 | x1, x2 ∈ R

 =




x1
x2
x3
x4

 | x1 + x4 = x2 + x3 = 0

 = ann(b1, b2).

For V : the equations x .v ′1 = 0 and x .v ′2 = 0 are
−2x4 − x3 + x1 = 0 and 3x4 + 2x3 + x2 = 0. Solution:

x3 = −2x2 − 3x1 x4 = x2 + 2x1 ( x2 and x1 arbitrary)

x =


x1
x2
x3
x4

 =


x1
x2

−2x2 − 3x1
x2 + 2x1



= x1


1
0
−3
2

+ x2


0
1
−2
1

 = x1a1 + x2a2 say.

Thus V = ann(a1, a2), where a1 =
[
1 0 −3 2

]T
, a2 =

[
0 1 −2 1

]T
.



Sum and intersection example

V = span(v ′1, v
′
2) v ′1 =

[
1 0 −1 −2

]T
v ′2 =

[
0 1 2 3

]T
W = span(w ′1,w

′
2) w ′1 =

[
1 0 0 −1

]T
w ′2 =

[
0 1 −1 0

]T
Next, to understand V ∩W , we need to write V and W as annihilators.
For W : put b1 =

[
1 0 0 1

]T
and b2 =

[
0 1 1 0

]T
.

After considering the form of the vectors w ′1 and w ′2 we see that

W =




x1
x2
−x2
−x1

 | x1, x2 ∈ R

 =




x1
x2
x3
x4

 | x1 + x4 = x2 + x3 = 0

 = ann(b1, b2).

For V : the equations x .v ′1 = 0 and x .v ′2 = 0 are
−2x4 − x3 + x1 = 0 and 3x4 + 2x3 + x2 = 0. Solution:

x3 = −2x2 − 3x1 x4 = x2 + 2x1 ( x2 and x1 arbitrary)

x =


x1
x2
x3
x4

 =


x1
x2

−2x2 − 3x1
x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−2
1



= x1a1 + x2a2 say.

Thus V = ann(a1, a2), where a1 =
[
1 0 −3 2

]T
, a2 =

[
0 1 −2 1

]T
.



Sum and intersection example

V = span(v ′1, v
′
2) v ′1 =

[
1 0 −1 −2

]T
v ′2 =

[
0 1 2 3

]T
W = span(w ′1,w

′
2) w ′1 =

[
1 0 0 −1

]T
w ′2 =

[
0 1 −1 0

]T
Next, to understand V ∩W , we need to write V and W as annihilators.
For W : put b1 =

[
1 0 0 1

]T
and b2 =

[
0 1 1 0

]T
.

After considering the form of the vectors w ′1 and w ′2 we see that

W =




x1
x2
−x2
−x1

 | x1, x2 ∈ R

 =




x1
x2
x3
x4

 | x1 + x4 = x2 + x3 = 0

 = ann(b1, b2).

For V : the equations x .v ′1 = 0 and x .v ′2 = 0 are
−2x4 − x3 + x1 = 0 and 3x4 + 2x3 + x2 = 0. Solution:

x3 = −2x2 − 3x1 x4 = x2 + 2x1 ( x2 and x1 arbitrary)

x =


x1
x2
x3
x4

 =


x1
x2

−2x2 − 3x1
x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−2
1

 = x1a1 + x2a2 say.

Thus V = ann(a1, a2), where a1 =
[
1 0 −3 2

]T
, a2 =

[
0 1 −2 1

]T
.



Sum and intersection example

V = span(v ′1, v
′
2) v ′1 =

[
1 0 −1 −2

]T
v ′2 =

[
0 1 2 3

]T
W = span(w ′1,w

′
2) w ′1 =

[
1 0 0 −1

]T
w ′2 =

[
0 1 −1 0

]T
Next, to understand V ∩W , we need to write V and W as annihilators.
For W : put b1 =

[
1 0 0 1

]T
and b2 =

[
0 1 1 0

]T
.

After considering the form of the vectors w ′1 and w ′2 we see that

W =




x1
x2
−x2
−x1

 | x1, x2 ∈ R

 =




x1
x2
x3
x4

 | x1 + x4 = x2 + x3 = 0

 = ann(b1, b2).

For V : the equations x .v ′1 = 0 and x .v ′2 = 0 are
−2x4 − x3 + x1 = 0 and 3x4 + 2x3 + x2 = 0. Solution:

x3 = −2x2 − 3x1 x4 = x2 + 2x1 ( x2 and x1 arbitrary)

x =


x1
x2
x3
x4

 =


x1
x2

−2x2 − 3x1
x2 + 2x1

 = x1


1
0
−3
2

+ x2


0
1
−2
1

 = x1a1 + x2a2 say.

Thus V = ann(a1, a2), where a1 =
[
1 0 −3 2

]T
, a2 =

[
0 1 −2 1

]T
.



Sum and intersection example

a1 =
[
1 0 −3 2

]T
a2 =

[
0 1 −2 1

]T
b1 =

[
1 0 0 1

]T
b2 =

[
0 1 1 0

]T

We now have

V ∩W = ann(a1, a2) ∩ ann(b1, b2)

= ann(a1, a2, b1, b2).

To find the canonical basis, solve x .b2 = x .b1 = x .a2 = x .a1 = 0:

x3 + x2 = 0 x4 + x1 = 0

x4 − 2x3 + x2 = 0 2x4 − 3x3 + x1 = 0.

The first two equations give x3 = −x2 and x4 = −x1, which we can substitute
into the remaining equations to get x2 = x1/3. This leads to

x = x1
[
1 1/3 −1/3 −1

]T
, so the vector c =

[
1 1/3 −1/3 −1

]T
is

(by itself) the canonical basis for V ∩W . In particular, we have
dim(V ∩W ) = 1.
As a check, we note that

dim(V + W ) + dim(V ∩W ) = 3 + 1 = 2 + 2 = dim(V ) + dim(W ),

as expected.



Sum and intersection example

a1 =
[
1 0 −3 2

]T
a2 =

[
0 1 −2 1

]T
b1 =

[
1 0 0 1

]T
b2 =

[
0 1 1 0

]T
We now have

V ∩W = ann(a1, a2) ∩ ann(b1, b2)

= ann(a1, a2, b1, b2).

To find the canonical basis, solve x .b2 = x .b1 = x .a2 = x .a1 = 0:

x3 + x2 = 0 x4 + x1 = 0

x4 − 2x3 + x2 = 0 2x4 − 3x3 + x1 = 0.

The first two equations give x3 = −x2 and x4 = −x1, which we can substitute
into the remaining equations to get x2 = x1/3. This leads to

x = x1
[
1 1/3 −1/3 −1

]T
, so the vector c =

[
1 1/3 −1/3 −1

]T
is

(by itself) the canonical basis for V ∩W . In particular, we have
dim(V ∩W ) = 1.
As a check, we note that

dim(V + W ) + dim(V ∩W ) = 3 + 1 = 2 + 2 = dim(V ) + dim(W ),

as expected.



Sum and intersection example

a1 =
[
1 0 −3 2

]T
a2 =

[
0 1 −2 1

]T
b1 =

[
1 0 0 1

]T
b2 =

[
0 1 1 0

]T
We now have

V ∩W = ann(a1, a2) ∩ ann(b1, b2) = ann(a1, a2, b1, b2).

To find the canonical basis, solve x .b2 = x .b1 = x .a2 = x .a1 = 0:

x3 + x2 = 0 x4 + x1 = 0

x4 − 2x3 + x2 = 0 2x4 − 3x3 + x1 = 0.

The first two equations give x3 = −x2 and x4 = −x1, which we can substitute
into the remaining equations to get x2 = x1/3. This leads to

x = x1
[
1 1/3 −1/3 −1

]T
, so the vector c =

[
1 1/3 −1/3 −1

]T
is

(by itself) the canonical basis for V ∩W . In particular, we have
dim(V ∩W ) = 1.
As a check, we note that

dim(V + W ) + dim(V ∩W ) = 3 + 1 = 2 + 2 = dim(V ) + dim(W ),

as expected.



Sum and intersection example

a1 =
[
1 0 −3 2

]T
a2 =

[
0 1 −2 1

]T
b1 =

[
1 0 0 1

]T
b2 =

[
0 1 1 0

]T
We now have

V ∩W = ann(a1, a2) ∩ ann(b1, b2) = ann(a1, a2, b1, b2).

To find the canonical basis, solve x .b2 = x .b1 = x .a2 = x .a1 = 0:

x3 + x2 = 0 x4 + x1 = 0

x4 − 2x3 + x2 = 0 2x4 − 3x3 + x1 = 0.

The first two equations give x3 = −x2 and x4 = −x1, which we can substitute
into the remaining equations to get x2 = x1/3. This leads to

x = x1
[
1 1/3 −1/3 −1

]T
, so the vector c =

[
1 1/3 −1/3 −1

]T
is

(by itself) the canonical basis for V ∩W . In particular, we have
dim(V ∩W ) = 1.
As a check, we note that

dim(V + W ) + dim(V ∩W ) = 3 + 1 = 2 + 2 = dim(V ) + dim(W ),

as expected.



Sum and intersection example

a1 =
[
1 0 −3 2

]T
a2 =

[
0 1 −2 1

]T
b1 =

[
1 0 0 1

]T
b2 =

[
0 1 1 0

]T
We now have

V ∩W = ann(a1, a2) ∩ ann(b1, b2) = ann(a1, a2, b1, b2).

To find the canonical basis, solve x .b2 = x .b1 = x .a2 = x .a1 = 0:

x3 + x2 = 0 x4 + x1 = 0

x4 − 2x3 + x2 = 0 2x4 − 3x3 + x1 = 0.

The first two equations give x3 = −x2 and x4 = −x1, which we can substitute
into the remaining equations to get x2 = x1/3. This leads to

x = x1
[
1 1/3 −1/3 −1

]T
, so the vector c =

[
1 1/3 −1/3 −1

]T
is

(by itself) the canonical basis for V ∩W . In particular, we have
dim(V ∩W ) = 1.
As a check, we note that

dim(V + W ) + dim(V ∩W ) = 3 + 1 = 2 + 2 = dim(V ) + dim(W ),

as expected.



Sum and intersection example

a1 =
[
1 0 −3 2

]T
a2 =

[
0 1 −2 1

]T
b1 =

[
1 0 0 1

]T
b2 =

[
0 1 1 0

]T
We now have

V ∩W = ann(a1, a2) ∩ ann(b1, b2) = ann(a1, a2, b1, b2).

To find the canonical basis, solve x .b2 = x .b1 = x .a2 = x .a1 = 0:

x3 + x2 = 0 x4 + x1 = 0

x4 − 2x3 + x2 = 0 2x4 − 3x3 + x1 = 0.

The first two equations give x3 = −x2 and x4 = −x1

, which we can substitute
into the remaining equations to get x2 = x1/3. This leads to

x = x1
[
1 1/3 −1/3 −1

]T
, so the vector c =

[
1 1/3 −1/3 −1

]T
is

(by itself) the canonical basis for V ∩W . In particular, we have
dim(V ∩W ) = 1.
As a check, we note that

dim(V + W ) + dim(V ∩W ) = 3 + 1 = 2 + 2 = dim(V ) + dim(W ),

as expected.



Sum and intersection example

a1 =
[
1 0 −3 2

]T
a2 =

[
0 1 −2 1

]T
b1 =

[
1 0 0 1

]T
b2 =

[
0 1 1 0

]T
We now have

V ∩W = ann(a1, a2) ∩ ann(b1, b2) = ann(a1, a2, b1, b2).

To find the canonical basis, solve x .b2 = x .b1 = x .a2 = x .a1 = 0:

x3 + x2 = 0 x4 + x1 = 0

x4 − 2x3 + x2 = 0 2x4 − 3x3 + x1 = 0.

The first two equations give x3 = −x2 and x4 = −x1, which we can substitute
into the remaining equations to get x2 = x1/3.

This leads to

x = x1
[
1 1/3 −1/3 −1

]T
, so the vector c =

[
1 1/3 −1/3 −1

]T
is

(by itself) the canonical basis for V ∩W . In particular, we have
dim(V ∩W ) = 1.
As a check, we note that

dim(V + W ) + dim(V ∩W ) = 3 + 1 = 2 + 2 = dim(V ) + dim(W ),

as expected.



Sum and intersection example

a1 =
[
1 0 −3 2

]T
a2 =

[
0 1 −2 1

]T
b1 =

[
1 0 0 1

]T
b2 =

[
0 1 1 0

]T
We now have

V ∩W = ann(a1, a2) ∩ ann(b1, b2) = ann(a1, a2, b1, b2).

To find the canonical basis, solve x .b2 = x .b1 = x .a2 = x .a1 = 0:

x3 + x2 = 0 x4 + x1 = 0

x4 − 2x3 + x2 = 0 2x4 − 3x3 + x1 = 0.

The first two equations give x3 = −x2 and x4 = −x1, which we can substitute
into the remaining equations to get x2 = x1/3. This leads to

x = x1
[
1 1/3 −1/3 −1

]T

, so the vector c =
[
1 1/3 −1/3 −1

]T
is

(by itself) the canonical basis for V ∩W . In particular, we have
dim(V ∩W ) = 1.
As a check, we note that

dim(V + W ) + dim(V ∩W ) = 3 + 1 = 2 + 2 = dim(V ) + dim(W ),

as expected.



Sum and intersection example

a1 =
[
1 0 −3 2

]T
a2 =

[
0 1 −2 1

]T
b1 =

[
1 0 0 1

]T
b2 =

[
0 1 1 0

]T
We now have

V ∩W = ann(a1, a2) ∩ ann(b1, b2) = ann(a1, a2, b1, b2).

To find the canonical basis, solve x .b2 = x .b1 = x .a2 = x .a1 = 0:

x3 + x2 = 0 x4 + x1 = 0

x4 − 2x3 + x2 = 0 2x4 − 3x3 + x1 = 0.

The first two equations give x3 = −x2 and x4 = −x1, which we can substitute
into the remaining equations to get x2 = x1/3. This leads to

x = x1
[
1 1/3 −1/3 −1

]T
, so the vector c =

[
1 1/3 −1/3 −1

]T
is

(by itself) the canonical basis for V ∩W .

In particular, we have
dim(V ∩W ) = 1.
As a check, we note that

dim(V + W ) + dim(V ∩W ) = 3 + 1 = 2 + 2 = dim(V ) + dim(W ),

as expected.



Sum and intersection example

a1 =
[
1 0 −3 2

]T
a2 =

[
0 1 −2 1

]T
b1 =

[
1 0 0 1

]T
b2 =

[
0 1 1 0

]T
We now have

V ∩W = ann(a1, a2) ∩ ann(b1, b2) = ann(a1, a2, b1, b2).

To find the canonical basis, solve x .b2 = x .b1 = x .a2 = x .a1 = 0:

x3 + x2 = 0 x4 + x1 = 0

x4 − 2x3 + x2 = 0 2x4 − 3x3 + x1 = 0.

The first two equations give x3 = −x2 and x4 = −x1, which we can substitute
into the remaining equations to get x2 = x1/3. This leads to

x = x1
[
1 1/3 −1/3 −1

]T
, so the vector c =

[
1 1/3 −1/3 −1

]T
is

(by itself) the canonical basis for V ∩W . In particular, we have
dim(V ∩W ) = 1.

As a check, we note that

dim(V + W ) + dim(V ∩W ) = 3 + 1 = 2 + 2 = dim(V ) + dim(W ),

as expected.



Sum and intersection example

a1 =
[
1 0 −3 2

]T
a2 =

[
0 1 −2 1

]T
b1 =

[
1 0 0 1

]T
b2 =

[
0 1 1 0

]T
We now have

V ∩W = ann(a1, a2) ∩ ann(b1, b2) = ann(a1, a2, b1, b2).

To find the canonical basis, solve x .b2 = x .b1 = x .a2 = x .a1 = 0:

x3 + x2 = 0 x4 + x1 = 0

x4 − 2x3 + x2 = 0 2x4 − 3x3 + x1 = 0.

The first two equations give x3 = −x2 and x4 = −x1, which we can substitute
into the remaining equations to get x2 = x1/3. This leads to

x = x1
[
1 1/3 −1/3 −1

]T
, so the vector c =

[
1 1/3 −1/3 −1

]T
is

(by itself) the canonical basis for V ∩W . In particular, we have
dim(V ∩W ) = 1.
As a check, we note that

dim(V + W ) + dim(V ∩W ) = 3 + 1 = 2 + 2 = dim(V ) + dim(W ),

as expected.



Lecture 18



Rank

Definition 22.1: For any matrix A, put

rank(A) = dim( span of the columns of A)

= dim( span of the rows of AT ).
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= dim( span of the rows of AT ).



Column operations

Definition 22.2: A matrix A is in reduced column echelon form (RCEF) if
AT is in RREF

, or equivalently:

RCEF0: Any column of zeros come at the right hand end of the matrix, after all
the nonzero columns.

RCEF1: In any nonzero column, the first nonzero entry is equal to one.

These
entries are called copivots.

RCEF2: In any nonzero column, the copivot is further down than the copivots in all
previous rows.

RCEF3: If a row contains a copivot, then all other entries in that row are zero.

Definition 22.3: Let A be a matrix. The following operations on A are called
elementary column operations:

ECO1: Exchange two columns.

ECO2: Multiply a column by a nonzero constant.

ECO3: Add a multiple of one column to another column.
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Rank of an RCEF matrix

Proposition 22.4: If a matrix A is in RCEF, then the rank of A is just the
number of nonzero columns.

Proof.
Let the nonzero columns be u1, . . . , ur , and put U = span(u1, . . . , ur ).

This is the same as the span of all the columns, because columns of zeros do
not contribute anything to the span.
We claim that the vectors ui are linearly independent.
To see this, note that each ui contains a copivot, say in the qi ’th row. As the
matrix is in RCEF we have q1 < · · · < qr , and the qi ’th row is all zero apart
from the copivot in ui . In other words, for j 6= i the qi ’th entry in uj is zero.
Now suppose we have a linear relation λ1u1 + · · ·+ λrur = 0.
By looking at the qi ’th entry, we see that λi is zero.
This holds for all i , so we have the trivial linear relation.
This proves that the list u1, . . . , ur is linearly independent, so it forms a basis
for U, so dim(U) = r . We thus have rank(A) = r as claimed.
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Basic facts about column operations

Proposition 22.5: Any matrix A can be converted to RCEF by a sequence of
elementary column operations.

Proof: Analogous to Method 6.3 for row operations.

Proposition 22.6: Suppose that A can be converted to B by a sequence of
elementary column operations. Then B = AV for some invertible matrix V .

Proof.
AT can be converted to BT by a sequence of row operations corresponding to
the column operations that were used to convert A to B.

Thus, Corollary 11.10 tells us that BT = UAT for some invertible matrix U.
We thus have B = BTT

= (UAT )T = ATTUT = AUT .

Here UT is also invertible, so we can take V = UT .

Proposition 22.7: Suppose that A can be converted to B by a sequence of
elementary column operations.

Then the span of the columns of A is the same
as the span of the columns of B (and so rank(A) = rank(B)).

Proof: Analogous to Corollary 9.16 for row operations.
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Invariance under row operations

Proposition 22.8: Suppose that A can be converted to B by a sequence of
elementary row operations. Then rank(A) = rank(B).

Proof: Let the columns of A be v1, . . . , vn and put V = span(v1, . . . , vn) so
rank(A) = dim(V ).

There is an invertible matrix P such that

B = PA

= P

 v1 · · · vn

 =

 Pv1 · · · Pvn

 ,

so the vectors Pvi are the columns of B. Thus, if we put
W = span(Pv1, . . . ,Pvn), then rank(B) = dim(W ).

Claim: if x ∈ V then Px ∈W . Indeed, if x ∈ V then x =
∑n

i=1 λivi for some
sequence of coefficients λ1, . . . , λn. This means that Px =

∑n
i=1 λiPvi , which

is a linear combination of Pv1, . . . ,Pvn, so Px ∈W .

Claim: if y ∈W then P−1y ∈ V . Indeed, if y ∈W then y =
∑n

i=1 λiPvi for
some sequence of coefficients λ1, . . . , λn. This means that
P−1y =

∑n
i=1 λiP

−1Pvi

=
∑n

i=1 λivi

, which is a linear combination of
v1, . . . , vn, so P−1y ∈ V .
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Invariance under row operations

V = span(v1, . . . , vn); W = span(Pv1, . . . ,Pvn);
if x ∈ V then Px ∈W ; if y ∈W then P−1y ∈ V .

Now choose a basis a1, . . . , ar for V (so rank(A) = dim(V ) = r).
Claim: the vectors Pa1, . . . ,Par form a basis for W .
We just showed that Px ∈W whenever x ∈ V , so at least Pai ∈W .

Consider an arbitrary element y ∈W . We then have P−1y ∈ V , but the
vectors ai form a basis for V , so we have P−1y =

∑r
i=1 µiai for some sequence

of coefficients µi . This means that y = PP−1y

=
∑

i µiPai

, which expresses y
as a linear combination of the vectors Pai . It follows that the list Pa1, . . . ,Par

spans W .

We need to check that it is also linearly independent.
Suppose we have a linear relation

∑
i λiPai = 0. After multiplying by P−1, we

get a linear relation
∑

i λiai = 0. The list a1, . . . , ar is assumed to be a basis
for V , so this must be the trivial relation, so λ1 = · · · = λr = 0, or in other
words the original relation

∑
i λiPai = 0 was the trivial one.

We have now shown that Pa1, . . . ,Par is a basis for W , so dim(W ) = r . In
conclusion, we have rank(A) = r = rank(B) as required.
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Normal form

Definition 22.9: An n ×m matrix A is in normal form if it has the form

A =

[
Ir 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

]
for some r .

(r = 0 is allowed, in which case A is just the zero matrix.)

If A is in normal form as above, then rank(A) = r = the number of ones in A.

Example 22.10: There are precisely four different 3× 5 matrices that are in
normal form, one of each rank from 0 to 3 inclusive.

A0 =

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 A1 =

 1 0 0 0 0
0 0 0 0 0
0 0 0 0 0


A2 =

 1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 A3 =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
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Example 22.10: There are precisely four different 3× 5 matrices that are in
normal form, one of each rank from 0 to 3 inclusive.
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Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations.

Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.

By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.

By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.

By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.

By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.
By Corollary 11.10 there is an invertible matrix U such that B = UA.

(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.
By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)

Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.
By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.

As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.
By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.

However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.
By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot

, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.
By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.

Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.
By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form.

As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.
By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V .

As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.
By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV .

Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.
By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank

, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.
By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C)

, and
because C is in normal form, rank(C) is just the number of ones in C .



Reduction to normal form

Proposition 22.11: Any n ×m matrix A can be converted to a matrix C in
normal form by a sequence of row and column operations. Moreover:

(a) There is an invertible n × n matrix U and an invertible m ×m matrix V
such that C = UAV .

(b) rank(A) = rank(C) = the number of ones in C .

Proof: Perform row operations to get a matrix B in RREF.
By Corollary 11.10 there is an invertible matrix U such that B = UA.
(This has to be an n × n matrix for the product UA to make sense.)
Now subtract multiples of pivot columns from columns further to the right.
As each pivot column contains nothing but the pivot, the only effect of these
column operations is to set everything to the right of a pivot equal to zero.
However, every nonzero entry in B is either a pivot or to the right of a pivot, so
after these ops we just have the pivots from B and everything else is zero.
Now just move all columns of zeros to the right hand end, which leaves a matrix
C in normal form. As C was obtained from B by a sequence of elementary
column operations, we have C = BV for some invertible m ×m matrix V . As
B = UA, it follows that C = UAV . Propositions 22.7 and 22.8 tell us that
neither row nor column operations affect the rank, so rank(A) = rank(C), and
because C is in normal form, rank(C) is just the number of ones in C .



Example of reduction to normal form

Consider the matrix

A =


1 3 0 1
2 6 0 2
0 0 1 4
1 3 2 9

 .

This can be row-reduced as follows:
1 3 0 1
2 6 0 2
0 0 1 4
1 3 2 9

→


1 3 0 1
0 0 0 0
0 0 1 4
0 0 2 8



→


1 3 0 1
0 0 0 0
0 0 1 4
0 0 0 0

 →


1 3 0 1
0 0 1 4
0 0 0 0
0 0 0 0

 .

We now perform column operations:
1 3 0 1
0 0 1 4
0 0 0 0
0 0 0 0

→


1 0 0 0
0 0 1 4
0 0 0 0
0 0 0 0

 →


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 →


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


(Subtract column 1 from column 4, and 3 times column 1 from column 2;

subtract 4 times column 3 from column 4; exchange columns 2 and 3.

)
We are left with a matrix of rank 2 in normal form, so rank(A) = 2.
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rank(A) = rank(AT )

Proposition 22.14: For any matrix A we have rank(A) = rank(AT ).

Proof: We can convert A by row and column ops to a matrix C in normal
form, and rank(A) is the number of ones in C .

If we transpose everything then
the row ops become column ops and vice-versa, so AT can be converted to CT

by row and column ops, and CT is also in normal form, so rank(AT ) = the
number of ones in CT = the number of ones in C = rank(A).

Alternative terminology:

column rank of A = dim(span( columns of A))

= rank(A)

row rank of A = dim(span( rows of A)) = dim(span( cols of AT )) = rank(AT )

With this terminology, the proposition says row rank=column rank.

Corollary 22.16: If A is an n ×m matrix. Then rank(A) ≤ min(n,m).

Proof: Let V be the span of the columns of A, and let W be the span of the
columns of AT . Now V is a subspace of Rn, so dim(V ) ≤ n, but W is a
subspace of Rm, so dim(W ) ≤ m. On the other hand, Proposition 22.14 tells
us that dim(V ) = dim(W ) = rank(A), so we have rank(A) ≤ n and also
rank(A) ≤ m, so rank(A) ≤ min(n,m).
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Lecture 19



Orthogonal matrices and orthonormal lists

Definition 23.1: Let A be an n × n matrix.
We say that A is an orthogonal matrix it is invertible and A−1 = AT .

Definition 23.2: Let v1, . . . , vr be a list of r vectors in Rn.

We say that this list is orthonormal if vi .vi = 1 for all i ,
and vi .vj = 0 whenever i and j are different.

Proposition 23.4: Any orthonormal list of length n in Rn is a basis.

Proof: Let v1, . . . , vn be an orthonormal list of length n.

Suppose we have a linear relation
∑n

i=1 λivi = 0.
We can take the dot product of both sides with vp to get

∑n
i=1 λi (vi .vp) = 0.

Most of the terms vi .vp are zero, because vi .vj = 0 whenever i 6= j .
After dropping the terms where i 6= p, we are left with λp(vp.vp) = 0.
Here vp.vp = 1 (by the definition of orthonormality) so λp = 0.
This works for all p, so our linear relation is the trivial one.
This proves that the list v1, . . . , vn is linearly independent.
A linearly independent list of n vectors in Rn is automatically a basis by
Proposition 10.12.
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Orthogonal matrices and orthonormal lists

Proposition 23.5: Let A be an n× n matrix. Then A is an orthogonal matrix
if and only if the columns of A form an orthonormal list.

Proof.
By definition, A is orthogonal if and only if AT is an inverse for A

, or in other
words ATA = In. Let the columns of A be v1, . . . , vn. Then

ATA =

 vT
1

...

vT
n


 v1 · · · vn



=

v1.v1 · · · v1.vn
...

. . .
...

vn.v1 · · · vn.vn



In other words, the entry in the (i , j) position in ATA is just the dot product
vi .vj . For ATA to be the identity we need the diagonal entries vi .vi to be one,
and the off-diagonal entries vi .vj (with i 6= j) to be zero. This means precisely
that the list v1, . . . , vn is orthonormal.
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1
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vT
n


 v1 · · · vn



=

v1.v1 · · · v1.vn
...

. . .
...

vn.v1 · · · vn.vn



In other words, the entry in the (i , j) position in ATA is just the dot product
vi .vj . For ATA to be the identity we need the diagonal entries vi .vi to be one,
and the off-diagonal entries vi .vj (with i 6= j) to be zero. This means precisely
that the list v1, . . . , vn is orthonormal.



Orthogonal matrices and orthonormal lists

Proposition 23.5: Let A be an n× n matrix. Then A is an orthogonal matrix
if and only if the columns of A form an orthonormal list.

Proof.
By definition, A is orthogonal if and only if AT is an inverse for A, or in other
words ATA = In. Let the columns of A be v1, . . . , vn. Then

ATA =

 vT
1

...

vT
n


 v1 · · · vn



=

v1.v1 · · · v1.vn
...

. . .
...

vn.v1 · · · vn.vn


In other words, the entry in the (i , j) position in ATA is just the dot product

vi .vj . For ATA to be the identity we need the diagonal entries vi .vi to be one,
and the off-diagonal entries vi .vj (with i 6= j) to be zero. This means precisely
that the list v1, . . . , vn is orthonormal.



Orthogonal matrices and orthonormal lists

Proposition 23.5: Let A be an n× n matrix. Then A is an orthogonal matrix
if and only if the columns of A form an orthonormal list.

Proof.
By definition, A is orthogonal if and only if AT is an inverse for A, or in other
words ATA = In. Let the columns of A be v1, . . . , vn. Then

ATA =

 vT
1

...

vT
n


 v1 · · · vn

 =

v1.v1 · · · v1.vn
...

. . .
...

vn.v1 · · · vn.vn



In other words, the entry in the (i , j) position in ATA is just the dot product
vi .vj . For ATA to be the identity we need the diagonal entries vi .vi to be one,
and the off-diagonal entries vi .vj (with i 6= j) to be zero. This means precisely
that the list v1, . . . , vn is orthonormal.



Orthogonal matrices and orthonormal lists

Proposition 23.5: Let A be an n× n matrix. Then A is an orthogonal matrix
if and only if the columns of A form an orthonormal list.

Proof.
By definition, A is orthogonal if and only if AT is an inverse for A, or in other
words ATA = In. Let the columns of A be v1, . . . , vn. Then

ATA =

 vT
1

...

vT
n


 v1 · · · vn

 =

v1.v1 · · · v1.vn
...

. . .
...

vn.v1 · · · vn.vn


In other words, the entry in the (i , j) position in ATA is just the dot product

vi .vj .

For ATA to be the identity we need the diagonal entries vi .vi to be one,
and the off-diagonal entries vi .vj (with i 6= j) to be zero. This means precisely
that the list v1, . . . , vn is orthonormal.



Orthogonal matrices and orthonormal lists

Proposition 23.5: Let A be an n× n matrix. Then A is an orthogonal matrix
if and only if the columns of A form an orthonormal list.

Proof.
By definition, A is orthogonal if and only if AT is an inverse for A, or in other
words ATA = In. Let the columns of A be v1, . . . , vn. Then

ATA =

 vT
1

...

vT
n


 v1 · · · vn

 =

v1.v1 · · · v1.vn
...

. . .
...

vn.v1 · · · vn.vn


In other words, the entry in the (i , j) position in ATA is just the dot product

vi .vj . For ATA to be the identity we need the diagonal entries vi .vi to be one,
and the off-diagonal entries vi .vj (with i 6= j) to be zero.

This means precisely
that the list v1, . . . , vn is orthonormal.



Orthogonal matrices and orthonormal lists

Proposition 23.5: Let A be an n× n matrix. Then A is an orthogonal matrix
if and only if the columns of A form an orthonormal list.

Proof.
By definition, A is orthogonal if and only if AT is an inverse for A, or in other
words ATA = In. Let the columns of A be v1, . . . , vn. Then

ATA =

 vT
1

...

vT
n


 v1 · · · vn

 =

v1.v1 · · · v1.vn
...

. . .
...

vn.v1 · · · vn.vn


In other words, the entry in the (i , j) position in ATA is just the dot product

vi .vj . For ATA to be the identity we need the diagonal entries vi .vi to be one,
and the off-diagonal entries vi .vj (with i 6= j) to be zero. This means precisely
that the list v1, . . . , vn is orthonormal.



Symmetric matrices

Definition 23.6: Let A be an n × n matrix, with entries aij .

We say that A is symmetric if AT = A,
or equivalently aij = aji for all i and j .

Example: A 4× 4 matrix is symmetric if and only if it has the form
a b c d
b e f g
c f h i
d g i j

 .
Example: The matrices A and B are symmetric, but C and D are not.

A =

1 2 3
2 2 3
3 3 3

 B =

111 11 1
11 111 11
1 11 111


C =

1 2 3
4 5 6
7 8 9

 D =

1 10 1000
1 10 1000
1 10 1000
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Dot products and symmetric matrices

Lemma 23.9: Let A be an n × n matrix, and let u and v be vectors in Rn.

Then u.(Av) = (ATu).v . Thus, if A is symmetric then u.(Av) = (Au).v .

Proof.
Put p = ATu and q = Av , so the claim is that u.q = p.v .

By the definition of matrix multiplication, we have qi =
∑

j Aijvj ,
so u.q =

∑
i uiqi

=
∑

i,j uiAijvj .

Similarly, we have pj =
∑

i (AT )jiui , but (AT )ji = Aij so pj =
∑

i uiAij .
It follows that p.v =

∑
j pjvj =

∑
i,j uiAijvj ,

which is the same as u.q, as claimed.

Alternatively: for x , y ∈ Rn the dot product x .y is the matrix product xT y .
Thus (Au).v = (Au)T v , but (Au)T = uTAT (by Proposition 3.4)
so (Au).v = uT (AT v)

= u.(AT v).
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Put p = ATu and q = Av , so the claim is that u.q = p.v .
By the definition of matrix multiplication, we have qi =

∑
j Aijvj ,
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i uiqi =
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i,j uiAijvj .

Similarly, we have pj =
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i (AT )jiui , but (AT )ji = Aij so pj =
∑

i uiAij .
It follows that p.v =

∑
j pjvj =

∑
i,j uiAijvj ,

which is the same as u.q, as claimed.

Alternatively: for x , y ∈ Rn the dot product x .y is the matrix product xT y .
Thus (Au).v = (Au)T v , but (Au)T = uTAT (by Proposition 3.4)
so (Au).v = uT (AT v)

= u.(AT v).
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Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).

We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw

= A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).

We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw

= A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).

We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw

= A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).

We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw

= A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.

As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw

= A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.

Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw

= A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw

= A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw

= A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw = A(v +iw)

= Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw = A(v +iw) = Au

= λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw = A(v +iw) = Au = λu

= (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw = A(v +iw) = Au = λu = (α+iβ)(v +iw)

= (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw = A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw = A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.

Compare real and imaginary parts to get
Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw = A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw

Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw = A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw = A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w

v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw = A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw = A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.

Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw = A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.

By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw = A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.

Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (a): Let λ = α + iβ be a complex eigenvalue of A (α, β ∈ R).
We must show that β = 0, so that λ is actually a real number.
As λ is an eigenvalue, there is a nonzero vector u with Au = λu.
Let v ,w ∈ Rn be the real and imaginary parts of u, so u = v + iw .

Av +iAw = A(v +iw) = Au = λu = (α+iβ)(v +iw) = (αv−βw)+i(βv +αw).

As the entries in A are real, we see that the vectors Av and Aw are real.
Compare real and imaginary parts to get

Av = αv − βw Aw = βv + αw

(Av).w = αv .w − βw .w v .(Aw) = βv .v + αv .w .

However, A is symmetric, so (Av).w = v .(Aw) by Lemma 23.9.
Rearrange to get β(v .v + w .w) = 0 or β(‖v‖2 + ‖w‖2) = 0.
By assumption u 6= 0 so (v 6= 0 or w 6= 0) so ‖v‖2 + ‖w‖2 > 0.
Divide by this to get β = 0 and λ = α ∈ R as claimed.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (b):

Suppose that u and v are eigenvectors of A with distinct
eigenvalues, say λ and µ. This means that

Au = λu Av = µv λ 6= µ.

As A is symmetric we have (Au).v = u.(Av).
As Au = λu and Av = µv this becomes λ u.v = µ u.v .
Rearrange to get (λ− µ)u.v = 0.
As λ 6= µ we can divide by λ− µ to get u.v = 0,
which means that u and v are orthogonal.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (b): Suppose that u and v are eigenvectors of A with distinct
eigenvalues, say λ and µ.

This means that

Au = λu Av = µv λ 6= µ.

As A is symmetric we have (Au).v = u.(Av).
As Au = λu and Av = µv this becomes λ u.v = µ u.v .
Rearrange to get (λ− µ)u.v = 0.
As λ 6= µ we can divide by λ− µ to get u.v = 0,
which means that u and v are orthogonal.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (b): Suppose that u and v are eigenvectors of A with distinct
eigenvalues, say λ and µ. This means that

Au = λu

Av = µv λ 6= µ.

As A is symmetric we have (Au).v = u.(Av).
As Au = λu and Av = µv this becomes λ u.v = µ u.v .
Rearrange to get (λ− µ)u.v = 0.
As λ 6= µ we can divide by λ− µ to get u.v = 0,
which means that u and v are orthogonal.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (b): Suppose that u and v are eigenvectors of A with distinct
eigenvalues, say λ and µ. This means that

Au = λu Av = µv

λ 6= µ.

As A is symmetric we have (Au).v = u.(Av).
As Au = λu and Av = µv this becomes λ u.v = µ u.v .
Rearrange to get (λ− µ)u.v = 0.
As λ 6= µ we can divide by λ− µ to get u.v = 0,
which means that u and v are orthogonal.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (b): Suppose that u and v are eigenvectors of A with distinct
eigenvalues, say λ and µ. This means that

Au = λu Av = µv λ 6= µ.

As A is symmetric we have (Au).v = u.(Av).
As Au = λu and Av = µv this becomes λ u.v = µ u.v .
Rearrange to get (λ− µ)u.v = 0.
As λ 6= µ we can divide by λ− µ to get u.v = 0,
which means that u and v are orthogonal.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (b): Suppose that u and v are eigenvectors of A with distinct
eigenvalues, say λ and µ. This means that

Au = λu Av = µv λ 6= µ.

As A is symmetric we have (Au).v = u.(Av).

As Au = λu and Av = µv this becomes λ u.v = µ u.v .
Rearrange to get (λ− µ)u.v = 0.
As λ 6= µ we can divide by λ− µ to get u.v = 0,
which means that u and v are orthogonal.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (b): Suppose that u and v are eigenvectors of A with distinct
eigenvalues, say λ and µ. This means that

Au = λu Av = µv λ 6= µ.

As A is symmetric we have (Au).v = u.(Av).
As Au = λu and Av = µv this becomes λ u.v = µ u.v .

Rearrange to get (λ− µ)u.v = 0.
As λ 6= µ we can divide by λ− µ to get u.v = 0,
which means that u and v are orthogonal.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (b): Suppose that u and v are eigenvectors of A with distinct
eigenvalues, say λ and µ. This means that

Au = λu Av = µv λ 6= µ.

As A is symmetric we have (Au).v = u.(Av).
As Au = λu and Av = µv this becomes λ u.v = µ u.v .
Rearrange to get (λ− µ)u.v = 0.

As λ 6= µ we can divide by λ− µ to get u.v = 0,
which means that u and v are orthogonal.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (b): Suppose that u and v are eigenvectors of A with distinct
eigenvalues, say λ and µ. This means that

Au = λu Av = µv λ 6= µ.

As A is symmetric we have (Au).v = u.(Av).
As Au = λu and Av = µv this becomes λ u.v = µ u.v .
Rearrange to get (λ− µ)u.v = 0.
As λ 6= µ we can divide by λ− µ to get u.v = 0

,
which means that u and v are orthogonal.



Eigenvalues of symmetric matrices

Proposition 23.10: Let A be an n× n symmetric matrix (with real entries).

(a) All eigenvalues of A are real numbers.

(b) If u and v are (real) eigenvectors for A with distinct eigenvalues, then u
and v are orthogonal.

Proof of (b): Suppose that u and v are eigenvectors of A with distinct
eigenvalues, say λ and µ. This means that

Au = λu Av = µv λ 6= µ.

As A is symmetric we have (Au).v = u.(Av).
As Au = λu and Av = µv this becomes λ u.v = µ u.v .
Rearrange to get (λ− µ)u.v = 0.
As λ 6= µ we can divide by λ− µ to get u.v = 0,
which means that u and v are orthogonal.



Alternative proof for 2× 2 matrices

A 2× 2 symmetric matrix has the form

A =

[
a b
b d

]

so A− tI2 =

[
a− t b

b d − t

]
so

χA(t) = (a− t)(d − t)− b2

= t2 − (a + d)t + (ad − b2).

The eigenvalues are

λ =
a + d ±

√
(a + d)2 − 4(ad − b2)

2
.

The expression under the square root is

(a + d)2 − 4(ad − b2)

= a2+2ad + d2−4ad + 4b2

= a2 − 2ad + d2 + 4b2

= (a− d)2 + (2b)2.

This is the sum of two squares, so it is nonnegative, so the square root is real,
so the two eigenvalues are both real.
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Orthonormal basis of eigenvectors

Proposition 23.12: Let A be an n × n symmetric matrix.
Then there is an orthonormal basis for Rn consisting of eigenvectors for A.

Partial proof.

We will show that the Theorem holds whenever A has n distinct eigenvalues.

In fact it is true even without that assumption, but the proof is harder.

Let the eigenvalues of A be λ1, . . . , λn (so λi ∈ R).
For each i we choose a (real) eigenvector ui of eigenvalue λi .
As ui is an eigenvector we have ui 6= 0

and so ui .ui > 0
so we can define vi = ui/

√
ui .ui .

This is just a real number times ui , so it is
again an eigenvector of eigenvalue λi .

It satisfies vi .vi =
ui .ui√

ui .ui
√

ui .ui

= 1 (so it is a unit vector).

Proposition 23.10(b): eigenvectors of a symmetric matrix with distinct
eigenvalues are orthogonal. Thus vi .vj = 0 for i 6= j .
This shows that the sequence v1, . . . , vn is orthonormal.
Proposition 23.4: any orthonormal list of length n in Rn is a basis.
Proposition 13.22: any n eigenvectors in Rn with distinct eigenvalues form a
basis.
Either of these results implies that v1, . . . , vn is a basis.
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Our special case is the usual case

Let A be an n × n symmetric matrix again.

The characteristic polynomial χA(t) has degree n,
so by well-known properties of polynomials it can be factored as

χA(t) =
n∏

i=1

(λi − t)

for some complex numbers λ1, . . . , λn.

By Proposition 23.10(a) these eigenvalues λi are in fact all real.

Some of them might be the same, but that would be a concidence which could
only happen if the matrix A was very simple or had some kind of hidden
symmetry.

Thus, our proof of Proposition 23.12 covers almost all cases
(but some of the cases that are not covered are the most interesting ones).



Our special case is the usual case

Let A be an n × n symmetric matrix again.
The characteristic polynomial χA(t) has degree n

,
so by well-known properties of polynomials it can be factored as

χA(t) =
n∏

i=1

(λi − t)

for some complex numbers λ1, . . . , λn.

By Proposition 23.10(a) these eigenvalues λi are in fact all real.

Some of them might be the same, but that would be a concidence which could
only happen if the matrix A was very simple or had some kind of hidden
symmetry.

Thus, our proof of Proposition 23.12 covers almost all cases
(but some of the cases that are not covered are the most interesting ones).



Our special case is the usual case

Let A be an n × n symmetric matrix again.
The characteristic polynomial χA(t) has degree n,
so by well-known properties of polynomials it can be factored as

χA(t) =
n∏

i=1

(λi − t)

for some complex numbers λ1, . . . , λn.

By Proposition 23.10(a) these eigenvalues λi are in fact all real.

Some of them might be the same, but that would be a concidence which could
only happen if the matrix A was very simple or had some kind of hidden
symmetry.

Thus, our proof of Proposition 23.12 covers almost all cases
(but some of the cases that are not covered are the most interesting ones).



Our special case is the usual case

Let A be an n × n symmetric matrix again.
The characteristic polynomial χA(t) has degree n,
so by well-known properties of polynomials it can be factored as

χA(t) =
n∏

i=1

(λi − t)

for some complex numbers λ1, . . . , λn.

By Proposition 23.10(a) these eigenvalues λi are in fact all real.

Some of them might be the same, but that would be a concidence which could
only happen if the matrix A was very simple or had some kind of hidden
symmetry.

Thus, our proof of Proposition 23.12 covers almost all cases
(but some of the cases that are not covered are the most interesting ones).



Our special case is the usual case

Let A be an n × n symmetric matrix again.
The characteristic polynomial χA(t) has degree n,
so by well-known properties of polynomials it can be factored as

χA(t) =
n∏

i=1

(λi − t)

for some complex numbers λ1, . . . , λn.

By Proposition 23.10(a) these eigenvalues λi are in fact all real.

Some of them might be the same, but that would be a concidence which could
only happen if the matrix A was very simple or had some kind of hidden
symmetry.

Thus, our proof of Proposition 23.12 covers almost all cases
(but some of the cases that are not covered are the most interesting ones).



Our special case is the usual case

Let A be an n × n symmetric matrix again.
The characteristic polynomial χA(t) has degree n,
so by well-known properties of polynomials it can be factored as

χA(t) =
n∏

i=1

(λi − t)

for some complex numbers λ1, . . . , λn.

By Proposition 23.10(a) these eigenvalues λi are in fact all real.

Some of them might be the same, but that would be a concidence which could
only happen if the matrix A was very simple or had some kind of hidden
symmetry.

Thus, our proof of Proposition 23.12 covers almost all cases

(but some of the cases that are not covered are the most interesting ones).



Our special case is the usual case

Let A be an n × n symmetric matrix again.
The characteristic polynomial χA(t) has degree n,
so by well-known properties of polynomials it can be factored as

χA(t) =
n∏

i=1

(λi − t)

for some complex numbers λ1, . . . , λn.

By Proposition 23.10(a) these eigenvalues λi are in fact all real.

Some of them might be the same, but that would be a concidence which could
only happen if the matrix A was very simple or had some kind of hidden
symmetry.

Thus, our proof of Proposition 23.12 covers almost all cases
(but some of the cases that are not covered are the most interesting ones).



Orthonormal eigenvector example

Consider the symmetric matrix A =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


(which appeared on one of the problem sheets)

and the vectors

u1 =


1
−1
0
0
0

 u2 =


1
0
−1
0
0

 u3 =


1
0
0
−1
0

 u4 =


1
0
0
0
−1

 u5 =


1
1
1
1
1

 .
These satisfy Au1 = Au2 = Au3 = Au4 = 0 and Au5 = 5u5,

so they are eigenvectors of eigenvalues λ1 = λ2 = λ3 = λ4 = 0 and λ5 = 5.
Because λ5 is different from λ1, . . . , λ4, Proposition 23.10(b) tells us that u5

must be orthogonal to u1, . . . , u4, and indeed it is easy to see directly that
u1.u5 = · · · = u4.u5 = 0. However, the eigenvectors u1, . . . , u4 all share the
same eigenvalue so there is no reason for them to be orthogonal and in fact
they are not.
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5

then w1, . . . ,w5 is an orthonormal basis for R5 consisting of eigenvectors for A.
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Lecture 20



Orthogonal diagonalisation of symmetric matrices

Corollary 23.15: Let A be an n × n symmetric matrix.
Then there is an orthogonal matrix U and a diagonal matrix D such that
A = UDUT = UDU−1.

Proof.
Choose an orthonormal basis of eigenvectors u1, . . . , un, and let λi be the
eigenvalue of ui .

Put U = [u1| · · · |un] and D = diag(λ1, . . . , λn).

Proposition 14.4 tells us that U−1AU = D and so A = UDU−1.

Proposition 23.5 tells us that U is an orthogonal matrix, so U−1 = UT .
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Example of orthogonal diagonalisation

Let A be the 5× 5 matrix in which every entry is one, as in Example 23.14.

Following the prescription in the above proof, we put

U =


1/
√

2 1/
√

6 1/
√

12 1/
√

20 1/
√

5

−1/
√

2 1/
√

6 1/
√

12 1/
√

20 1/
√

5

0 −2/
√

6 1/
√

12 1/
√

20 1/
√

5

0 0 −3/
√

12 1/
√

20 1/
√

5

0 0 0 −4/
√

20 1/
√

5



D =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 5



The general theory tells us that A = UDUT . We can check this directly:

UD =


∗ ∗ ∗ ∗ 1/

√
5

∗ ∗ ∗ ∗ 1/
√

5

∗ ∗ ∗ ∗ 1/
√

5

∗ ∗ ∗ ∗ 1/
√

5

∗ ∗ ∗ ∗ 1/
√

5



0 0 0 0 0
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0 0 0 0 0
0 0 0 0 0
0 0 0 0 5

 =
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√
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√
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√
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√
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0 0 0 0
√

5
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√
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5 1/
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5 1/
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5 1/
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5 1/
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 =
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1 1 1 1 1
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1 1 1 1 1
1 1 1 1 1

 = A.
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Example of orthogonal diagonalisation

Write ρ =
√

3 for brevity (so ρ2 = 3), and consider the symmetric matrix

A =

0 1 ρ
1 0 −ρ
ρ −ρ 0

 .
The characteristic polynomial is

χA(t) = det

−t 1 ρ
1 −t −ρ
ρ −ρ −t


= −t det

[
−t −ρ
−ρ −t

]
− det

[
1 −ρ
ρ −t

]
+ ρ det

[
1 −t
ρ −ρ

]
= −t(t2 − ρ2)− (−t + ρ2) + ρ(−ρ+ tρ) = −t3 + 3t + t − 3− 3 + 3t

= −t3 + 7t − 6 = −(t − 1)(t − 2)(t + 3).

It follows that the eigenvalues are λ1 = 1, λ2 = 2 and λ3 = −3.



Example of orthogonal diagonalisation

ρ =
√

3 A =

0 1 ρ
1 0 −ρ
ρ −ρ 0

 λ1 = 1
λ2 = 2
λ3 = −3.

Eigenvectors can be found by row-reduction:

A− I =

−1 1 ρ
1 −1 −ρ
ρ −ρ −1

→
1 −1 −ρ

0 0 2
0 0 0

→
1 −1 0

0 0 1
0 0 0


A− 2I =

−2 1 ρ
1 −2 −ρ
ρ −ρ −2

→
1 −2 −ρ

0 −3 −ρ
0 ρ 1

→
1 0 −ρ/3

0 1 ρ/3
0 0 0


A + 3I =

3 1 ρ
1 3 −ρ
ρ −ρ 3

→
1 3 −ρ

0 −8 4ρ
0 −4ρ 6

→
1 0 ρ/2

0 1 −ρ/2
0 0 0


From this we can read off the following eigenvectors:

u1 =

1
1
0

 u2 =

 ρ/3
−ρ/3

1

 u3 =

−ρ/2
ρ/2

1

 .



Example of orthogonal diagonalisation

λ1 = 1
λ2 = 2
λ3 = −3

u1 =

1
1
0

 u2 =

 ρ/3
−ρ/3

1

 u3 =

−ρ/2
ρ/2

1



Because the matrix A is symmetric and the eigenvalues are distinct, it is
automatic that the eigenvectors ui are orthogonal to each other. However, they
are not normalised: instead we have

u1.u1 = 12 + 12 = 2

u2.u2 = (ρ/3)2 + (−ρ/3)2 + 12 = 1/3 + 1/3 + 1 = 5/3

u3.u3 = (−ρ/2)2 + (ρ/2)2 + 12 = 3/4 + 3/4 + 1 = 5/2.

The vectors vi = ui/
√

ui .ui form an orthonormal basis of eigenvectors.
Explicitly, this works out as follows:

v1 =

1/
√

2

1/
√

2
0

 v2 =

 1/
√

5

−1/
√

5√
3/5

 v3 =

−
√

3/10√
3/10√
2/5

 .



Example of orthogonal diagonalisation

λ1 = 1
λ2 = 2
λ3 = −3

v1 =

1/
√

2

1/
√

2
0

 v2 =

 1/
√

5

−1/
√

5√
3/5

 v3 =

−
√

3/10√
3/10√
2/5

 .
The eigenvectors vi form orthonormal basis for R3.

It follows that if we put

U =

1/
√

2 1/
√

5 −
√

3/10

1/
√

2 −1/
√

5
√

3/10

0
√

3/5
√

2/5

 D =

1 0 0
0 2 0
0 0 −3


then U is an orthogonal matrix and A = UDUT .



Square roots of positive matrices

Corollary 23.18: Let A be an n × n real symmetric matrix, and suppose that
all the eigenvalues of A are positive.

Then there is a real symmetric matrix B such that A = B2.

Proof.
Choose an orthonormal basis of eigenvectors u1, . . . , un, and let λi be the
eigenvalue of ui .

Put U = [u1| · · · |un] and D = diag(λ1, . . . , λn).
We saw in Corollary 23.15 that U is orthogonal (so UTU = I = UUT )

and that A = UDUT .

By assumption the eigenvectors λi are positive, so we have a real diagonal
matrix E = diag(

√
λ1, . . . ,

√
λn). Put B = UEUT . It is clear that ET = E , and

it follows that

BT = (UEUT )T

= UTTETUT = UEUT = B.

We also have

B2 = UEUTUEUT

= UEEUT = UDUT = A.
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Linear and quadratic forms

Definition 23.19:

(a) A linear form on Rn is a function of the form
L(x) =

∑n
i=1 aixi (for some constants a1, . . . , an).

(b) A quadratic form on Rn is a function of the form
Q(x) =

∑n
i=1

∑n
j=1 bijxixj (for some constants bij).

Example 23.20:

(a) We can define a linear form on R3 by
L(x) = 7x1 − 8x2 + 9x3.

(b) We can define a quadratic form on R4 by
Q(x) = 10x1x2 + 12x3x4 − 14x1x4 − 16x2x3.

Given a linear form L(x) =
∑

i aixi , we can form the vector

a =
[
a1 · · · an

]T
, and clearly L(x) = a.x = aT x .
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Symmetric expressions for quadratic forms

Consider a quadratic form Q(x) =
∑

i,j bijxixj .

Form the matrix B with entries bij : we find that Q(x) = xTBx .

For example, if n = 2 and Q(x) = 2x2
1 + 4x1x2 + 7x2

2 then B =

[
2 4
0 7

]

and

xTBx =
[
x1 x2

] [2 4
0 7

] [
x1
x2

]

=
[
x1 x2

] [2x1 + 4x2
7x2

]
= 2x2

1 +4x1x2+7x2
2 = Q(x).

Alternatively, note that x1x2 = x2x1:

(a) Rewriting the same Q(x) as 2x2
1 + 3x1x2 + 1x2x1 + 7x2

2 gives B =

[
2 3
1 7

]
.

(b) Rewriting the same Q(x) as 2x2
1 + 2x1x2 + 2x2x1 + 7x2

2 gives B =

[
2 2
2 7

]
.

(c) Rewriting the same Q(x) as 2x2
1 + 1x1x2 + 3x2x1 + 7x2

2 gives B =

[
2 1
3 7

]
.

In option (b) we “share the coefficient equally” between x1x2 and x2x1, so the
matrix B is symmetric. This is the preferred option.
We can do the same for any quadratic form.
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x1 x2

] [2x1 + 4x2
7x2

]
= 2x2

1 +4x1x2+7x2
2 = Q(x).

Alternatively, note that x1x2 = x2x1:

(a) Rewriting the same Q(x) as 2x2
1 + 3x1x2 + 1x2x1 + 7x2

2 gives B =

[
2 3
1 7

]
.

(b) Rewriting the same Q(x) as 2x2
1 + 2x1x2 + 2x2x1 + 7x2
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[
2 2
2 7

]
.

(c) Rewriting the same Q(x) as 2x2
1 + 1x1x2 + 3x2x1 + 7x2

2 gives B =

[
2 1
3 7

]
.

In option (b) we “share the coefficient equally” between x1x2 and x2x1, so the
matrix B is symmetric. This is the preferred option.
We can do the same for any quadratic form.
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Symmetric expressions for quadratic forms

For example, we considered above the quadratic form

Q(x) = 10x1x2 + 12x3x4−14x1x4−16x2x3.

This can be rewritten symmetrically as

Q(x) = 5x1x2 + 5x2x1 + 6x3x4 + 6x4x3−7x1x4−7x4x1−8x2x3−8x3x2

,

which corresponds to the symmetric matrix

B =


0 5 0 −7
5 0 −8 0
0 −8 0 6
−7 0 6 0



xTBx =
[
x1 x2 x3 x4

] 
0 5 0 −7
5 0 −8 0
0 −8 0 6
−7 0 6 0




x1
x2
x3
x4



=
[
x1 x2 x3 x4

] 
5x2−7x4
5x1−8x3
−8x2 + 6x4
−7x1 + 6x3

 = Q(x).
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Diagonalisation of quadratic forms

Proposition 23.23: Let Q(x) be a quadratic form on Rn.

Then there are integers r , s ≥ 0 and nonzero vectors v1, . . . , vr ,w1, . . . ,ws

such that all the v ’s and w ’s are orthogonal to each other, and

Q(x) = (x .v1)2 + · · ·+ (x .vr )
2 − (x .w1)2 − · · · − (x .ws)

2.

Or in terms of linear forms Li (x) = x .vi and Mj(x) = x .wj :

Q = L1
2 + · · ·+ Lr

2 −M1
2 − · · · −Ms

2.

The rank of Q is defined to be r + s, and the signature is defined to be r − s.

Proof: There is a symmetric matrix B such that Q(x) = xTBx .

By Proposition 23.12, we can find an orthonormal basis u1, . . . , un for Rn such
that each ui is an eigenvector for B

, with eigenvalue λi ∈ R say.

Let r be the number of indices i for which λi > 0,
and let s be the number of indices i for which λi < 0.
We can assume that things have been ordered such that λ1, . . . , λr > 0 and
λr+1, . . . , λr+s < 0 and any eigenvalues after λr+s are zero.
Now put U = [u1| · · · |un] and D = diag(λ1, . . . , λn).
We have seen that B = UDUT , so

Q(x) = xTBx = xTUDUT x

= (UT x)T (DUT x) = (UT x).(DUT x).
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Example of diagonalising a quadratic form

Consider the quadratic form Q(x) = x1x2 − x3x4 on R4.

It is elementary that for all a, b ∈ R we have(
a + b

2

)2

−
(

a− b

2

)2

=
a2 + 2ab + b2 − a2 + 2ab − b2

4

= ab.

Using this, we can rewrite Q(x) as

Q(x) =
(x1 + x2

2

)2
−
(x1 − x2

2

)2
−
(x3 + x4

2

)2
+
(x3 − x4

2

)2
.

Now put

v1 =


1/2
1/2

0
0

 v2 =


0
0

1/2
−1/2

 w1 =


1/2
−1/2

0
0

 w2 =


0
0

1/2
1/2

 .
We then have

Q(x) = (x .v1)2 + (x .v2)2 − (x .w1)2 − (x .w2)2

and it is easy to see that the v ’s and w ’s are all orthogonal.
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Example of diagonalising a quadratic form

Consider the quadratic form Q(x) = 4x1x2 + 6x2x3 + 4x3x4 on R4.

Rewritten symmetrically: Q(x) = 2x1x2 + 2x2x1 + 3x2x3 + 3x3x2 + 2x3x4 + 2x4x3.
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Example of diagonalising a quadratic form

Q(x) = 4x1x2 + 6x2x3 + 4x3x4

v1 =

√
1

10


2
1
−1
−2

 v2 =

√
2

5


1
2
2
1

 w1 =

√
1

10


2
−1
−1
2

 w2 =

√
2

5


1
−2
2
−1


Conclusion: Q(x) = (x .v1)2 + (x .v2)2 − (x .w1)2 − (x .w2)2.


