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1. Introduction

There are two main themes in this course, with some mathematical techniques shared between them.
The first is the problem of optimisation: we have some function f of one or more variables, and we want

to choose the values of those variables so as to make f as large as possible. (Sometimes we want to make f
as small as possible instead, but that is the same as making −f as large as possible, so the techniques are
essentially the same.) There are many applications for this. For example, we may have designed some kind
of device, and we want to adjust the sizes of various parts or the values of various electrical components
to make it function as effectively as possible; this can be formulated mathematically as an optimisation
problem of the type that we will discuss. In another class of applications, we may not actually want f to be
maximised, but we need to know the maximum possible value for other reasons. For example, it can happen
that the force on a component of our device is given by a function f of certain inputs. To make sure that
the component is strong enough, we need to know the maximum force that could be imposed on it, or in
other words the maximum possible value of f .

The second main theme is the theory of vector calculus. This is the main mathematical language used in
formulating the laws of physics. In electrical engineering the most important example is Maxwell’s system
of equations, which govern the behaviour of time-varying electric and magnetic fields. These are central for
understanding the behaviour of electric generators and motors, radio transmitters and receivers, and so on.
The same mathematical ideas are also used in continuum mechanics to understand stresses and strains in
elastically deformed solids, and they appear again in the Navier-Stokes equations for the flow of liquids and
gasses, and the magnetohydrodynamic equations for the behaviour of the solar plasma.

One of the ingredients in Maxwell’s equations is the electric field E. This will typically depend on the
three spatial coordinates x, y and z and also on the time t. Moreover, E is a vector quantity, with a
direction as well as a magnitude. Another ingredient is the charge density ρ, which is a scalar quantity,
again depending on position and time. There are various different ways in which we can differentiate a scalar
or vector quantity with respect to position or time to get another scalar or vector quantity. Three of the
most important are called the gradient (written grad(f) or ∇f), the divergence (div(u) or ∇ · u) and the
curl (curl(u) or ∇× u). A large part of our task will be to understand the geometric and physical meaning
of these operators, and their mathematical properties.

Next, in applications we do not just want to know the value of the electric potential or fluid pressure at
particular points; we also want to calculate bulk quantities like the total energy stored in the electric field
in a certain region, or the total flow of fluid through a pipe. To do these calculations, we need to perform
some kind of integral. In multivariable calculus we have several different kinds of integration to go along
with the several different kinds of differentiation. We can integrate along a curve, for example to find the
total magnetic force on a wire carrying a current. We can integrate a charge density over a curved surface
to find the total charge. We can perform a different kind of integral to find the total magnetic flux crossing
a curved surface. We can also integrate the square of the electric field strength over a three-dimensional
region to find the total energy. We will need to understand all these different kinds of integrals.
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With functions of one variable, there is a simple relationship between integration and differentiation,
expressed by the so-called Fundamental Theorem of Calculus:

∫ b

a

f ′(x) dx = f(b)− f(a).

In the multivariable context, the relationship is equally important but more complicated to describe. It is
encapsulated by results known as Stokes’s theorem and the Divergence theorem, which we will study at the
end of this course. As we will explain, they are not too hard to understand in the context of electromagnetism.

2. Optimisation

Often we have a function f of one or more variables, and we want to know the maximum and minimum
possible values of f . In section 2.1 we review the familiar case where there is only one variable. Later, our
main task will be to understand the more complicated case where there are two or more variables. This will
have many applications. For example, suppose we have some device involving strong electric fields, with the
field strength at each point (x, y, z) being given by a function E(x, y, z). If we want to know whether arcing
is likely to happen, we need to find the maximum value of E. For another kind of example, suppose we
have designed a circuit involving resistors R1, R2 and R3 and capacitors C1 and C2, and we want to choose
the values of these components to make the circuit work as well as possible. We first need to come up with
some kind of numerical measure Q of the quality of the circuit. This will depend on the component values,
so we can think of it as a function Q(R1, R2, R3, C1, C2), and the general theory of circuits should give us a
formula for this function. We then have the problem of finding values of Ri and Cj that make Q as large as
possible. This is an optimisation problem of the type that we will study in this course.

2.1. Optimisation in one variable. Given a function f(x), the critical points are the values of x where
f ′(x) = 0. Recall that f ′(x) is the slope of the graph at the point (x, f(x)), so the condition f ′(x) = 0 means
that the tangent line at that point is horizontal. In the picture below, a, b and c are critical points.

x

f(x)

a

(a, f(a))

b

(b, f(b))

c

(c, f(c))

In the simplest case, the maximum and minimum values of f(x) will occur at critical points. Indeed, if
f ′(x) > 0 then we can make f(x) larger by increasing x slightly, and if f ′(x) < 0 then we can make f(x)
bigger by decreasing x slightly. If f(x) is already as large as possible then neither of these cases can occur,
so we must have f ′(x) = 0. The same kind of argument works for the minimum.

In the picture below, the critical points are x = a and x = b. The maximum value of f(x) is p, which
occurs at x = a. The minimum value is q, which occurs at x = b.
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x

f(x)

a b

q = f(b)

p = f(a)

There are a number of wrinkles in this picture.

(a) The function f(x) need not have a maximum or minimum. For example, the function f(x) = x2 + 1
has a minimum (namely 1, which occurs at x = 0) but it does not have a maximum; it can be as
large as you like. The function f(x) = x3 has neither a maximum nor a minimum.

(b) More subtly, there are functions like f(x) = e−x
2

(which is important in statistics and also in the
theory of diffusion of heat). The maximum value of f(x) is one, which occurs at x = 0, which is the
only critical point. In a sense, the minimum value is zero. However, f(x) is never actually equal to
zero. Instead, it is always strictly positive, but it approaches zero arbitrarily closely when x is large.
Because of this, we cannot find the minimum value by looking for critical points.

x

e−x
2

(c) The function f(x) can have local maxima or minima that need not be global maxima or minima.
For example, consider the following picture:

x

f(x)

a b

The function has a local maximum at x = a, in the sense that f(a) ≥ f(x) for all x close to a.
However, this is not a global maximum, because there are points x far from x = a with f(x) > f(a).
For example, we have f(b) > f(a). Note that local maxima and minima are still critical points.

(d) If only a finite range of values of x is relevant (say u ≤ x ≤ v) then the maximum or minimum value
might occur at x = u or x = v even if these are not critical points. For example, in this picture the
minimum occurs at x = b (which is a critical point) but the maximum occurs at the endpoint x = v
(which is not a critical point).
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x

f(x)

u a b v

(e) If f(x) jumps discontinuously (for example f(x) = tan(x)) then the situation becomes much more
complex; we will not discuss it here. Similar remarks apply if f(x) does not have a well-defined
derivative. For example the function f(x) = |x| has f ′(x) = 1 for x > 0 and f ′(x) = −1 for x < 0
but f ′(0) is undefined.

Another important question is how to recognise whether a critical point is a (local) maximum or a
minimum. The simplest case is illustrated in the following picture:

x

f(x)

a b

f ′(x)<0 f ′(x)>0 f ′(x)<0

The function has a minimum at x = a. To the left of x = a the function is decreasing so f ′(x) < 0. To
the right of x = a the function is increasing so f ′(x) > 0. Thus, at x = a the function f ′(x) changes from
being negative to being positive, so f ′(x) is increasing at a, so f ′′(a) > 0. Similarly, f ′(x) switches from
being positive to negative at x = b, so f ′′(b) < 0. This is the usual situation: at a local minimum we have
f ′′ > 0, and at a local minimum we have f ′′ < 0. It can also happen that we have a critical point a where
f ′′(a) is zero (as well as f ′(a) being zero, which is true by definition for a critical point). In this case we
may have either a local minimum (as with f(x) = x4 at x = 0) or a local minimum (as with f(x) = −x4) or
neither (as with f(x) = x3). A critical point that is neither a local minimum nor a local maximum is called
an inflection point.

y = x4 y = −x4 y = x3
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Example 2.1. Suppose we want to understand the critical points of the function f(x) = (2x + 1)e−x
2

.
Using the product rule and the chain rule, we see that

d
dxe
−x2

= e−x
2 d
dx (−x2) = −2xe−x

2

f ′(x) = (2x+ 1) d
dxe
−x2

+ e−x
2 d
dx (2x+ 1) = −2x(2x+ 1)e−x

2

+ 2e−x
2

= −(4x2 + 2x− 2)e−x
2

.

Note that e−x
2

is never zero, so the critical points are just the roots of the quadratic 4x2 + 2x − 2, which
are x = −1 and x = 1/2. The values of f at these points are f(−1) = −1/e ' −0.37 < 0 and f(1/2) =

2e−1/4 ' 1.56 > 0. It is also a standard fact that e−x
2

decays very rapidly for large x, more than enough
to wipe out the growth of 2x + 1, so f(x) is small for large x. From this it follows that we have a global
maximum at x = 1/2 and a global minimum at x = −1. The picture is as follows:

x
−1

1/2

We could alternatively classify the critical points using the second derivative, as follows. We have

f ′′(x) = −e−x
2 d
dx (4x2 + 2x− 2)− (4x2 + 2x− 2) d

dx (e−x
2

)

= (−8x− 2)e−x
2

− (4x2 + 2x− 2)(−2x)e−x
2

= (8x3 + 4x2 − 12x− 2)e−x
2

.

This gives f ′′(−1) = 6e−1 > 0 and f ′′(1/2) = −6e−1/4 < 0, so there is a local minimum at x = −1 and a
local maximum at x = 1/2, as we have already seen.

Example 2.2. Consider instead the function f(x) = x4e−x for x ≥ 0. Note that f(x) ≥ 0 for all x. The
derivative is

f ′(x) = 4x3e−x − x4e−x = (4− x)x3e−x,

which is zero for x = 0 and x = 4, so these are the critical points. When 0 < x < 4 we see that all the terms
4−x, x3 and e−x are positive, so f ′(x) > 0, so f(x) is increasing. For x > 4 we have 4−x < 0 and the other
factors are still positive so f ′(x) < 0 and f(x) is decreasing. It follows that the minimum value of f(x) is
f(0) = 0, and the maximum value is f(4) = 44e−4 ' 4.69. The picture is as follows:

x
4
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Note also that

f ′′(x) = e−x
d

dx
(4x3 − x4) + (4x3 − x4)

d

dx
(e−x) = (12x2 − 8x3 + x4)e−x,

which gives f ′′(4) = −64e−4. This is negative, as we expect for a local maximum.

Example 2.3. Suppose we want to understand the critical points of the function f(x) = x5/5− x3/3. The
derivative is f ′(x) = x4 − x2 = x2(x2 − 1) = x2(x− 1)(x+ 1). The critical points are the values of x where
f ′(x) = 0, namely x = 0, x = 1 and x = −1. We can classify these by looking at the second derivative
f ′′(x) = 4x3 − 2x. We have f ′′(1) = 2 > 0, so there is a local minimum at x = 1. We have f ′′(−1) = −2, so
there is a local maximum at x = −1. We have f ′′(0) = 0, so it is not clear what happens at x = 0. However,
from the formula f ′(x) = x4−x2 we can see that f ′(x) ≤ 0 for −1 ≤ x ≤ 1, so f(x) is decreasing all through
that range, so x = 0 cannot be a local maximum or minimum; it must be an inflection point. Note also that
when x is large, the term x5/5 will be much bigger than x3/3 and so f(x) will be very large and positive.
Similarly, when x is large and negative, the same will be true of f(x). This means that there is no global
maximum or minimum. The picture is as follows:

x
−1 +1

Example 2.4. We now consider the function f(x) = πx− sin(πx). The first term πx increases linearly, and
the second term − sin(πx) adds an oscillating wiggle. You should be able to see that if we take a linearly
increasing function and add a small slow wiggle then the resulting function will still be strictly increasing
and so will not have any local maxima or minima. If instead we add a large fast wiggle then we will create
lots of local maxima and minima. Which of these cases applies to our function f(x)? To find out, we note
that the derivative is f ′(x) = π − π cos(πx) = π(1 − cos(πx)). It is standard that −1 ≤ cos(θ) ≤ 1 for all
θ, so f ′(x) ≥ 0. The critical points occur where f ′(x) = 0, or in other words, where cos(πx) = 1. It is also
also standard that cos(θ) is equal to one precisely when θ is a multiple of 2π, so cos(πx) = 1 precisely when
x is an even integer. In other words, the critical points are x = . . . ,−4,−2, 0, 2, 4, . . . . As f ′(x) ≥ 0 for
all x we see that none of these can be local maxima or minima. Another way to see this is to observe that
f ′′(x) = π2 sin(πx), and this is zero whenever x is an even integer. The picture is as follows:

x−2 0 +2
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We are just on the boundary between the two cases that we mentioned previously. If we added a wiggle that
was any smaller, we would not have any critical points. If we added a wiggle that was any larger, we would
have local maxima and minima.

Example 2.5. Functions of the form f(t) = e−λt sin(ωt) represent oscillations that die down over time,
so they occur very frequently in physics and engineering. The function sin(ωt) has local maxima at t =
(2n + 1

2 )π/ω and local minima at t = (2n − 1
2 )π/ω. If the oscillations are reasonably fast relative to the

decay then f(t) will have local maxima and minima close to those of sin(ωt), but shifted slightly.

x

We can find an exact formula as follows. We have

f ′(t) = −λe−λt sin(ωt) + e−λtω cos(ωt),

so f ′(t) = 0 when λe−λt sin(ωt) = e−λtω cos(ωt), which can be rearranged as tan(ωt) = ω/λ. The obvious
solution is to take ωt = arctan(ω/λ) so t = arctan(ω/λ)/ω. More generally, as tan(θ) is a periodic function
of period π it is also valid to take ωt = nπ + arctan(ω/λ) for any integer n, so the critical points are the
numbers tn = (nπ+ arctan(ω/λ))/ω. Note that if the decay is slow relative to the oscillations then ω/λ will
be large, so arctan(ω/λ) will be close to π/2, so tn ' (n+ 1

2 )π/ω. This means that t2n is close to the local

maximum of sin(ωt) at (2n+ 1
2 )π/ω, and t2n−1 is close to the local minimum at (2n− 1

2 )π/ω, as expected.

2.2. Reminder on partial derivatives. Throughout this course we will be considering functions of several
variables, such as u = x2y + y3z for example. Such a function can be differentiated with respect to any of
the variables involved. If we treat y and z as constants and differentiate u with respect to x, we just get

∂u

∂x
= 2xy.

If instead we hold x and z constant and differentiate with respect to y we get

∂u

∂y
= x2 + 3y2z.

Finally, we can hold x and y constant and differentiate with respect to z to get

∂u

∂z
= y3.

We have followed the usual practice of writing ∂u/∂x rather than du/dx and so on to indicate that u
depends on other variables as well as x. We call these functions the partial derivatives of u. We can interpret
them as measures of the sensitivity of u to small changes in x, y and z. More precisely, if we change x, y
and z by small amounts δx, δy and δz then the resulting change δu in u is approximately given by

δu ' ∂u

∂x
δx+

∂u

∂y
δy +

∂u

∂z
δz.

Recall that in the single variable case, there are two different kinds of notation in common use. We can
either write things like u = x3 and du/dx = 3x2, or we can write f(x) = x3 and f ′(x) = 3x2. In the case
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of several variables we need some way of indicating which of the different partial derivatives we want, so we
cannot simply use a dash. The usual convention is to write ux or ux(x, y, z) for ∂u/∂x, and so on.

In the single variable case, we often need to consider the second derivative u′′, obtained by taking the
first derivative u′ and differentiating it again. When there are several variables, there are several different
iterated derivatives, such as uxx, uxy, uyx and uyy. In the other notation these would be written as ∂2u/∂x2,
∂2u/∂y∂x, ∂2u/∂x∂y and ∂2u/∂y2. If we differentiate with respect to two different variables, it turns out
not to matter which one we do first. In symbols, of u is a function of x and y (and possibly some other
variables as well) then uxy = uyx, or ∂2u/∂y∂x = ∂2u/∂x∂y. For example, if we take u = x2y + y3z then
we have seen that

ux = 2xy uy = x2 + 3y2z uz = y3.

To find uyx we differentiate the function uy = x2 + 3y2z with respect to x, treating y and z as constants.
This gives uyx = 2x. We can calculate the other double derivatives in the same way, giving the following
table:

uxx = 2y uyx = 2x uzx = 0

uxy = 2x uyy = 6yz uzy = 3y2

uxz = 0 uyz = 3y2 uzz = 0.

We find that uxy = uyx, uxz = uzx and uyz = uzy as expected. We can collect these answers together as a
matrix:

H =

uxx uyx uzx
uxy uyy uzy
uxz uyz uzz

 =

2y 2x 0
2x 6yz 3y2

0 3y2 0

 .
This is called the Hessian matrix for u. The fact that uxy = uyx and so on means that it is a symmetric
matrix.

Many of the most important mathematical relationships in physics and engineering can be expressed as
equations relating partial derivatives of various functions. For example, Maxwell’s equations for electromag-
netic fields are of this type, as are the Navier-Stokes equations for fluid flow.

Example 2.6. Suppose we have a voltage V across a resistor R; then the power dissipated in the resistor
is P = V 2/R. If we treat R as a constant and let V vary, the derivative is

PV =
∂P

∂V
= 2V/R.

If instead we treat V as a constant and let R vary, we get

PR =
∂P

∂R
= −V 2/R2.

We can now calculate PV V by looking at PV = 2V/R, treating R as a constant and differentiating with
respect to V again. The result is just PV V = 2/R. Similarly, we can calculate PRR by looking at PR =
−V 2/R2, treating V as a constant and differentiating again with respect to R. The result is PRR = 2V 2/R3.
For the mixed derivatives, we can calculate PV R by differentiating PV = 2V/R with respect to R to get
PV R = −2V/R2. Alternatively, we can differentiate PR = −V 2/R2 with respect to V to get PRV = −2V/R2.
As expected, we have PV R = PRV . In summary, we have

PV V =
∂2P

∂V 2
= 2/R

PRR =
∂2P

∂R2
= 2V 2/R3

PV R = PRV =
∂2P

∂V ∂R
=

∂2P

∂R∂V
= −2V/R2.
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Example 2.7. Consider the function u = a+ ab2 + ab2c3. We have

ua = 1 + b2 + b2c3

ub = 2ab+ 2abc3

uc = 3ab2c2

uaa = 0

uab = uba = 2b+ 2bc3

uac = uca = 3b2c2

ubb = 2a+ 2ac3

ubc = ucb = 6abc2

ucc = 6ab2c.

The Hessian is therefore

H =

 0 2b+ 2bc3 3b2c2

2b+ 2bc3 2a+ 2ac3 6abc2

3b2c2 6abc2 6ab2c

 .
Example 2.8. Consider the function f(x, y, z) = ln(ax + by + cz), where a, b and c are constants. Using
the chain rule, we obtain

fx(x, y, z) = ln′(ax+ by + cz)
∂

∂x
(ax+ by + cz) =

a

ax+ by + cz

fy(x, y, z) = ln′(ax+ by + cz)
∂

∂y
(ax+ by + cz) =

b

ax+ by + cz

fz(x, y, z) = ln′(ax+ by + cz)
∂

∂z
(ax+ by + cz) =

c

ax+ by + cz
.

For the second derivatives, we have

fxy(x, y, z) =
∂

∂y
fx(x, y, z) =

∂

∂y

(
a

ax+ by + cz

)
=

−a
(ax+ by + cz)2

∂

∂y
(ax+ by + cz) =

−ab
(ax+ by + cz)2

.

Proceeding in the same way, we see that

fxx(x, y, z) =
−a2

(ax+ by + cz)2
fxy(x, y, z) =

−ab
(ax+ by + cz)2

fxz(x, y, z) =
−ac

(ax+ by + cz)2

fyx(x, y, z) =
−ab

(ax+ by + cz)2
fyy(x, y, z) =

−b2

(ax+ by + cz)2
fyz(x, y, z) =

−bc
(ax+ by + cz)2

fzx(x, y, z) =
−ac

(ax+ by + cz)2
fzy(x, y, z) =

−bc
(ax+ by + cz)2

fzz(x, y, z) =
−c2

(ax+ by + cz)2

This means that the Hessian matrix is

H =
−1

(ax+ by + cz)2

a2 ab ac
ab b2 bc
ac bc c2

 .
Example 2.9. Consider a function of the form f(x, y) = u(x) + v(y). Here we just

fx(x, y) = u′(x) fy(x, y) = v′(y)

fxx(x, y) = u′′(x) fxy(x, y) = 0 fyy(x, y) = v′′(y).

This means that the Hessian is

[
u′′(x) 0

0 v′′(y)

]
.
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Consider instead a function of the form g(x, y) = u(x)v(y). Here we have

gx(x, y) = u′(x)v(y) gy(x, y) = u(x)v′(y)

gxx(x, y) = u′′(x)v(y) gxy(x, y) = u′(x)v′(y) gyy(x, y) = u(x)v′′(y).

This means that the Hessian is

[
u′′(x)v(y) u′(x)v′(y)
u′(x)v′(y) u(x)v′′(y)

]
.

2.3. Optimisation with two variables. Now suppose we have a function of two variables, say f(x, y).
We say that a point (a, b) is a critical point of f if fx(a, b) = fy(a, b) = 0.

Example 2.10. Consider the function f(x, y) = 2x2 + 2xy − 6x+ y2 − 4y + 5. We have

fx(x, y) = 4x+ 2y − 6

fy(x, y) = 2x+ 2y − 4.

Thus, for (a, b) to be a critical point, we must have 4a + 2b − 6 = 0 and 2a + 2b − 4 = 0. By subtracting
these two equations we get 2a − 2 = 0, so a = 1, and we can substitute this back into the first equation to
get b = 1 as well. This means that there is precisely one critical point, namely (1, 1).

The key fact about critical points is that if f has a local maximum or a local minimum at (a, b), then
(a, b) is a critical point. To see why, recall that if we make small changes to x and y, the resulting change in
f is approximately fx.δx+ fy.δy. If fx or fy is nonzero then by choosing δx and δy with the same sign as fx
and fy we can arrange to have δf > 0. However, if we are already at a local maximum then it is impossible
to increase f by a small change in x and y. The only way this can be consistent is if fx = fy = 0 at the local
maximum. Essentially the same argument works for minima.

In the previous section we listed a number of issues that complicate the relationship between critical
points and maxima/minima, in the case of a single variable. There are similar issues in the case of two
variables, plus some extra ones. Although these points are important, we will not discuss them very much
here. Instead, we will focus on finding and classifying critical points.

The main new ingredient is that we can have saddle points as well as local maxima and minima.

maximum saddle point minimum

At a saddle point we have a local maximum in some directions and a local minimum in other directions.
In the one variable case we can classify critical points by looking at the sign of the second derivative. In

the two variable case, the analogous criterion involves the Hessian matrix

H =

[
fxx fxy
fxy fyy

]
.

The criterion can be stated in terms of the eigenvalues of H or in terms of the entries of H. The first version
is more precise and more illuminating, but computationally less efficient. We will state both versions but we
will work mainly with the second one.

Method 2.11. Let (a, b) be a critical point of f(x, y), and let H be the Hessian matrix at (a, b). Let s and t
be the eigenvalues of H. Then s and t are always real numbers; there is never an imaginary part. Moreover:
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(a) If s, t < 0 then we have a local maximum at (a, b).
(b) If s < 0 < t or t < 0 < s then we have a saddle point at (a, b).
(c) If 0 < s, t then we have a local minimum at (a, b).
(d) If one of s and t is zero, then there are many possibilities, and we will not consider them further.

This situation rarely occurs in practice.

Method 2.12. Alternatively, we can put A1 = fxx(a, b) and

A2 = det(H) = det

[
fxx(a, b) fxy(a, b)
fxy(a, b) fyy(a, b)

]
= fxx(a, b)fyy(a, b)− fxy(a, b)2.

(a) If A1 < 0 and A2 > 0 then we have a local maximum at (a, b).
(b) If A2 < 0 then we have a saddle point at (a, b).
(c) If A1 > 0 and A2 > 0 then we have a local minimum at (a, b).
(d) If A2 = 0, then there are many possibilities, and we will not consider them further. This situation

rarely occurs in practice.

Example 2.13. Consider the function f(x, y) = x3 + 3xy + y3. The derivatives are

fx(x, y) = 3x2 + 3y fy(x, y) = 3x+ 3y2

fxx(x, y) = 6x fxy(x, y) = 3 fyy(x, y) = 6y.

Thus, the critical points are the points (a, b) where 3a2 + 3b = 0 and 3a+ 3b2 = 0, or equivalently b = −a2
and a = −b2. Substituting the first of these in the second gives a = −a4, so a4 + a = 0, so (a3 + 1)a = 0.
This can only happen if a = −1 (in which case b = −a2 = −1) or a = 0 (in which case b = −a2 = 0). Thus,
there are two critical points, namely p = (−1,−1) and q = (0, 0). The Hessian matrix is H =

[
6x 3
3 6y

]
, so

A1 = 6x and the determinant is A2 = 36xy − 9 = 9(4xy − 1). At p we have A1 = −6 < 0 and A2 = 27 > 0
so we are in case (a) of method 2.12 and we have a local maximum. At q we have A1 = 0 and A2 = −9 < 0
so we are in case (b) so we have a saddle point. We can display this graphically as follows:

The picture on the left shows the surface z = f(x, y). The one on the right is the corresponding contour
plot, which is what you would see by looking vertically downwards at the picture on the left.

Example 2.14. Consider the function

f(x, y) = 3x2 + 3y2 + 2xy(x+ y) = 3x2 + 3y2 + 2x2y + 2xy2.

The derivatives are

fx(x, y) = 6x+ 4xy + 2y2 fy(x, y) = 6y + 4xy + 2x2

fxx(x, y) = 6 + 4y fxy(x, y) = 4x+ 4y fyy = 6 + 4x.

11



Thus, the critical points are the points (a, b) where 6a+ 4ab+ 2b2 = 0 and 6b+ 4ab+ 2a2 = 0. If we subtract
these two equations we get 6a− 6b+ 2b2− 2a2 = 0, which factors as 2(a− b)(3−a− b) = 0. This means that
either a = b or 3 − a − b = 0. If a = b then our equations become 6a + 6a2 = 0, so a(a + 1) = 0, so a = 0
or a = −1. We now see that there are critical points at p0 = (0, 0) and p1 = (−1,−1). Suppose instead that
3− a− b = 0, so b = 3− a. In this case we have

0 = 6a+ 4ab+ 2b2 = 6a+ 4a(3− a) + 2(3− a)2

= 6a+ 12a− 4a2 + 2(9− 6a+ a2) = −2a2 + 6a+ 18.

By the standard quadratic formula this happens for a = 3(1 ±
√

5)/2, and because b = 3 − a this gives

b = 3(1∓
√

5)/2. We therefore have two more critical points:

p2 = (3(1 +
√

5)/2, 3(1−
√

5)/2)

p3 = (3(1−
√

5)/2, 3(1 +
√

5)/2).

Example 2.15. Consider the function f(x, y) = sin(x) sin(y). The derivatives are

fx(x, y) = cos(x) sin(y) fy(x, y) = sin(x) cos(y)

fxx(x, y) = − sin(x) sin(y) fxy(x, y) = cos(x) cos(y) fyy(x, y) = − sin(x) sin(y).

For fx to be zero, we must have either cos(x) = 0 or sin(y) = 0. For fy to be zero, we must have either
sin(x) = 0 or cos(y) = 0. At a critical point, both fx and fy must be zero, so we have one of the following
four cases:

(p) cos(x) = sin(x) = 0
(q) cos(x) = cos(y) = 0
(r) sin(y) = sin(x) = 0
(s) sin(y) = cos(y) = 0.

However, case (p) cannot actually happen, because cos(x)2+sin(x)2 is always equal to one. Similarly, case (s)
cannot happen because cos(y)2 + sin(y)2 is always equal to one.

In case (r) we have x = nπ and y = mπ for some integers n and m, and f(x, y) = sin(nπ) sin(mπ) = 0.
After noting that cos(kπ) = (−1)k we see that the Hessian matrix is

H =

[
− sin(nπ) sin(mπ) cos(nπ) cos(mπ)
cos(nπ) cos(mπ) − sin(nπ) sin(mπ)

]
=

[
0 (−1)n+m

(−1)n+m 0

]
.

Thus, in Method 2.12 we have A1 = 0 and

A2 = 0× 0− (−1)n+m × (−1)n+m = −1,

so there is a saddle point at (nπ,mπ)
Similarly, in case (q) we have x = (n + 1

2 )π and y = (m + 1
2 )π for some n and m. From the graph of

sin(x) we can observe that sin((n+ 1
2 )π) = (−1)n, so in these cases we have

f(x, y) = sin((n+ 1
2 )π) sin((m+ 1

2 )π) = (−1)n+m.

The Hessian matrix is

H =

[
− sin((n+ 1

2 )π) sin((m+ 1
2 )π) cos((n+ 1

2 )π) cos((m+ 1
2 )π)

cos((n+ 1
2 )π) cos((m+ 1

2 )π) − sin((n+ 1
2 )π) sin((m+ 1

2 )π)

]
=

[
(−1)n+m+1 0

0 (−1)n+m+1

]
.

This gives A1 = (−1)n+m+1 and

A2 = (−1)n+m+1 × (−1)n+m+1 − 0× 0 = 1.
12



If n + m is even then A1 = −1 < 0 so we have a local maximum (and in fact f = 1). If n + m is odd then
A1 = 1 > 0 so we have a local minimum (and in fact f = −1).

Example 2.16. Consider the function f(x, y) = e−x
2−y2−2y. By the chain rule we have fx(x, y) =

−2xe−x
2−y2−2y. The second factor here is just f(x, y) again, and it is convenient to write it that way,

so that fx = −2xf . For the second derivative we then get

fxx = (−2xf)x = (−2x)x f + (−2x) fx

= −2f + (−2x) (−2x)f = (4x2 − 2)f.

If we write all the other derivatives in terms of f in the same way we get

fx = −2xf fy = (−2y − 2)f

fxx = (4x2 − 2)f fxy = (4xy + 4x)f fyy = (4y2 + 8y + 2)f.

Note that f itself is never zero, so for fx = −2xf to be zero we must have −2x = 0 or in other words
x = 0. Similarly, for fy to be zero we must have (−2y − 2)f = 0 and so y = −1. Thus, there is only one
critical point, namely p = (0,−1). At this critical point we have −x2 − y2 − 2y = −(0)2 − (−1)2 + 2 = 1 so
f = e1 = e. The Hessian matrix is

H =

[
4x2 − 2 4xy + 4x

4xy + 4x 4y2 + 8y + 2

]
f =

[
−2e 0

0 −2e

]
.
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In Method 2.12 we therefore have A1 = −2e < 0 and A2 = 4e2 > 0 so there is a local maximum.

2.4. Functions of three or more variables. If f is a function of several variables, then the maximum
value of f (if there is one) will occur at a point where the partial derivatives with respect to all those variables
are zero. The same condition will hold for the minimum value. For example, if f is a function of x, y and
z, then the maximum and minimum will occur at a point where fx = fy = fz = 0.

It is again possible to classify critical points using the Hessian. In the three variable case, the Hessian
matrix is

H =

fxx fxy fxz
fyx fyy fyz
fzx fzy fzz


In terms of eigenvalues, we can say the following:

Method 2.17. Let p = (a, b, c) be a critical point of f(x, y, z). Then all the eigenvalues of H at p are real.

(a) If all the eigenvalues are positive, then f has a local minimum at p.
(b) If all the eigenvalues are negative, then f has a local maximum at p.
(c) If some some eigenvalues are positive and some are negative, then we have something like a saddle

point. In particular, we definitely do not have a local maximum or local minimum.
(d) If one or more eigenvalues is zero, then there are various possibilities that we will not explore further.

All this works in the same way if there are more than three variables.

There is also an alternative method involving determinants.

Method 2.18. Let p = (a, b, c) be a critical point of f(x, y, z). Put

A1 = fxx A2 = det

[
fxx fxy
fyx fyy

]
A3 = det

fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

 ,
with everything evaluated at p.

(a) If A1 > 0, A2 > 0 and A3 > 0 then f has a local minimum at p.
(b) If A1 < 0, A2 > 0 and A3 < 0 then f has a local maximum at p.
(c) If A1, A2 and A3 are nonzero but the pattern of signs is not as in (a) or (b), then we have something

like a saddle point. In particular, we definitely do not have a local maximum or local minimum.
(d) If A1 = 0 or A2 = 0 or A3 = 0, then there are various possibilities that we will not explore further.
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All this generalises in a straightforward way if there are more than three variables. We take Ak to be the
determinant of the top left k × k block in the Hessian matrix. If all the numbers Ak are positive we have a
local minimum, and if all the numbers (−1)kAk are positive then we have a local maximum.

Example 2.19. Consider the function f(x, y, z) = 8(x2 + y2 + z2) − (z + 1)3. The first derivatives are
fx = 16x and fy = 16y and

fz = 16z − 3(z + 1)2 = 16z − 3z2 − 6z + 3 = 3 + 10z − 3z2 = (z − 3)(1− 3z).

This means that the critical points are where x = y = 0 and (z − 3)(3z − 1) = 0, so z = 3 or z = 1/3. The
Hessian matrix is

H =

fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

 =

16 0 0
0 16 0
0 10− 6z

 ,
so

A1 = 16 A2 = 256 A3 = 256(10− 6z).

At (0, 0, 1/3) we get A3 = 1024 so A1, A2 and A3 are all positive, so we have a local minimum. At (0, 0, 3)
we have A3 = −1024 so we are in case (c) of Method 2.18 and we have some kind of saddle.

3. Constrained optimisation

Often we want to find the maximum or minimum value of a function f(x, y), where x and y cannot vary
independently, but are linked by some kind of constraint, which we can write in the form g(x, y) = 0 for
some other function g.

Example 3.1. We might want to find the closest point to the origin on the line with equation 3x+ 4y = 5.
This amounts to minimising the function f(x, y) = x2 + y2 (the squared distance from the origin) subject
to the constraint g(x, y) = 0, where g(x, y) = 3x+ 4y − 5.

Example 3.2. Suppose we want to make a metal tank of volume 4m3. It will have length x, width y and
height z (measured in metres), and it will have a base but no top, so there are five panels altogether, of
areas xy, xz, xz, yz and yz. The total area of metal sheet that we need is thus f(x, y, z) = xy + 2xz + 2yz
(in square metres). As the volume needs to be 4m3, the function g(x, y, z) = xyz − 4 must be zero. To use
as little metal as possible, we should minimise f subject to the constraint g = 0.

Method 3.3. To maximise f(x, y, . . . ) subject to the constraint g(x, y, . . . ) = 0, simply find the uncon-
strained maximum of the function

L(λ, x, y, . . . ) = f(x, y, . . . )− λg(x, y, . . . )

and ignore the value of λ. The extra parameter λ is called a Lagrange multiplier.

We now explain in outline why this is usually valid. (If we were more careful we would discover that
certain technical conditions are needed for the method to work, but we will not explore this in detail here.
The conditions involved are usually satisfied.) We will focus on the case where we have just two variables
(x and y); extra variables do not change the picture in any essential way. The solutions of g(x, y) = 0 will
then form a curve in the plane, called the constraint curve. Note that

Lλ(λ, x, y) = −g(x, y)

Lx(λ, x, y) = fx(x, y)− λgx(x, y)

Ly(λ, x, y) = fy(x, y)− λgy(x, y).

At a critical point of L, we must therefore have g(x, y) = 0 (so we are on the constraint curve) and fx = λgx
and fy = λgy. Now suppose we change x and y slightly, by δx and δy say, while leaving λ fixed. The
resulting changes in f , g and h will be

δf ' δx.fx + δy.fy

δg ' δx.gx + δy.gy

δh ' δx.Lx + δy.Ly = δx.(fx − λgx) + δy.(fy − λgy)

= δf − λδg.
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As (λ, x, y) is assumed to be a critical point of h, we have δh = 0, or equivalently δh = λ δg. This works for
all small changes (δx, δy), including those that move us off the constraint curve. We are mostly interested in
changes that keep us on the constraint curve, which means that g remains equal to zero, so δg = 0. For such
changes the equation δf = λ δg becomes δf = 0. This means that (x, y) is a critical point for the variation
of f along the constraint curve, so it will probably be a local maximum or minimum.

To understand this in another way, we can imagine a landscape where the height of the land at position
(x, y) is given by f(x, y). We can then think of the constraint curve as tracing out a road through this
landscape. In this context, maximising f subject to g = 0 means finding the highest point on the road. Note
that if the road is crossing the contours, then we can increase f by driving forwards or backwards a little, so
we cannot already have the maximum possible value of f . Thus, to find the maximum, we need to look for
places where the road is running along the contours, not crossing them. The normal vector to the contour

through (a, b) is

[
fx(a, b)
fy(a, b)

]
, and the normal vector to the road is

[
gx(a, b)
gy(a, b)

]
. If the road is running along the

contour then these two vectors will be multiples of each other, say

[
fx
fy

]
= λ

[
gx
gy

]
at (a, b). This means that

Lx(λ, a, b) = Ly(λ, a, b) = 0, and as we are on the road we also have Lλ(λ, a, b) = g(a, b) = 0. This means
that (λ, a, b) is a critical point of L, as expected.

The image on the left shows the surface z = f(x, y) as a grey mesh. The constraint curve where g(x, y) = 0
is shown in blue in the xy-plane. The curve on the surface lying directly above it is in red. The problem is
to find the highest and lowest points on the red curve. The image on the right is what we see when looking
vertically downwards at the image on the left. The highest and lowest points are marked with crosses. These
are where the red curve is tangent to the contours.

Example 3.4. In Example 3.1, we wanted to minimise f(x, y) = x2 + y2 subject to the constraint g(x, y) =
3x+ 4y − 5 = 0. To do this, we need to find the unconstrained minimum of the function

L(λ, x, y) = x2 + y2 − λ(3x+ 4y − 5).

The critical points are the places where the following partial derivatives are zero:

Lλ(λ, x, y) = −g(x, y) = −3x− 4y + 5

Lx(λ, x, y) = 2x− 3λ

Ly(λ, x, y) = 2y − 4λ.

The equations 2x − 3λ = 2y − 4λ = 0 give x = 3λ/2 and y = 2λ. Substituting these into the equation
3x+ 4y − 5 = 0 gives 9λ/2 + 8λ = 5, which simplifies to λ = 2/5. Substituting this back into x = 3λ/2 and
y = 2λ gives (x, y) = (3/5, 4/5). At this point we have f(x, y) = (3/5)2 + (4/5)2 = (9 + 16)/25 = 1. We
conclude that the minimum value of f is 1, and that this occurs at the point (3/5, 4/5).
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(3/5, 4/5)

3x+ 4y − 5 = 0

Example 3.5. In Example 3.2 we wanted to minimise f(x, y, z) = xy+ 2xz+ 2yz subject to the constraint
g(x, y, z) = xyz − 4 = 0. To do this, we need to find the unconstrained minimum of the function

L(λ, x, y, z) = xy + 2xz + 2yz − λ(xyz − 4).

The critical points are the places where the following partial derivatives are zero:

Lλ(λ, x, y, z) = −g(x, y, z) = 4− xyz
Lx(λ, x, y, z) = y + 2z − λyz
Ly(λ, x, y, z) = x+ 2z − λxz
Lz(λ, x, y, z) = 2x+ 2y − λxy.

We can rearrange these equations as follows:

xyz = 4 (A)

z−1 + 2y−1 = λ (B)

z−1 + 2x−1 = λ (C)

2y−1 + 2x−1 = λ. (D)

By subtracting equations (B) and (C) we see that y−1 = x−1, so x = y. After substituting this in (D) we
get 4x−1 = 4y−1 = λ, so x = y = 4/λ. We can then substitute this in (C) to get z−1 + λ/2 = λ, so z = 2/λ.
Now (A) becomes (4/λ)(4/λ)(2/λ) = 4, so 32 = 4λ3, so λ = (32/4)1/3 = 2. This gives x = 4/λ = 2, and
similarly y = 2 and z = 1. For these values of x, y and z we have f(x, y, z) = f(2, 2, 1) = 12. Thus, the most
efficient design is to make the dimensions of the tank 2 × 2 × 1 metres, and we then need 12m2 of metal
sheet.

(Note, incidentally, that in our initial rearrangement we divided the equation y + 2z − λyz = 0 by yz to
get z−1 + 2y−1 = λ. This would not be valid if yz were zero. Fortunately, yz cannot be zero, because we
have xyz = 4. You should be careful to check this kind of thing when dividing.)

Example 3.6. Suppose we want to maximise f(x, y) = x+ y subject to the constraint x2/a+ y2/b = 1 (for
some constants a, b > 0). Here we must take g(x, y) = x2/a+ y2/b− 1 and so

L(λ, x, y) = x+ y − λ(x2/a+ y2/b− 1).
17



The critical points are the places where the following partial derivatives are zero:

Lλ(λ, x, y) = g(x, y) = x2/a+ y2/b− 1

Lx(λ, x, y) = 1− 2xλ/a

Ly(λ, x, y) = 1− 2yλ/b.

The equations 1− 2xλ/a = 1− 2yλ/b = 0 give x = a/(2λ) and y = b/(2λ). We can substitute these values
in the equation x2/a + y2/b = 1 to get a/(4λ2) + b/(4λ2) = 1, which can be rearranged as λ2 = (a + b)/4,
so λ = ±

√
a+ b/2. As x = a/(2λ) and y = b/(2λ) we get

(x, y) = ±
(

a√
a+ b

,
b√
a+ b

)
.

For these points we have
f(x, y) = x+ y = ±(a+ b)/

√
a+ b = ±

√
a+ b.

This means that the maximum possible value of f (subject to the constraint) is
√
a+ b, and the minimum

is −
√
a+ b.

This can be illustrated as follows:

g(x, y) = 0

f(x, y) =
√
a+ b

f(x, y) = −
√
a+ b

(a/
√
a+ b, b/

√
a+ b)

We now consider the problem of optimisation when there are several constraints.

Method 3.7. To find the maximum and minimum values of f(x, y, . . . ) subject to two constraints g = 0
and h = 0, we find the unconstrained critical points of the function

L(λ, µ, x, y, . . . ) = f(x, y, . . . )− λg(x, y, . . . )− µh(x, y, . . . )

(and then ignore the values of λ and µ). More generally, if there are constraints g1 = 0, . . . , gr = 0 then we
use

L(λ1, . . . , λr, x, y, . . . ) = f(x, y, . . . )−
r∑
i=1

λigi(x, y, . . . ).

Example 3.8. Suppose we want to maximise z subject to the constraints x2+y2+z2 = 9 and x+2y+4z = 3.
For this we need the unconstrained critical points of the function

L = z − λ(x2 + y2 + z2 − 9)− µ(x+ 2y + 4z − 3).

The partial derivatives Lλ, Lµ, Lx, Ly and Lz must all be zero, which gives the following equations:

x2 + y2 + z2 = 9 (A)

x+ 2y + 4z = 3 (B)

−2λx− µ = 0 (C)

−2λy − 2µ = 0 (D)

1− 2λz − 4µ = 0. (E)
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These equations are sufficiently complex that in practice you would probably use a computer to solve them.
Nonetheless, it is possible to explain the solution by hand, as follows. We first multiply equation (C) by x,
and equation (D) by y, and equation (E) by z, and add them together to get

z − 2λ(x2 + y2 + z2)− µ(x+ 2y + 4z) = 0.

We can now substitute equations (A) and (B) in this to get

z − 18λ− 3µ = 0. (F)

Alternatively, we can add equation (C) to 2 times equation (D) and 4 times equation (E) to get

4− 2λ(x+ 2y + 4z)− 21µ = 0.

We can now substitute equation (B) in this to get 4− 6λ− 21µ = 0, so

λ = 7
2µ−

2
3 . (G)

Subtracting 3 times (G) from (F) gives

z = 12− 60µ. (H)

If we substitute (G) and (H) in (E) and expand out, we get −15 + 160µ− 420µ2 = 0. Solving this quadratic
equation in the usual way, we get µ = 1/6 or µ = 3/14. If µ = 1/6 then (G) and (H) become λ = 1/12 and
z = 2. After substituting these values into (C) and (D) we get x = −1 and y = −2. Thus, we have a critical
point of L at

(λ, µ, x, y, z) = (1/12, 1/6,−1,−2, 2).

On the other hand, if µ = 3/14 then (G) and (H) become λ = −1/12 and z = −6/7. After substituting
these into (C) and (D) we get x = 9/7 and y = 18/7. Thus, we have a critical point of L at

(λ, µ, x, y, z) = (−1/12, 3/14, 9/7, 18/7,−6/7).

Thus, the maximum value of z is 2 (at the first critical point) and the minimum is −6/7 (at the second
critical point).

Geometrically, the constraint x2 + y2 + z2 = 9 corresponds to a sphere of radius three around the origin,
and the constraint x+ 2y + 4z = 3 corresponds to a plane that cuts through the sphere. We are interested
in points (x, y, z) where both constraints hold. These lie on the intersection of the sphere with the plane,
which is the sloping circle in the picture on the left below. The picture on the right shows the same circle
together with the planes z = −6/7 and z = 2, showing that these are indeed the maximum and minimum
values of z on the curve.
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4. Multiple integrals

4.1. Integrals over plane regions. Let D be a region in the plane, and let f(x, y) be a function defined
for points (x, y) in D. We define the integral

∫∫
D
f(x, y)dA as follows. First, we divide the region D into a

large number of small regions D1, . . . , Dn. As each region Di is small, the value of f will not change much
as we move around Di, so it makes approximate sense to talk about the value of f on Di as a single number.
The integral is approximately defined by

∫∫
D

f(x, y) dA =

N∑
i=1

( value of f on Di )× ( area of Di).

To get the exact value, we divide D into a larger and larger number of smaller and smaller pieces, and then
pass to the limit. It takes considerable work to formulate this in a precise and rigorous way, but this general
idea will be sufficient for our purposes.

Some applications of this kind of integration are as follows.

(a) Suppose that the region D is a charged plate, and that the charge density at a point (x, y) is q(x, y);
then the total charge is Q =

∫∫
D
q(x, y) dA.

(b) Suppose that the region D represents a structure of constant density ρ and vertical thickness
f(x, y) attached to an axle passing vertically through the origin. Then the mass of the structure is∫∫
D
ρf(x, y) dA, whereas the moment of inertia (which measures the difficulty of turning the axle)

is
∫∫
D
ρf(x, y)(x2 + y2)dA.

(c) Suppose that the region D represents a large solar cell, with the brightness of light arriving at (x, y)
being given by the function f(x, y). Then the total incident power on the cell will be (a constant
times)

∫∫
D
f(x, y) dA.

(d) The total area of a region D is just
∫∫
D

1 dA.
(e) Suppose we have a solid region E in three-dimensional space. Often E can be described as follows:

there is a two-dimensional region D that is the shadow of E in the (x, y)-plane, and the vertical line
through (x, y) meets E at height f(x, y) and leaves it at height g(x, y) say. The total volume of E
is then

∫∫
D
g(x, y)− f(x, y) dA.

In the simplest case, the region D is a rectangle aligned with the axes, given by a ≤ x ≤ b and c ≤ y ≤ d
say. In this case we can just divide the horizontal interval [a, b] into small intervals of length δx, and divide
the vertical interval [c, d] into small intervals of length δy. This divides D into small rectangles of area
δA = δx.δy.

a b

c

d

δx

δy
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Using this kind of subdivision, we see that the area integral is just obtained by integrating with respect to
both variables x and y: ∫∫

D

f(x, y) dA =

∫ b

x=a

(∫ d

y=c

f(x, y) dy

)
dx.

Example 4.1. Let D be the rectangle where 0 ≤ x ≤ 2 and 0 ≤ y ≤ 3. Then∫∫
D

x3 + y2 dA =

∫ 2

x=0

(∫ 3

y=0

x3 + y2 dy

)
dx

In the inner integral, we treat x as a constant and y as a variable. This gives∫ 3

y=0

x3 + y2 dy =

[
x3y + y3/3

]3
y=0

= (3x3 + 27/3)− (0) = 3x3 + 9.

The meaning of this intermediate result is as follows: if we take a thin strip running horizontally from
x to x + δx, and vertically all the way from 0 to 3, then the sum of the corresponding contributions is
approximately (3x3 + 9)δx (and the approximation becomes exact in the limit as δx→ 0).

2

3

x x+δx

We can now perform the outer integral to add up the contributions from all such vertical strips.∫ 2

x=0

3x3 + 9 dx =

[
3x4/4 + 9x

]2
x=0

= (12 + 18)− (0) = 30.

The conclusion is that
∫∫
D
x3 + y2 dA = 30.

Example 4.2. Let D be the square where 0 ≤ x ≤ π and −π/2 ≤ y ≤ π/2. Then∫∫
D

sin(x) cos(y) dA =

∫ π

x=0

(∫ π/2

y=−π/2
sin(x) cos(y) dy

)
dx.

In the inner integral, we treat x as a constant and y as a variable. This gives∫ π/2

y=−π/2
sin(x) cos(y) dy = sin(x)

[
sin(y)

]π/2
y=−π/2

= sin(x)(1− (−1)) = 2 sin(x).

Again, this means that the contribution coming from a vertical strip of width δx is approximately 2 sin(x)δx.
We can now perform the outer integral to add up the contributions from all such vertical strips:∫ π

x=0

2 sin(x) dx = 2

[
− cos(x)

]π
0

= 2(1− (−1)) = 4.

The conclusion is that
∫∫
D

sin(x) cos(y) dA = 4.
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Note that in both the last two examples, the final answer is just a number, not a function of x or y. This
is as it should be: we have added up all the contributions from all the different values of x and y, so there
is no dependence on x and y left at the end. There are various common errors that lead to final answers
depending on x and y. If you end up with such an answer, you should immediately realise that something
has gone wrong.

We now consider Example 4.1 again. We previously did this by dividing the rectangle D into thin vertical
strips, performing an inner integral over y to calculate the contribution from each strip, and then integrating
over x to add up these contributions. We could equally well divide the rectangle into thin horizontal strips
instead. We would then need to perform an inner integral over x to find the contribution from each horizontal
strip, and then an outer integral over y to add up these contributions. In symbols, we have∫∫

D

x3 + y2 dA =

∫ 3

y=0

(∫ 2

x=0

x3 + y2 dx

)
dy.

In the inner integral, we treat y as a constant and x as a variable. This gives∫ 2

x=0

x3 + y2 dx =

[
x4/4 + xy2

]2
x=0

= (16/4 + 2y2)− (0) = 4 + 2y2,

meaning that the contribution from a horizontal strip of width δy at height y is approximately (4 + 2y2)δy.
We can now perform the outer integral to add up the contributions from all such horizontal strips:∫ 3

y=0

4 + 2y2 dy =

[
4y + 2y3/3

]3
y=0

= (12 + 2× 27/3)− (0) = 30.

As expected, this gives the same answer
∫∫
D
x3 + y2 dA = 30 as before.

The next simplest type of region that we want to consider is a triangle.

Example 4.3. Let D be the triangular region with vertices at (0, 0), (1, 0) and (1, 1).

(0, 0) (1, 0)

(1, 1)

y = x

y = 0

x = 1

We will calculate
∫∫
D
e2x−2y dA. One approach is to divide the region into thin vertical strips:

(0, 0) (1, 0)

(1, 1)
y = x

x x+δx
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The strip shown runs from y = 0 to y = x, so the contribution from that strip is

δx.

∫ x

y=0

e2x−2y dy = δx

[
e2x−2y/(−2)

]x
y=0

= δx(e0 − e2x)/(−2) = 1
2 (e2x − 1)δx.

To add up the contributions for all such strips, we need to integrate over all values of x that occur in D,
which means from x = 0 to x = 1. This gives∫∫

D

e2x−2y dA =

∫ 1

x=0

1
2 (e2x − 1) dx =

[
1
2 ( 1

2e
2x − x)

]1
x=0

= 1
2 ( 1

2e
2 − 1)− 1

2 ( 1
2 − 0) = (e2 − 3)/4.

Example 4.4. As an alternative, we could divide the triangle into horizontal strips:

(0, 0) (1, 0)

(1, 1)
y = x

y

y+δy

The left hand end of the strip is at x = y, and the right hand end is at x = 1. Thus, the contribution from
the strip is

δy.

∫ 1

x=y

e2x−2ydx = δy.

[
1
2e

2x−2y
]1
x=y

= δy.( 1
2e

2−2y − 1
2 ).

To add up the contributions for all such strips, we need to integrate over all values of y that occur in D,
which means from y = 0 to y = 1. This gives∫∫

D

e2x−2y dA =

∫ 1

y=0

1
2 (e2−2y − 1) dy =

[
1
2 (− 1

2e
2−2y − y)

]1
y=0

= 1
2 (− 1

2 − 1)− 1
2 (− 1

2e
2 − 0) = (e2 − 3)/4,

just as before.

Example 4.5. Suppose we have a metal sheet D in the shape of a triangular wedge, with one vertex at the
origin and the other two at (a, b) and (a,−b).

(a,b)

(a,−b)

y=xb/a

y=−xb/a

x=a
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To find the moment of inertia, we need to evaluate
∫∫
D
x2 + y2 dA. If we fix x with 0 ≤ x ≤ a, then y will

run from −xb/a to +xb/a. We therefore have∫∫
D

x2 + y2 dA =

∫ a

x=0

∫ xb/a

y=−xb/a
x2 + y2 dy dx.

For the inner integral we have∫ xb/a

y=−xb/a
x2 + y2 dy =

[
x2y + 1

3y
3

]xb/a
y=−xb/a

=

(
x2.

xb

a
+

1

3

(
xb

a

)3
)
−

(
x2.
−xb
a

+
1

3

(
−xb
a

)3
)

=
2x3b

a
+

2x3b3

3a3
=

(
2b

a
+

2b3

3a3

)
x3.

Using this we get∫∫
D

x2 + y2 dA =

(
2b

a
+

2b3

3a3

)∫ a

x=0

x3 dx =

(
2b

a
+

2b3

3a3

)
a4

4
= 1

2a
3b+ 1

6ab
3.

Example 4.6. Let D be the region where −π/2 ≤ x ≤ π/2 and − cos(x) ≤ y ≤ cos(x).

We will find the area of D, or in other words the integral
∫∫
D

1 dA. Using vertical strips we have∫∫
D

1 dA =

∫ π/2

x=−π/2

∫ cos(x)

y=− cos(x)

1 dy dx =

∫ π/2

x=−π/2

[
y

]cos(x)
− cos(x)

dx

=

∫ π/2

x=−π/2
2 cos(x) dx =

[
2 sin(x)

]π/2
x=−π/2

= 2− (−2) = 4.

In the examples that we have considered so far, we were given a picture of the relevant region, and we had
to find the corresponding limits of integration ourselves. Some natural examples work the other way around:
we start with a formula for the limits of integration, and we need to draw the corresponding region. Once
we have drawn the region, it may be possible to see different ways to approach the integral; in particular,
we can try reversing the order of integration. This may (or may not) make it easier to evaluate the integral.

Example 4.7. Consider the integral

I =

∫ 1

y=0

∫ y

x=y2
x−1yex dx dy.

For the inner integral we would need to know
∫
x−1ex dx, but there is no formula for this integral in terms

of familiar functions, so we appear to be stuck. However, we can sketch the relevant region D as shown on
the left below:
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x=y2

x=y

y=
√
x

y=x

In our original expression for I, the inner integral is with respect to x, and the outer one is with respect to y;
this corresponds to dividing D into horizontal strips. We could instead divide it into vertical strips as shown
on the right. The bottom end of the vertical strip at position x is given by x = y, or equivalently y = x.
The top end of the vertical strip at position x is given by x = y2, or equivalently y =

√
x. The overall limits

on x are from 0 to 1. We therefore have

I =

∫ 1

x=0

∫ √x
y=x

x−1yex dy dx =

∫ 1

x=0

[
1
2x
−1y2ex

]√x
y=x

dx

=
1

2

∫ 1

x=0

(x−1(
√
x)2ex − x−1x2ex) dx =

1

2

∫ 1

x=0

(ex − xex) dx

=
1

2

[
(2− x)ex

]1
x=0

= (e− 2)/2.

(Here we evaluated
∫
x ex dx using integration by parts. In more detail, we take u = x and dv/dx = ex, so

du/dx = 1 and v = ex. The rule
∫
u dvdxdx = uv −

∫
du
dxv dx gives

∫
x ex dx = xex −

∫
ex dx = xex − ex.)

Example 4.8. Consider the integral

I =

∫ 1

x=0

∫ 1

y=x

xy√
1 + y4

dy dx

It is possible to evaluate the inner integral starting with the substitution u = y2, but it turns out to be easier
to first change the order of integration. The relevant region is as follows:

y=x

y=1

x=y

x=0

The original presentation (with the integral over x on the outside) corresponds to dividing the region into
vertical strips running from y = x to y = 1, as on the left. If we instead use horizontal strips running from
x = 0 to x = y, we get the formula

I =

∫ 1

y=0

∫ y

x=0

xy√
1 + y4

dy dx =

∫ 1

y=0

[
x2y

2
√

1 + y4

]y
x=0

dy

=

∫ 1

y=0

y3

2
√

1 + y4
dy.
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We now substitute u = 1 + y4, so du/dy = 4y3, so y3 dy = du/4 and
√

1 + y4 = u1/2. The limits y = 0 and
y = 1 correspond to u = 1 and u = 2. This gives

I =

∫ 2

u=1

du/4

2u1/2
=

1

8

∫ 2

u=1

u−1/2du

=
1

8

[
2u1/2

]2
u=1

= (2
√

2− 2)/8

= (
√

2− 1)/4 ' 0.1036.

4.2. Polar coordinates. We now consider integrals over circular disks and similar regions. One possibility
is to follow the same method that we used for triangles, and divide the disk into vertical strips. If we
consider a disk D of radius a centred at (0, 0), the vertical strip at position x will run from y = −

√
a2 − x2

to y = +
√
a2 − x2.

x x+δx a

(x,
√
a2−x2)

(x,−
√
a2−x2)

Consider the integral I =
∫∫
D
x2 dA. This becomes

I =

∫ a

x=−a

∫ +
√
a2−x2

y=−
√
a2−x2

x2 dy dx.

In the inner integral x2 counts as a constant, so we just have∫ +
√
a2−x2

y=−
√
a2−x2

x2 dy =

[
x2y

]+√a2−x2

y=−
√
a2−x2

= 2x2
√
a2 − x2.

We therefore have

I =

∫ a

x=−a
2x2
√
a2 − x2 dx.

To evaluate this, we make the substitution x = a sin(θ), so θ runs from −π/2 (corresponding to x = −a) to

θ = π/2 (corresponding to x = +a). We then have dx/dθ = a cos(θ), so dx = a cos(θ)dθ, and
√
a2 − x2 =

a
√

1− sin2(θ) = a cos(θ). This gives

I =

∫ π/2

θ=−π/2
2a2 sin2(θ).a cos(θ).a cos(θ) dθ = 2a4

∫ π/2

−π/2
sin2(θ) cos2(θ) dθ.

Here sin(θ) cos(θ) = 1
2 sin(2θ), so

sin2(θ) cos2(θ) = 1
4 sin2(2θ) = 1

4

1− cos(4θ)

2
.
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This gives

I =
a4

4

∫ π/2

θ=−π/2
1− cos(4θ) dθ

=
a4

4

[
θ − 1

4 sin(4θ)

]π/2
−π/2

=
a4

4
((π/2− 0)− (−π/2− 0)) =

πa4

4
.

However, a more natural approach for integrals with circular symmetry is to divide the region using polar
coordinates. Recall that the basic setup of polar coordinates is as shown on the left below: we describe
points using the distance r from the origin and the angle θ anticlockwise from the x-axis.

r

θ

(x,y)=(r cos(θ),r sin(θ))

θ=π
6

θ=π
3

Polar coordinates are related to ordinary (rectangular) coordinates by the formulae

x = r cos(θ) y = r sin(θ)

r =
√
x2 + y2 θ = arctan(y/x).

(The last of these formulae needs a little interpretation, because arctan() is a multivalued function and we
need to choose the right value depending on the signs of x and y. However, we will not explore that in
more detail here.) In the diagram on the right above, we have divided a disk into small pieces using lines
of constant θ and circles of constant r. To use this kind of subdivision for integration, we need to know the
area of the small pieces.

Consider a piece of angular width δθ, where the radius runs from r to r + δr. Provided that δθ is small
this will be approximately rectangular. If we measure angles in radians (as we always will) then the length
of the curved side will be r δθ, and the straight side has length δr, so the area is approximately δA = r δr δθ.

δθ

r

δr

δA r δθ

In the limit this becomes dA = r dr dθ, so we have the following prescription: if D is a region that is
conveniently described in polar coordinates, then∫∫

D

f(x, y) dA =

∫ ···
θ=···

∫ ···
r=···

f(r cos(θ), r sin(θ))r dr dθ,

where the limits need to be filled in in accordance with the geometry of the region.
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As an example, we can use this method to reevaluate the integral
∫∫
D
x2 dA over a disk of radius a, as we

considered previously. Here the appropriate limits are just 0 ≤ θ ≤ 2π and 0 ≤ r ≤ a. The integral is just∫∫
D

x2 dA =

∫ 2π

θ=0

∫ a

r=0

r2 cos2(θ) r dr dθ

=

∫ 2π

θ=0

cos2(θ)

∫ a

r=0

r3 dr dθ

=
a4

4

∫ 2π

θ=0

cos2(θ) dθ =
a4

4

∫ 2π

θ=0

1 + cos(2θ)

2
dθ

=
a4

4

[
1

2
θ +

1

4
sin(2θ)

]2π
0

=
πa4

4

as before.
We will now go through some similar calculations.

Example 4.9. We will calculate
∫∫
D
xy dA for the region D shown below.

π/4

2 4

D

In polar coordinates the integrand xy becomes (r cos(θ)).(r sin(θ)) = 1
2r

2 sin(2θ). The limits are 2 ≤ r ≤ 4
and 0 ≤ θ ≤ π/4, and the area element dA is r dr dθ. We thus have∫∫

D

xy dA =

∫ π/4

θ=0

∫ 4

r=2

1
2r

3 sin(2θ) dr dθ =

∫ π/4

θ=0

[
r4

8
sin(2θ)

]4
r=2

dθ

= 1
8 (256− 16)

∫ π/4

θ=0

sin(2θ) dθ = 30

[
− cos(2θ)

2

]π/4
θ=0

= 15(− cos(π/2) + cos(0)) = 15(−0 + 1) = 15.

Example 4.10. Suppose we want to calculate the moment of inertia of a slotted rotor whose cross section
is the region D shown on the left below. This will be the density times the length times the integral
I =

∫∫
D

(x2 + y2)dA.

a

b

We first use a simplifying trick. Let D′ be the region in the middle picture, and put I ′ =
∫∫
D′(x

2 + y2)dA.
As D′ is just obtained by turning D slightly, the moment of inertia will be the same, so I ′ = I. On the
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other hand, 2I = I + I ′ is just the integral over the simpler region D′′ shown on the right. We thus have
I = 1

2

∫∫
D′′(x

2 + y2)dA. For D′′ the limits are just 0 ≤ θ ≤ 2π and a ≤ r ≤ b. The integrand is

x2 + y2 = (r cos(θ))2 + (r sin(θ))2 = r2,

and the area element is dA = r dr dθ. We thus have

I = 1
2

∫ 2π

θ=0

∫ b

r=a

r3 dr dθ

= 1
2

∫ 2π

θ=0

b4 − a4

4
dθ

=
1

2

b4 − a4

4
2π = π(b4 − a4)/4.

Example 4.11. The picture below shows the region D given in polar coordinates by 0 ≤ r ≤ 2 + sin(2θ).

θ

r=2+sin(2θ)

We would like to find the area of D, or in other words A =
∫∫
D

1 dA. Here dA = r dr dθ as usual, and the
relevant limits are 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 2 + sin(θ), so

A =

∫ 2π

θ=0

∫ 2+sin(2θ)

r=0

r dr dθ =

∫ 2π

θ=0

[
r2

2

]2+sin(2θ)

r=0

dθ

=
1

2

∫ 2π

θ=0

(2 + sin(2θ))2 dθ =
1

2

∫ 2π

θ=0

4 + 4 sin(2θ) + sin2(2θ) dθ

=
1

2

∫ 2π

θ=0

4 + 4 sin(2θ) + 1
2 −

1
2 cos(2θ) dθ.

It is a standard fact that the integral of sin(kθ) or cos(kθ) over a whole number of complete cycles is zero.
Thus, only the terms 4 and 1

2 contribute to the integral, and we have

A = 1
2 (2π.(4 + 1

2 )) = 9π/2.

Example 4.12. It is an important fact (for the theory of the normal distribution in statistics, the analysis

of heat flow, the pricing of financial derivatives, and other applications) that
∫∞
−∞ e−x

2

dx =
√
π. We will

explain one way to calculate this. Put I =
∫∞
−∞ e−x

2

dx. It obviously does not matter what we call the

variable, so we also have I =
∫∞
−∞ e−y

2

dy. We can now multiply these two expressions together to get

I2 =

∫ ∞
y=−∞

∫ ∞
x=−∞

e−x
2−y2 dx dy =

∫∫
whole plane

e−x
2−y2 dA.

We can rewrite this using polar coordinates, noting that x2 + y2 = r2 and dA = r dr dθ. We get

I2 =

∫ ∞
r=0

∫ 2π

θ=0

r e−r
2

dθ dr = 2π

∫ ∞
r=0

r e−r
2

dr.
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We now substitute u = r2, so u also runs from 0 to ∞ and du = 2r dr. The integral becomes

I2 = 2π

∫ ∞
u=0

e−u. 12du = π

[
− e−u

]∞
u=0

= π((−0)− (−1)) = π,

so I =
√
π as claimed.

4.3. More general change of coordinates. In this section we will discuss a version of integration by
substitution that works for integrals over plane regions.

We first recall the method for integrals in a single variable. There we want to evaluate
∫ b
x=a

f(x) dx say.
We suppose that x can be expressed in terms of some other variable u. The values x = a and x = b will
correspond to certain values of u, say u = p and u = q. We can differentiate the formula giving x in terms
of u to find dx/du, and then rearrange to express dx in terms of du. Using this we can express f(x) dx as
g(u) du say, and we have ∫ b

x=a

f(x) dx =

∫ q

u=p

g(u) du.

Example 4.13. Consider the integral I =
∫ 2

x=0
x3
√

9 + x4 dx. Put u = 9 + x4, so x = 0 corresponds to

u = 9 and x = 2 corresponds to u = 25. We can differentiate u = 9+x4 to get du/dx = 4x3, or x3 dx = 1
4du.

We also have
√

9 + x4 = u1/2, so

I =

∫ 2

x=0

√
9 + x4.x3 dx =

∫ 25

u=9

u1/2
du

4
=

1

4

[
2

3
u3/2

]25
u=9

=
1

6
(125− 27) =

49

3
' 16.33.

Now consider an integral I =
∫∫
D
f(x, y) dA in two variables, and suppose we can express x and y in

terms of some other variables u and v. We would like to rewrite I as an integral over u and v. The trickiest
issue is what to do with the area element dA. For this we need the following observation:

Fact 4.14. Let P be the parallelogram spanned by vectors [ ab ] and [ cd ].

[ 00 ]

[ ab ]

[ cd ]

[
a+c
b+d

]

Then

area(P ) = |ad− bc| =
∣∣∣∣det

[
a c
b d

]∣∣∣∣ .
To see why this is the case, consider the following diagram:

d [ ab ]

[ cd ]

[u0 ]
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The parallelogram P consists of the top triangle (shown in yellow) together with the middle region (shown in
green). It is clear that the top triangle has the same area as the bottom one, so we may as well consider the
parallelogram P ′ consisting of the bottom triangle together with the middle region. This parallelogram has
a base of length u and a perpendicular height of d, so the area is ud. To see what u is, note that the point
[ u0 ] is reached by starting at [ ab ] and moving in the opposite direction to the vector [ cd ], so [ u0 ] = [ ab ]− t [ cd ]
for some t. By comparing the y-coordinates we see that t = b/d, and by looking at the x-coordinates we
deduce that u = a− bc/d, so the area is ud = ad− bc. This works whenever the vector [ cd ] is anticlockwise
from [ ab ]. If [ cd ] is clockwise from [ ab ] it works out instead that ad− bc < 0 and the area is −(ad− bc). In all
cases we can say that the area is |ad− bc|.

Now consider again the situation where x and y can be expressed as functions of some other variables
u and v. We then have partial derivatives xu = ∂x/∂u, xv = ∂x/∂v, yu = ∂y/∂u and yv = ∂y/∂v. It is
convenient to write these as a matrix, called the Jacobian matrix :

J =
∂(x, y)

∂(u, v)
=

[
xu xv
yu yv

]
.

As we have mentioned before, if we make small changes δu and δv to u and v, then the resulting changes in
x and y are approximately

δx = xu δu+ xv δv

δy = yu δu+ yv δv.

These equations can be combined as a single matrix equation:[
δx
δy

]
=

[
xu xv
yu yv

] [
δu
δv

]
=
∂(x, y)

∂(u, v)

[
δu
δv

]
.

Now suppose we let the change in u vary between 0 and δu, and let the change in v vary between 0 and

δv. The resulting changes in [ xy ] then cover a small parallelogram spanned by

[
xu
yu

]
δu and

[
xv
yv

]
δv, and the

area of this parallelogram is |xuyv − xvyu|δu δv, or in other words
∣∣∣det

(
∂(x,y)
∂(u,v)

)∣∣∣ δu δv. Using this, we see

that the area element dA = dx dy can be rewritten as

dA =

∣∣∣∣det

(
∂(x, y)

∂(u, v)

)∣∣∣∣ du dv.
This is one of the key ingredients that we need when we evaluate a double integral by substitution.

Example 4.15. We will find the area of an ellipse E with equation x2/a2 + y2/b2 ≤ 1 (for some a, b > 0).

−a a

−b

b

For this it is best to use a kind of distorted polar coordinates, by putting

x = ar cos(θ) y = br sin(θ).
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We then have x2/a2 + y2/b2 = r2 cos2(θ) + r2 sin2(θ) = r2, so the equation x2/a2 + y2/b2 ≤ 1 just gives
0 ≤ r ≤ 1. The first order partial derivatives are

xr = a cos(θ) xθ = −ar sin(θ)

yr = b sin(θ) yθ = br cos(θ),

so the Jacobian matrix is
∂(x, y)

∂(r, θ)
=

[
a cos(θ) −ar sin(θ)
b sin(θ) br cos(θ)

]
.

This means that the absolute value of the determinant is∣∣∣∣det

(
∂(x, y)

∂(r, θ)

)∣∣∣∣ = |abr cos2(θ)− (−abr sin2(θ))| = |abr| = abr,

so dA = abr dr dθ. We therefore have

area(E) =

∫∫
E

1 dA =

∫ 2π

θ=0

∫ 1

r=0

abr dr dθ

= ab

∫ 2π

θ=0

[
r2

2

]1
r=0

dθ

= ab

∫ 2π

θ=0

1

2
dθ = πab.

In some cases it is easier to calculate the partial derivatives ux, uy, vx and vy instead of xu, xv, yu and
yv. Because of the matrix equations[

δx
δy

]
=
∂(x, y)

∂(u, v)

[
δu
δv

]
.

[
δu
δv

]
=
∂(u, v)

∂(x, y)

[
δx
δy

]
,

we see that ∂(x, y)/∂(u, v) is just the inverse matrix of ∂(u, v)/∂(x, y), so∣∣∣∣det

(
∂(x, y)

∂(u, v)

)∣∣∣∣ =

∣∣∣∣det

(
∂(u, v)

∂(x, y)

)∣∣∣∣−1 .
4.4. Three-dimensional regions. Suppose we have a solid region E in 3-dimensional space, and a function
f(x, y, z). We can define the volume integral of f (written

∫∫∫
E
f(x, y, z) dV ) in a very similar way to the

area integrals that we discussed above: we divide E into a large number of small regions E1, . . . , EN , and
then ∫∫∫

E

f(x, y, z) dV '
N∑
i=1

( value of f on Ei )× ( area of Ei),

with the approximation becoming exact in the limit where the size of the subregions tends to zero. As in the
plane case, such integrals can usually be evaluated by integrating over three different variables with suitable
limits depending on the geometry of the region E.

Some applications are as follows:

(a) To find the total energy of a magnetic field, integrate the square of the field strength.
(b) To find the moment of inertia of a rotor, integrate the square of the distance from the axis.
(c) To find the total mass of a star, integrate the density function over a spherical ball.
(d) For an object E of constant density, the centre of mass is (x, y, z) = (X/V, Y/V, Z/V ) where

X =

∫∫∫
E

x dV Y =

∫∫∫
E

y dV Z =

∫∫∫
E

z dV V =

∫∫∫
E

1 dV.

Example 4.16. Let E be the inside of a microwave oven of length a, width b and height c, and suppose for
simplicity that a, b and c are integers. To find the total energy of the microwaves in E, we need to calculate
integrals like

I =

∫∫∫
E

(sin(kπx) sin(mπy) sin(nπz))2 dV,

32



where k, n and m are also integers. This just reduces to

I =

∫ a

x=0

∫ b

y=0

∫ c

z=0

sin2(kπx) sin2(mπy) sin2(nπz) dz dy dx

For the innermost integral, we have sin2(nπz) = (1− cos(2nπz))/2, so∫ c

z=0

sin2(nπz) dz =

[
z

2
− sin(2nπz)

4nπ

]c
z=0

As n and c are integers, the sin() term is zero at both endpoints, and we just get
∫ c
z=0

sin2(nπz) dz = c/2.

The terms sin2(x) and sin2(y) are just carried along as constants, so we get

I =

∫ a

x=0

∫ b

y=0

sin2(kπx) sin2(mπy)
c

2
dy dx.

We can integrate over y and then over x in the same way, giving

I =

∫ a

x=0

sin2(kπx)
b

2

c

2
dx. =

a

2
.
b

2
.
c

2
=
abc

8
.

Example 4.17. Let E be the cube given by −1 ≤ x, y, z ≤ 1. The moment of inertia about the z-axis is∫∫∫
E

(x2 + y2)dV =

∫ 1

x=−1

∫ 1

y=−1

∫ 1

z=−1
(x2 + y2)dz dy dx

=

∫ 1

x=−1

∫ 1

y=−1

[
x2z + y2z

]1
z=−1

dy dx =

∫ 1

x=−1

∫ 1

y=−1
2(x2 + y2)dy dx

=

∫ 1

x=−1

[
2x2y + 2y3/3

]1
y=−1

dx =

∫ 1

x=−1
4x2 + 4/3 dx

=

[
4x3/3 + 4x/3

]1
x=−1

= 8/3 + 8/3 = 16/3.

Example 4.18. Let E be the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1).

(0,0,0) (0,1,0)

(0,0,1)

(1,0,0)

The shadow in the (x, y)-plane is the triangle with vertices (0, 0), (1, 0) and (0, 1), which means that x
varies from 0 to 1, and y varies from 0 to 1 − x. Each of the points (1, 0, 0), (0, 1, 0) and (0, 0, 1) satisfies
x+y+ z = 1, which means that the equation of the top face is x+y+ z = 1, or in other words z = 1−x−y.
The equation of the bottom face is z = 0, so overall z varies from 0 to 1 − x − y. Thus, for any function
f(x, y, z) we have ∫∫∫

E

f(x, y, z) dV =

∫ 1

x=0

∫ 1−x

y=0

∫ 1−x−y

z=0

f(x, y, z) dz dy dx.
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We can calculate the volume of E by taking f(x, y, z) = 1. The innermost integral (with respect to z) is
then ∫ 1−x−y

z=0

1 dz = 1− x− y.

Thus, the integral with respect to y is∫ 1−x

y=0

(1− x− y) dy =

[
(1− x)y − y2/2

]1−x
y=0

= ((1− x)(1− x)− (1− x)2/2)− 0

= 1/2− x+ x2/2.

Finally, the outermost integral (with respect to x) is∫ 1

x=0

(1/2− x+ x2/2) dx =

[
x/2− x2/2 + x3/6

]1
x=0

= 1/2− 1/2 + 1/6 = 1/6.

We conclude that the volume of the tetrahedron is 1/6.

4.5. Three-dimensional polar coordinates. In three dimensions there are two different kinds of polar
coordinates, called cylindrical polar coordinates and spherical polar coordinates.

When using cylindrical polar coordinates we describe points in terms of the distance r from the z-axis,
the angle θ anticlockwise from the (x, z)-plane, and the height z above the (x, y)-plane.

r

z

θ

(x,y,z)=(r cos(θ),r sin(θ),z)

(x,y,0)=(r cos(θ),r sin(θ),0)

Just as in the two-dimensional case, r and θ are related to x and y by the equations

x = r cos(θ) y = r sin(θ)

r =
√
x2 + y2 θ = arctan(y/x).

If we allow r, θ and z to vary by small amounts δr, δθ and δz, then the corresponding region is approxi-
mately a right-angled box with sides of length δr, δz and rδθ. The volume is thus δV ' rδr δθ δz.

r
δr

δz

rδθ

This means that for a function f on a 3-dimensional region E, we have∫∫∫
E

f(x, y, z) dV =

∫ ···
z=···

∫ ···
θ=···

∫ ···
r=···

f(r cos(θ), r sin(θ), z) r dr dθ dz,

where the limits must be determined using the geometry of the region.
The formula for dV can also be obtained using a three-dimensional of the Jacobian matrix. We have

J =
∂(x, y, z)

∂(r, θ, z)
=

xr xθ xz
yr yθ yz
zr zθ zz

 =

cos(θ) −r sin(θ) 0
sin(θ) r cos(θ) 0

0 0 1

 .
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If we expand out the determinant in the most obvious way, this gives

det(J) = cos(θ) det

[
r cos(θ) 0

0 1

]
− (−r sin(θ)) det

[
sin(θ) 0

0 1

]
+ 0 det

[
sin(θ) r cos(θ)

0 0

]
= r cos2(θ) + r sin2(θ) = r.

(This could be made tidier if we remember that the determinant can also be calculated by expanding along
the bottom row instead of the top row.) We now need to take the absolute value of det(J), but as r is always
positive, this makes no difference. We conclude that

dV = dx dy dz =

∣∣∣∣det

(
∂(x, y, z)

∂(r, θ, z)

)∣∣∣∣ dr dθ dz = |det(J)|dr dθ dz = r dr dθ dz,

just as we saw before by a more geometric argument.

Example 4.19. Consider a region E as shown below:

Suppose that the inner radius is 1, the outer radius is 2 and the height is 8. The region is then described by
the inequalities 0 ≤ z ≤ 8 and −π/2 ≤ θ ≤ π/2 and 1 ≤ r ≤ 2. Suppose that we want to find the centre of
mass of the region (assuming that the density is constant). By considering the symmetries of the region, we
see that the center of mass is (x, 0, 4) for some number x. In fact we have x = X/V , where X =

∫∫∫
E
x dV

and V =
∫∫∫

E
1 dV . These integrals can be evaluated as follows:

V =

∫ 8

z=0

∫ π
2

θ=−π2

∫ 2

r=1

r dr dθ dz

=

∫ 8

z=0

∫ π
2

θ=−π2

3

2
dθ dz =

∫ 8

z=0

3π

2
dz = 12π

X =

∫ 8

z=0

∫ π
2

θ=−π2

∫ 2

r=1

r cos(θ).r dr dθ dz

=

∫ 8

z=0

∫ π
2

θ=−π2

[
1

3
r3 cos(θ)

]2
r=1

dθ dz =
7

3

∫ 8

z=0

∫ π
2

θ=−π2
cos(θ) dθ dz

=
7

3

∫ 8

z=0

[
sin(θ)

]π/2
−π/2

dz =
14

3

∫ 8

z=0

1 dz =
112

3

x =
112

3× 12π
=

28

9π
' 0.99.
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Example 4.20. Let E be a cone as shown below:

Suppose that the radius of the base is 1, and the height is also 1. This means that the radius of the slice at
height z will be 1− z, so for any function f(x, y, z) we have∫∫

E

f(x, y, z) dV =

∫ 1

z=0

∫ 2π

θ=0

∫ 1−z

r=0

f(r cos(θ), r sin(θ), z)r dr dθ dz.

Suppose that we again want to find the centre of mass, assuming constant density. By considering the
symmetries of the region, we see that the center of mass is (0, 0, z) for some number z. In fact we have
z = Z/V , where Z =

∫∫∫
E
z dV and V =

∫∫∫
E

1 dV . These integrals can be evaluated as follows:

V =

∫ 1

z=0

∫ 2π

θ=0

∫ 1−z

r=0

r dr dθ dz =

∫ 1

z=0

∫ 2π

θ=0

(1− z)2

2
dθ dz

=

∫ 1

z=0

π(1− z)2 dz = π

∫ 1

z=0

1− 2z + z2 dz

= π

[
z − z2 + 1

3z
3

]1
z=0

= π/3

Z =

∫ 1

z=0

∫ 2π

θ=0

∫ 1−z

r=0

zr dr dθ dz =

∫ 1

z=0

∫ 2π

θ=0

z
(1− z)2

2
dθ dz

=

∫ 1

z=0

πz(1− z)2 dz = π

∫ 1

z=0

z − 2z2 + z3 dz

= π

[
1
2z

2 − 2
3z

3 + 1
4z

4

]1
z=0

= π/12

z = Z/V =
π

12
/
π

3
=

π

12
/

4π

12
=

1

4
.

We conclude that the centre of mass is (0, 0, 1/4).

Example 4.21. Telescope mirrors always have a parabolic cross-section. We could make such a mirror by
starting with a large flat cylinder of radius a and thickness b, and grinding the top until it fits the surface
z = b(r2 + a2)/(2a2).

a

b

We will write E for the region filled by the remaining material. It is easiest to integrate over E using vertical
strips. This means that the innermost integral should be an integral over z, and the outer integrals should
be with respect to r and θ.
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If the density of the material is ρ, the total mass of the mirror will be

M =

∫∫∫
E

ρ dV =

∫ a

r=0

∫ 2π

θ=0

∫ b(r2+a2)

2a2

z=0

ρr dz dθ dr

=

∫ a

r=0

∫ 2π

θ=0

ρrb(r2 + a2)

2a2
dθ dr =

bρ

2a2

∫ a

r=0

∫ 2π

θ=0

r3 + a2rdθ dr

=
bρπ

a2

∫ a

r=0

r3 + a2r dr =
bρπ

a2

[
r4

4
+
a2r2

2

]a
r=0

=
bρπ

a2

(
a4

4
+
a4

2

)
=

3a2bρπ

4
.

The moment of inertia about the x-axis is I =
∫∫∫

E
ρ(y2 + z2) dV . It is convenient to write this as I =

ρI1 + ρI2, where

I1 =

∫∫∫
E

y2 dV =

∫ a

r=0

∫ 2π

θ=0

∫ b(r2+a2)

2a2

z=0

r2 sin2(θ)r dz dθ dr

=

∫ a

r=0

∫ 2π

θ=0

b(r2 + a2)

2a2
r3 sin2(θ) dθ dr

=

∫ a

r=0

b(r2 + a2)π

2a2
r3 dr =

bπ

2a2

∫ a

r=0

(r5 + a2r3) dr

=
bπ

2a2

(
a6

6
+ a2

a4

4

)
=

5a4bπ

24

I2 =

∫∫∫
E

z2 dV =

∫ a

r=0

∫ 2π

θ=0

∫ b(r2+a2)

2a2

z=0

z2r dz dθ dr

=

∫ a

r=0

∫ 2π

θ=0

r

3

(
b(r2 + a2)

2a2

)3

dθ dr =
b3

24a6

∫ a

r=0

∫ 2π

θ=0

r(r2 + a2)3 dθ dr

=
b3π

12a6

∫ a

r=0

r(r2 + a2)3 dr =
b3π

12a6

∫ a

r=0

r7 + 3a2r5 + 3a4r3 + a6r dr

=
b3π

12a6

(
a8

8
+ 3a2

a6

6
+ 3a4

a4

4
+ a6

a2

2

)
=
a2b3π

12

(
1

8
+

3

6
+

3

4
+

1

2

)
=
a2b3π

12

15

8
=

5a2b3π

32
.

Putting these together, we get

I = ρI1 + ρI2 = 5a2bρπ

(
a2

24
+
b2

32

)
=

5a2bρπ

96
(4a2 + 3b2).

Note that in practice b will be much smaller than a, so I2 will be much smaller than I1, so I ' I1ρ =
5a4bρπ/24.

We now turn to the other kind of three-dimensional polar coordinates, which are called spherical. In
spherical polar coordinates we describe a point (x, y, z) by giving the distance r from the origin, the angle θ
anticlockwise from the xz plane, and the angle φ from the z-axis.
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r sin(φ)

r cos(φ)

r

θ

φ

(x,y,z)=(r sin(φ) cos(θ),r sin(φ) sin(θ),r cos(φ))

(x,y,0)=(r sin(φ) cos(θ),r sin(φ) sin(θ),0)

(0,0,z)=(0,0,r cos(φ))

x

y

z

The variables r, θ and φ are related to x and y by the equations

x = r sin(φ) cos(θ) y = r sin(φ) sin(θ) z = r cos(φ)

r =
√
x2 + y2 + z2 θ = arctan(y/x) φ = arctan(

√
x2 + y2/z).

Note that φ ranges from 0 (on the positive z-axis) to π (on the negative z-axis), whereas θ ranges from 0 to

2π (or equivalently, from −π to π). It is also useful to observe that
√
x2 + y2 = r sin(φ).

For these coordinates it is easiest to find the area element using the Jacobian. We have

J =
∂(x, y, z)

∂(r, θ, φ)
=

xr xθ xφ
yr yθ yφ
zr zθ zφ

 =

sin(φ) cos(θ) −r sin(φ) sin(θ) r cos(φ) cos(θ)
sin(φ) sin(θ) r sin(φ) cos(θ) r cos(φ) sin(θ)

cos(φ) 0 −r sin(φ)

 .
We will expand the determinant along the bottom row. This gives

det(J) = cos(φ) det(A)− 0 det(B) + (−r sin(φ)) det(C),

where

A =

[
−r sin(φ) sin(θ) r cos(φ) cos(θ)
r sin(φ) cos(θ) r cos(φ) sin(θ)

]
B =

[
sin(φ) cos(θ) r cos(φ) cos(θ)
sin(φ) sin(θ) r cos(φ) sin(θ)

]
C =

[
sin(φ) cos(θ) −r sin(φ) sin(θ)
sin(φ) sin(θ) r sin(φ) cos(θ)

]
.

(Here A is obtained from J by deleting the last row and the first column, B is obtained from J by deleting
the last row and the middle column, and C is obtained from J by deleting the last row and the last column.)
We need not calculate det(B) because it is multiplied by zero. We have

det(A) = −r2 sin(φ) cos(φ) sin2(θ)− r2 sin(φ) cos(φ) cos2(θ)

= −r2 sin(φ) cos(φ)

det(C) = r sin2(φ) cos2(θ)− (−r sin2(φ) sin2(θ))

= r sin2(φ)

det(J) = cos(φ) det(A)− 0 det(B) + (−r sin(φ)) det(C)

= −r2 sin(φ) cos2(φ)− r2 sin(φ) sin2(φ)

= −r2 sin(φ).

As 0 ≤ φ ≤ π we have sin(φ) ≥ 0 so | − r2 sin(φ)| = r2 sin(φ). We conclude that

dV = |det(J)|dr dθ dφ = r2 sin(φ) dr dθ dφ.

This means that for a function f on a 3-dimensional region E, we have∫∫∫
E

f(x, y, z) dV =

∫ ···
φ=···

∫ ···
θ=···

∫ ···
r=···

f(r cos(θ) sin(φ), r sin(θ) sin(φ), r cos(φ)) r2 sin(φ) dr dθ dφ,

where the limits must be determined using the geometry of the region.
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Example 4.22. The volume of a sphere E of radius a is

V =

∫∫∫
E

1 dV =

∫ π

φ=0

∫ 2π

θ=0

∫ a

r=0

r2 sin(φ)dr dθ dφ

=

∫ π

φ=0

∫ 2π

θ=0

a3

3
sin(φ) dθ dφ =

∫ π

φ=0

2πa3

3
sin(φ) dφ

=
2πa3

3

[
− cos(φ)

]π
φ=0

=
2πa3

3
(1− (−1)) =

4πa3

3
.

Now suppose that the sphere has density ρ. The distance of a point from the z-axis is r sin(φ), so the
moment of inertia around that axis is

I =

∫∫∫
E

ρ.(r sin(φ))2 dV =

∫ π

φ=0

∫ 2π

θ=0

∫ a

r=0

ρr2 sin2(φ)r2 sin(φ)dr dθ dφ =

∫ π

φ=0

∫ 2π

θ=0

∫ a

r=0

ρr4 sin3(φ)dr dθ dφ.

Here the three different variables do not interact in any interesting way so we can rewrite the integral as

I =

(∫ π

φ=0

sin(φ)3 dφ

)(∫ 2π

θ=0

1 dθ

)(∫ a

r=0

r4 dr

)
ρ.

Two of these integrals are easy: we have
∫ 2π

θ=0
1 dθ = 2π and

∫ a
r=0

r4 dr = a5/5. For the integral with respect

to φ, we recall that sin(φ) = (ejφ − e−jφ)/(2j). We can cube this to get

sin3(φ) =
1

8j3
(e3jφ − 3e2jφe−jφ + 3ejφe−2jφ − e−3jφ)

=
−1

8j
(e3jφ − 3ejφ + 3e−jφ − e−3jφ)

=
3

4

(
ejφ − e−jφ

2j

)
− 1

4

(
e3jφ − e−3jφ

2j

)
=

3

4
sin(φ)− 1

4
sin(3φ).

Integrating this, we get ∫ π

φ=0

sin3(φ) dφ =

[
− 3

4
cos(φ) +

1

12
cos(3φ)

]π
φ=0

= (3/4− 1/12)− (−3/4 + 1/12) = 4/3.

Combining this with the r and θ integrals gives

I =
4

3
.2π.

a5

5
.ρ =

8πa5ρ

15
.

Example 4.23. Let E be the part of a sphere of radius 1 where x ≥ 0, y ≥ 0 and z ≥ 0.
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The centre of mass of E (assuming constant density) is (x, y, z), where x = (
∫∫∫

E
x dV )/(

∫∫∫
E

1 dV ) and so
on. It is clear by symmetry that x, y and z are all the same, so we will just calculate z. Note that if we cut
a sphere along the three coordinate planes then it splits into eight pieces all congruent to E, so the volume
V =

∫∫∫
E

1 dV is just one eighth of the volume of the sphere. We saw in the previous example (with a = 1)

that the volume of the sphere is 4π/3, so V = π/6. We now need to calculate the integral Z =
∫∫∫

E
z dV .

The restriction z ≥ 0 means that 0 ≤ φ ≤ π/2, and the restrictions x, y ≥ 0 mean that 0 ≤ θ ≤ π/2. Recall
also that z = r cos(φ) and dV = r2 sin(φ) dr dθ dφ, so

z dV = r3 sin(φ) cos(φ) dr dθ dφ = 1
2r

3 sin(2φ) dr dθ dφ.

This gives

Z =

∫ π
2

φ=0

∫ π
2

θ=0

∫ 1

r=0

1
2r

3 sin(2φ) dr dθ dφ

=
1

2

(∫ π
2

φ=0

sin(2φ) dφ

)(∫ π
2

θ=0

1 dθ

)(∫ 1

r=0

r3 dr

)

=
1

2

[
− cos(2φ)

2

]π
2

φ=0

.
π

2
.
1

4

=
1

2
.
2

2
.
π

2
.
1

4
=

π

16
,

so

z = Z/V =
π

16
/
π

6
=

6

16
=

3

8
.

We conclude that the centre of mass is ( 3
8 ,

3
8 ,

3
8 ).

5. Algebra and geometry of vectors

Recall that a vector is a quantity with both magnitude and direction. Examples include:

(a) The velocity and acceleration of a particle are vectors.
(b) The separation between two particles is a vector.
(c) If we have chosen a point to count as the origin, then the displacement of a particle from that origin

is also a vector.
(d) The electric field at a point is a vector, and the magnetic field is another vector.

By contrast, a scalar is a quantity that has a magnitude, but not a direction. For example, the pressure,
temperature and electric potential at a point are scalars.

When answering questions in vector algebra or vector calculus, you should always ask yourself whether
your answer should be a scalar or a vector, and make sure that what you have written has the right type.
This simple check will detect a substantial fraction of incorrect answers.

Normally we will fix a coordinate system, and use it to represent vectors as triples of numbers. For
example, the triple (3,−2, 4) represents the vector that goes 3 steps along the x-axis, 2 steps backwards
parallel to the y-axis, and 4 steps parallel to the z-axis.
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x

y

z

−2

4

3

We can add vectors in an obvious way, for example (3,−2, 4) + (1, 1, 1) = (4,−1, 5). Geometrically, this
corresponds to joining the vectors together nose to tail:

a

a

b

b

a+b

Similarly, we can multiply a vector by a scalar to get a new vector, for example 3(3,−2, 4) = (9,−6, 12).
The new vector has the same direction as the old one (if the scalar is positive) or the opposite direction (if
the scalar is negative).

So far we have only discussed three-dimensional vectors, which is what we need for most applications in
physics or engineering. One can also consider two-dimensional vectors, which are used for applications where
everything is happening in a single plane. In some cases we will find it helpful to discuss the two-dimensional
theory as a warm-up before turning to the more complicated three-dimensional case.

The length of a vector a = (x, y, z) is given by

|a| =
√
x2 + y2 + z2.

It is a useful fact that we always have |a + b| ≤ |a| + |b|; this is called the triangle inequality. To see why
it is true, consider the parallelogram in the previous picture. The distance from the origin to a + b in a
straight line is |a + b|, whereas the distance via a is |a|+ |b|. The inequality just says that it is shorter to
go in a straight line.

A unit vector is a vector of length one. We write â for the unit vector in the same direction as a.
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a

â

b

b̂

c
ĉ

This is given by

â =
a

|a|
=

(
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

)
.

For example, if a = (1,−2, 2) then

|a| =
√

12 + (−2)2 + 22 =
√

1 + 4 + 4 = 3

â =
a

3
=

(
1

3
,−2

3
,

2

3

)
.

Note that |a| is a scalar, and â is a vector.
The unit vectors along the three coordinate axes are denoted by i, j and k:

i = (1, 0, 0) j = (0, 1, 0) k = (0, 0, 1).

Note that
xi + yj + zk = (x, 0, 0) + (0, y, 0) + (0, 0, z) = (x, y, z).

The dot product of vectors a = (x, y, z) and b = (u, v, w) is given by

a.b = (x, y, z).(u, v, w) = xu+ yv + zw.

Note that this is a scalar, and that a.b is the same as b.a. For example, we have

(1, 2, 3).(10, 100, 1000) = 10 + 200 + 3000 = 3210.

Note also that
a.a = x2 + y2 + z2 = |a|2.

For the unit vectors i, j and k we have

i.i = 1 i.j = 0 i.k = 0

j.i = 0 j.j = 1 j.k = 0

k.i = 0 k.j = 0 k.k = 1.

Geometrically, it can be shown that
a.b = |a||b| cos(θ),

where θ is the angle between a and b. In particular, as −1 ≤ cos(θ) ≤ 1 this means that −|a||b| ≤ a.b ≤
|a||b|, or equivalently |a.b| ≤ |a||b|. This is called the Cauchy-Schwartz inequality. We also see that a.b is
zero when θ = π/2, which means that a and b are perpendicular to each other.

θ

a

b

θ < π
2 ; a.b > 0

θ
a

b

θ = π
2 ; a.b = 0

θ a

b

θ > π
2 ; a.b < 0
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Example 5.1. Consider the vectors a = (3, 0, 4) and b = (2,−1, 2). We will find the angle θ between a and
b. The inner products are

|a|2 = a.a = 32 + 02 + 42 = 25

|b|2 = b.b = 22 + (−1)2 + 22 = 9

|a||b| cos(θ) = a.b = 3× 2 + 0× (−1) + 4× 2 = 14.

From this we see that |a| =
√

25 = 5 and |b| =
√

9 = 3, so

cos(θ) =
a.b

|a||b|
=

14

5× 3
=

14

15
' 0.933.

This means that θ = arccos(0.933), which is 0.367 radians or 21.04 degrees.

Example 5.2. The hydrogen atoms in a molecule of methane lie at the following positions:

a = (0, 0, 1) b =

(
2
√

2

3
, 0,−1

3

)

c =

(
−
√

2

3
,

√
6

3
,−1

3

)
d =

(
−
√

2

3
,−
√

6

3
,−1

3

)
.

a

b

c

d

θ

It is clear that a is a unit vector. We also have

|b|2 =

(
2
√

2

3

)2

+

(
1

3

)2

=
4× 2

9
+

1

9
= 1

|c|2 =

(√
2

3

)2

+

(√
6

3

)2

+

(
1

3

)2

=
2

9
+

6

9
+

1

9
= 1,

so b and c are unit vectors, and d is also a unit vector by the same calculation as for c. It is also clear that

a.b = a.c = a.d = −1/3.

In fact, we also have
b.c = b.d = c.d = −1/3,

by the following calculations:

b.c =
2
√

2

3
.

(
−
√

2

3

)
+ 0.

√
6

3
+

(
−1

3

)(
−1

3

)
=
−4

9
+

1

9
= −1

3

b.d =
2
√

2

3
.

(
−
√

2

3

)
+ 0.

(
−
√

6

3

)
+

(
−1

3

)(
−1

3

)
=
−4

9
+

1

9
= −1

3

c.d =

(
−
√

2

3

)(
−
√

2

3

)
+

(√
6

3

)(
−
√

6

3

)
+

(
−1

3

)(
−1

3

)
=

2

9
− 6

9
+

1

9
= −1

3
.
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If θ is the angle between a and b, then we have

cos(θ) =
a.b

|a||b|
=
−1/3

1× 1
= −1

3
,

so θ is arccos(−1/3), which is 1.911 radians or 109.5 degrees. By the same calculation, the angle between
any two of the atoms is 109.5 degrees.

Now suppose we have a vector a and a unit vector n. We can write a as a|| + a⊥, where a|| is the part
parallel to n, and a⊥ is the part perpendicular to n.

n

a||

a⊥
a=a||+a⊥

θ

In the picture, θ is the angle between a and a||, which is the same as the angle between a and n. From this
(and the fact that |n| = 1) it follows that

a.n = |a||n| cos(θ) = |a| cos(θ) = |a|||.

Note that this is an equation between two scalars. It actually relies on the fact that θ ≤ π/2, which is the
case in our picture. To be correct for all θ, we need to say that |a.n| = |a|||. Note that the bars on the left
denote the absolute value of the scalar a.n, whereas the bars on the right denote the length of the vector a||.

Next, we can multiply the scalar a.n by the vector n to get a vector (a.n)n, and we also see from the
diagram above that

a|| = (a.n)n

a⊥ = a− (a.n)n.

These equations are valid for all θ. They are often useful in calculations. For example, suppose we have a
satellite relaying signals from point A to point B, where A and B are both on the earth’s surface. We have
a unit vector n1 pointing vertically upwards at A, another unit vector n2 pointing vertically upwards at
B, another unit vector n3 pointing from the satellite towards A and a fourth unit vector n4 pointing from
the satellite towards B. If we want to calculate various things about the signals, we might want to resolve
various vectors parallel and perpendicular to any of n1, n2, n3 or n4.

Example 5.3. Consider the vector a = (3, 6, 9) and the unit vector n = (2/3, 2/3,−1/3). We have

a.n = 3.
2

3
+ 6.

2

3
+ 9.
−1

3
= 2 + 4− 3 = 3

a|| = (a.n)n = 3n = (2, 2,−1)

a⊥ = a− a|| = (3, 6, 9)− (2, 2,−1) = (1, 4, 10).

We next recall the cross product operation. For vectors a = (x, y, z) and b = (u, v, w), we define

a× b = (x, y, z)× (u, v, w) = (yw − zv, zu− xw, xv − yu).

Perhaps the simplest way to remember this is as a kind of determinant:

a× b = det

 i j k
x y z
u v w

 = det

[
y z
v w

]
i− det

[
x z
u w

]
j + det

[
x y
u v

]
k.

Note that a × b is a vector, in contrast to a.b, which is a scalar. Note also that this definition only works
for three-dimensional vectors; there is no way to define the cross product in two dimensions.
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Example 5.4. Consider the vectors a = (1, 2, 3) and b = (3, 2, 1). We have

a× b = det

i j k
1 2 3
3 2 1

 = det

[
2 3
2 1

]
i− det

[
1 3
3 1

]
j + det

[
1 2
3 2

]
k = −4i− (−8)j + (−4)k = (−4, 8,−4).

Example 5.5. For the standard unit vectors you can check that

i× i = 0 i× j = k i× k = −j
j× i = −k j× j = 0 j× k = i

k× i = j k× j = −i k× k = 0.

Geometrically, it can be shown that a× b is perpendicular to both a and b, and that

|a× b| = |a||b| sin(θ) = area of the parallelogram spanned by a and b,

where θ is again the angle between a and b.

a

b

θ θ

length=|b| sin(θ)

length=|a|

area=|a||b| sin(θ)

In particular, we see that a× b is zero when sin(θ) = 0, which means that θ = 0 or θ = π, so a and b have
the same direction or opposite directions.

Algebraically, we have the following identities:

a× a = 0

b× a = −a× b

a.(a× b) = 0

b.(a× b) = 0.

Next, suppose we have three different vectors a = (x, y, z), b = (u, v, w) and c = (p, q, r). There are
several different ways to take the product of all three vectors. The simplest is to take the dot product of a
and b to get a scalar a.b, and multiply that scalar by c to get a new vector

(a.b)c = (xu+ yv + zw)c = (xup+ yvp+ zwp, xuq + yvq + zwq, xur + yvr + zwr).

Alternatively, we could take the cross product b × c, which is a vector, and then take the dot product of
that vector with a to get a scalar a.(b × c), which is called the scalar triple product of a, b and c. Using
the determinant formula for b× c we find that a.(b× c) is also a determinant:

a.(b× c) = det

x y z
u v w
p q r

 .
A convenient trick for expanding such determinants is as follows. We first expand the matrix by repeating
the first two columns at the end, then draw sloping lines as shown.

x y z x y

u v w u v

p q r p q
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For each of the blue lines sloping down and to the right, we have a term with a plus sign. For example, the
first blue line joins x, v and r, giving a term +xvr. Each of the red lines sloping up and to the right gives a
term with a minus sign. Altogether, the determinant is

a.(b× c) = det

x y z
u v w
p q r

 = xvr + ywp+ zuq − zvp− xwq − yur.

There are a number of slight variants of the scalar triple product, but they all turn out to be the same,
at least up to a plus or minus sign. Specifically, we have

a.(b× c) = b.(c× a) = c.(a× b) = −a.(c× b) = −b.(a× c) = −c.(b× a).

We also have a.(b× c) = (b× c).a and so on, just because u.v = v.u for any vectors u and v.
The third way we can combine a, b and c is to take the cross product of the vector a with the vector

b× c to get another vector a× (b× c). By analogy with ordinary multiplication, you might think that this
is the same as (a× b)× c, but in fact that is not true. However, both of these iterated cross products, and
various variants, can be described in terms of dot products as follows:

a× (b× c) = (a.c)b− (a.b)c

(a× b)× c = (a.c)b− (b.c)a.

The following observations may help you remember the rules:

(a) The vector outside the brackets on the left occurs in both the dot products on the right.
(b) Each of the vectors inside the brackets on the left occurs in one of the dot products on the right.
(c) The dot product of the first vector with the last vector occurs with a plus sign. The other dot

product occurs with a minus sign.

6. Fields and vector calculus

In many applications, we do not consider individual vectors or scalars, but functions that give a vector or
scalar at every point. Such functions are called vector fields or scalar fields. For example:

(a) Suppose we want to model the flow of air around an aeroplane. The velocity of the air flow at any
given point is a vector. These vectors will be different at different points, so they are functions
of position (and also of time). Thus, the air velocity is a vector field. Similarly, the pressure and
temperature are scalar quantities that depend on position, or in other words, they are scalar fields.

(b) The magnetic field inside an electrical machine is a vector that depends on position, or in other
words a vector field. The electric potential is a scalar field.

Although we will mainly be concerned with scalar and vector fields in three-dimensional space, we will
sometimes use two-dimensional examples because they are easier to visualise.

The following pictures illustrate some two-dimensional vector fields u:
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u = (1− y2, 0) u = (−y/3, x/3)

u = (−x/3,−y/3) u = (x/3,−y/3)

We next discuss various ways to differentiate scalar and vector fields. The most basic is as follows: if f is
a scalar field, then we define

∇(f) = (fx, fy, fz) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

This is a vector field. It is called the gradient of f and is sometimes written grad(f) rather than ∇(f). In
the two-dimensional case, there will only be two variables (x and y) and ∇(f) is defined to be (fx, fy).

Example 6.1.

(a) For the function f = x3 + y4 + z5, we have ∇(f) = (3x2, 4y3, 5z4).
(b) For the function f = sin(x) sin(y) sin(z) we have

∇(f) = (cos(x) sin(y) sin(z), sin(x) cos(y) sin(z), sin(x) sin(y) cos(z)).

(c) For the function r = (x2 + y2 + z2)
1
2 we have

rx = 1
2 (x2 + y2 + z2)−

1
2 .2x =

x

(x2 + y2 + z2)
1
2

= x/r,

and similarly ry = y/r and rz = z/r. This means that

∇(r) = (x/r, y/r, z/r).

More generally, for any n we have

(rn)x = nrn−1rx = nrn−1x/r = nrn−2x.

The other two derivatives work in the same way, so

∇(rn) = nrn−2 (x, y, z).

The key point for interpreting the gradient geometrically is as follows:

Fact 6.2. The vector ∇(f) points in the direction of maximum increase of f . It is perpendicular to the
surfaces where f is constant.
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The picture below illustrates the two-dimensional version of this fact in the case where f =
√
x2/9 + y2/4.

The four red ovals are given by f = 1, f = 2, f = 3 and f = 4. The blue arrows show the vector field
∇(f) = (2x/9, 2y/4), which is perpendicular to the red ovals as expected.

To see why the above fact is true, remember that if we make small changes δx, δy and δz to x, y and z,
then the resulting change in f is approximately given by

δf = fx δx+ fy δy + fz δz.

If we write r for the vector (x, y, z), this becomes

δf = ∇(f).δr = |∇(f)||δr| cos(θ),

where θ is the angle between δr and ∇(f). If we move along a surface where f is constant, then δf will
be zero so we must have cos(θ) = 0, so θ = π/2, so δr is perpendicular to ∇(f). This means that ∇(f) is
perpendicular to the surfaces of constant f , as we stated before. On the other hand, to make δf as large as
possible (for a fixed step size |δr|) we need to maximise cos(θ), which means taking θ = 0, so that δr is in
the same direction as ∇(f). In other words, ∇(f) points in the direction of maximum increase of f .

Two important physical applications of the gradient are as follows:

(a) We write E for the electric field (which is a vector field) and V for the electric potential (which is a
scalar field). These are related by the equation E = ∇(V ). (All this is valid only when there are no
significant time-varying magnetic fields.)

(b) Similarly, there is a gravitational potential function ψ, and the gravitational force field is proportional
to ∇(ψ).

(c) The net force on a particle of air involves ∇(p), where p is the pressure.

Example 6.3. If we have a single charge at the origin, then the resulting electric potential function is

V = Ar−1 for some constant A, where r =
√
x2 + y2 + z2 as usual. Using Example 6.1(c) we see that

E = ∇(V ) = −Ar−3(x, y, z) = −Ar/r3.

Example 6.4. Suppose instead that we have a whole line of charges distributed along the z-axis. It works
out that the corresponding electric potential function is V = − 1

2A ln(x2 + y2) for some constant A. This is
independent of z, so Vz = 0. On the other hand, we have

Vx =
− 1

2A

x2 + y2
.2x = − Ax

x2 + y2
.

By a similar calculation we have Vy = −Ay/(x2 + y2), so

E = ∇(V ) =

(
− Ax

x2 + y2
,− Ay

x2 + y2
, 0

)
.

Example 6.5. Suppose we have an electric potential of the form V = ax + by + cz, where a, b and c are
constant. The corresponding electric field is

E = ∇(V ) = (a, b, c).

In other words, we have a uniform electric field everywhere. If we put u = (a, b, c) we can write the above
in vector notation as V = u.r and ∇(V ) = ∇(u.r) = u.
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Example 6.6. Consider the function

θ(x, y, z) = angle between the x-axis and (x, y, 0) = arctan(y/x)

(as used in polar coordinates). It is a standard fact that arctan′(t) = 1/(1 + t2). Using this, we get

θx = arctan′
(y
x

) ∂

∂x

(y
x

)
=

1

1 + (y/x)2
−y
x2

=
−y

x2 + y2

θy = arctan′
(y
x

) ∂

∂y

(y
x

)
=

1

1 + (y/x)2
1

x
=

x

x2 + y2

θz = 0,

so

∇(θ) =

(
−y

x2 + y2
,

x

x2 + y2
, 0

)
.

Now suppose we have a vector field u = (f, g, h), so f , g and h are all functions of x, y and z. We can
think of ∇ as itself being a strange kind of vector, in which the entries are differential operators:

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.

This means we can make sense of the dot product ∇.u and the cross product ∇× u as follows:

∇.u =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.(f, g, h) =

∂f

∂x
+
∂g

∂y
+
∂h

∂z
= fx + gy + hz

∇× u = det

 i j k
∂
∂x

∂
∂y

∂
∂z

f g h

 = (hy − gz, fz − hx, gx − fy).

Note that ∇.u is a scalar field, and ∇×u is a vector field. The scalar field ∇.u is called the divergence of u,
and is sometimes written as div(u). The vector field ∇×u is called the curl of u, and is sometimes written
curl(u).

In the two-dimensional case, a vector field has the form u = (f, g), where f and g are functions of x and
y. In this context we define

div(u) = fx + gy

curl(u) = det

[
∂
∂x

∂
∂y

f g

]
= gx − fy.

Note that here curl(u) is a scalar field, whereas in the three-dimensional case it is a vector field.

Example 6.7.

(a) For the vector field u = (x2 + y2, y2 + z2, z2 + x2) we have

∇.u =
∂

∂x
(x2 + y2) +

∂

∂y
(y2 + z2) +

∂

∂z
(z2 + x2) = 2x+ 2y + 2z

∇× u = ((z2 + x2)y − (y2 + z2)z, (x2 + y2)z − (z2 + x2)x, (y2 + z2)x − (x2 + y2)y)

= (−2z,−2x,−2y).

(b) For the vector field u = (sin(x), sin(x), sin(x)) we have

∇.u =
∂

∂x
sin(x) +

∂

∂y
sin(x) +

∂

∂z
sin(x) = cos(x) + 0 + 0 = cos(x)

∇× u = (sin(x)y − sin(x)z, sin(x)z − sin(x)x, sin(x)x − sin(x)y)

= (0,− cos(x), cos(x)).
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(c) For the vector field u = (−y, x, z) we have

∇.u =
∂

∂x
(−y) +

∂

∂y
(x) +

∂

∂z
(z) = 0 + 0 + 1 = 1

∇× u = (zy − xz, (−y)z − zx, xx − (−y)y)

= (0, 0, 2).

It works out that the divergence div(u) = ∇.u is positive when the vectors u are spreading out, and
negative when they are coming together.

diverging: ∇.u > 0 converging: ∇.u < 0

Now suppose that u is the velocity vector field for the flow of a fluid. In any region where ∇.u > 0, the flow
is spreading outwards so the pressure and density must be decreasing. In any region where ∇.u < 0, the flow
is coming together so the pressure and density must be increasing. If the fluid is water and the conditions
are not too extreme then it is not possible to have significant changes in density through compression or
decompression, so we must have ∇.u = 0 to a good approximation.

We next consider the geometric meaning of curl(u). In two dimensions, it works out that curl(u) > 0 in
regions where the field is curling anticlockwise, and curl(u) < 0 in regions where it is curling clockwise, and
the absolute value of curl(u) is determined by the strength of the curling.

curl(u) > 0, smaller curl(u) < 0, larger

In three dimensions, the field u can curl around any axis. In this context, curl(u) is also a vector field,
and it will point along the axis of the curling.

We now have all the ingredients needed to formulate Maxwell’s equations for electromagnetism. These
involve:

• The electric field E, which is a vector field.
• The magnetic field B, which is another vector field.
• The current density J, which is also a vector field.
• The charge density ρ, which is a scalar field.
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• Two constants: ε0 ' 8.854× 10−12F/m2 and µ0 ' 1.257× 10−6Hm−1.

The quantities E, B, J and ρ may also depend on time; we write Ė for ∂E/∂t and so on. The various fields
are related by the following equations:

∇.E = ρ/ε0 ∇×E = −Ḃ

∇.B = 0 ∇×B = µ0J + µ0ε0Ė.

This means that:

• The electric field diverges in regions where there is positive charge, and converges in regions where
there is negative charge.

• The magnetic field never diverges or converges.
• Changing magnetic fields cause the electric field to curl.
• Currents cause the magnetic field to curl. Changing electric fields also cause the magnetic field to

curl, but the effect is usually much weaker, because ε0 is small.

Example 6.8. One class of solutions to Maxwell’s equations is as follows. Put c = 1/
√
µ0ε0 ' 3× 108ms−1

(which turns out to be the speed of light), and let α be any constant. We can take J = 0 and ρ = 0 and

E = (0, sin(α(x− ct)), 0)

B = (0, 0, sin(α(x− ct))/c).

We find that

∇.E =
∂

∂y
sin(α(x− ct)) = 0 = ρ/ε0

∇.B =
∂

∂z
sin(α(x− ct))/c = 0

Ė = (0,−αc cos(α(x− ct)), 0)

Ḃ = (0, 0,−α cos(α(x− ct))

∇×E = det

 i j k
∂
∂x

∂
∂y

∂
∂z

0 sin(α(x− ct)) 0

 =

(
0, 0,

∂

∂x
sin(α(x− ct))

)
= (0, 0, α cos(α(x− ct))) = −Ḃ

∇×B = det

 i j k
∂
∂x

∂
∂y

∂
∂z

0 0 sin(α(x− ct))/c

 =

(
0,− ∂

∂x
sin(α(x− ct))/c, 0

)
= (0,−α cos(α(x− ct))/c, 0) = Ė/c2 = µ0ε0Ė.

This shows that we do indeed have a solution to the equations. It represents an electromagnetic wave of
wavelength 1/α moving at speed c in the x-direction.

Example 6.9. Another solution to Maxwell’s equations has E = (−xr−3,−yr−3,−zr−3) with all other

fields (B, J and ρ) being zero. It is clear that Ė = 0 and Ḃ = 0, so the only equations that we need to check
are that ∇.E = 0 and ∇×E = 0. For this we recall that rx = x/r, so

(r−3)x = −3r−4rx = −3xr−5.

In the same way, we have (r−3)y = −3yr−5 and (r−3)z = −3zr−5. Using this we find that

(−xr−3)x = 3x2r−5 − r−3 (−xr−3)y = 3xyr−5 (−xr−3)z = 3xzr−5

(−yr−3)x = 3xyr−5 (−yr−3)y = 3y2r−5 − r−3 (−yr−3)z = 3yzr−5

(−zr−3)x = 3xzr−5 (−zr−3)y = 3yzr−5 (−zr−3)z = 3z2r−5 − r−3.
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This gives

∇.E = (−xr−3)x + (−yr−3)y + (−zr−3)z

= 3x2r−5 − r−3 + 3y2r−5 − r−3 + 3z2r−5 − r−3

= 3(x2 + y2 + z2)r−5 − 3r−3 = 3r2r−5 − 3r−3 = 0.

It also gives

∇×E =
(
(−zr−3)y − (−yr−3)z, (−xr−3)z − (−zr−3)x, (−yr−3)x − (−xr−3)y

)
=
(
3yzr−3 − 3yzr−3, 3xzr−3 − 3xzr−3, 3xyr−3 − 3xyr−3

)
= (0, 0, 0).

This shows that we have a solution to the equations, as claimed. This one represents the electric field of a
single stationary particle at the origin, with no magnetic field.

Example 6.10. Now suppose we have some positive and negative charges near the origin, such that the
total charge is zero, but the charges are spread out a little so that the resulting electric fields do not cancel
exactly. It works out that the resulting electric potential has the form

V =
u.r

r3
=

ax+ by + cz

(x2 + y2 + z2)3/2

for some constant vector u = (a, b, c) (called the dipole moment). We will calculate the corresponding electric
field E = grad(V ). Using the relation (r−3)x = −3xr−5 again, we obtain

Vx =
∂

∂x

(
(ax+ by + cz)r−3

)
= r−3

∂

∂x
(ax+ by + cz) + (ax+ by + cz)

∂

∂x
(r−3)

= r−3a+ (ax+ by + cz)(−3xr−5)

= r−3a− 3r−5(u.r)x.

In the same way, we have

Vy = r−3b− 3r−5(u.r)y

Vz = r−3c− 3r−5(u.r)z,

so

grad(V ) = (Vx, Vy, Vz) = (r−3a− 3r−5(u.r)x, r−3b− 3r−5(u.r)y, r−3c− 3r−5(u.r)z)

= r−3(a, b, c)− 3r−5(u.r)(x, y, z)

= r−3u− 3r−5(u.r)r.

If we want we can rewrite r as r r̂ and cancel an r2 with an r−2 to get

grad(V ) = r−3u− 3r−3(u.r̂)r̂ = r−3(u− 3(u.r̂)r̂).

We next mention some identities that are useful for calculating or thinking about div, grad and curl. Let
u and v be vector fields, let f be a scalar field, and let p be a function of one variable. Then:

∇(f + g) = ∇(f) +∇(g)

∇(fg) = f ∇(g) + g∇(f)

∇(p(f)) = p′(f)∇(f)

∇.(u + v) = ∇.u +∇.v
∇.(fu) = f∇.u +∇(f).u

∇.(u× v) = v.(∇× u)− u.(∇× u)

∇× (u + v) = ∇× u +∇× v

∇× (fu) = f∇× u +∇(f)× u.
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All of these can be verified directly from the definitions. For example, we will check the equation

∇.(u× v) = v.(∇× u)− u.(∇× u).

Suppose that u = (f, g, h) and v = (p, q, r). Then

u× v = det

 i j k
f g h
p q r

 = (gr − hq, hp− fr, fq − gp)

∇.(u× v) = (gr − hq)x + (hp− fr)y + (fq − gp)z
= (gxr + grx − hxq − hqx) + (hyp+ hpy − fyr − fry) + (fzq + fqz − gzp− gpz)
= p(hy − gz) + q(fz − hx) + r(gx − fy) + f(qz − ry) + g(rx − pz) + h(py − qx)

= (p, q, r).(hy − gz, fz − hx, gx − fy)− (f, g, h).(ry − qz, pz − rx, qx − py)

= u.(∇× v)− v.(∇× u).

We now consider second-order derivatives of scalar and vector fields. There are several different ways to
combine the div, grad and curl operators:

scalar field
grad−−−→ vector field

div−−→ scalar field

scalar field
grad−−−→ vector field

curl−−→ vector field

vector field
div−−→ scalar field

grad−−−→ vector field

vector field
curl−−→ vector field

div−−→ scalar field

vector field
curl−−→ vector field

curl−−→ vector field .

(No other combinations make sense. For example, we cannot define curl(div(u)), because div(u) is a scalar
field, and we can only take the curl of a vector field.)

It is important that two of above combinations are automatically zero.

Fact 6.11. (a) For any scalar field f we have curl(grad(f)) = ∇× (∇(f)) = 0.
(b) For any vector field u we have div(curl(u)) = ∇.(∇× u) = 0.

These can be checked directly. For a scalar field f , we have ∇(f) = (fx, fy, fz). After remembering that
fxy = fyx and so on, we find that

∇× (∇(f)) = det

 i j k
∂
∂x

∂
∂y

∂
∂z

fx fy fz

 = (fzy − fyz, fxz − fzx, fyx − fxy) = (0, 0, 0).

Now consider instead a vector field u = (p, q, r). We have

∇× u = det

 i j k
∂
∂x

∂
∂y

∂
∂z

p q r

 = (ry − qz, pz − rx, qx − py),

so

∇.(∇× u) = (ry − qz)x + (pz − rx)y + (qx − py)z

= ryx − qzx + pzy − rxy + qxz − pyz
= pzy − pyz + qxz − qzx + ryx − rxy = 0.

The other combinations can be analysed as follows.

(a) For a scalar field f we have

div(grad(f)) = ∇.(∇(f)) = fxx + fyy + fzz.

This is usually written as ∇2(f), and called the Laplacian of f . Note that the Laplacian of a scalar
field is a scalar field. We can also define the Laplacian of a vector field by the rule

∇2(p, q, r) = (∇2(p),∇2(q),∇2(r)) = (pxx + pyy + pzz, qxx + qyy + qzz, rxx + ryy + rzz).
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Note that the Laplacian of a vector field is again a vector field.
(b) For a vector field u = (p, q, r) we have

grad(div(u)) = ∇(∇.u) = ∇(px + qy + rz) = (pxx + qyx + rzx, pxy + qyy + rzy, pxz + qyz + rzz).

(c) The last remaining combination can be expressed in terms of (a) and (b), by the equation

curl(curl(u)) = ∇× (∇× u) = ∇(∇.u)−∇2(u).

It is straightforward but somewhat lengthy to check this; we will not give the details.

In two dimensions, the situation is similar but simpler:

(a) For any scalar field f we have

div(grad(f)) = ∇.(∇(f)) = fxx + fyy,

which is again called the Laplacian and denoted by ∇2(f).
(b) We also have

curl(grad(f)) = curl(fx, fy) = fyx − fxy = 0.

We will say that a vector field u is incompressible (or solenoidal) if div(u) = 0, and that it is irrotational
(or conservative) if curl(u) = 0.

Example 6.12. (a) For any scalar field f (in two or three dimensions) we have a vector field ∇(f) =
grad(f). The rule curl(grad(f)) = 0 tells us that grad(f) is irrotational.

(b) For any vector field v in three dimensions we have another vector field curl(v). The rule div(curl(v)) =
∇.(∇× v) = 0 tells us that curl(v) is incompressible.

Example 6.13. Consider a vector field of the form

u = (ax+ by + cz, dx+ ey + fz, gx+ hy + iz)

(where a, b, . . . , i are constants). We have

∇.u = (ax+ by + cz)x + (dx+ ey + fz)y + (gx+ hy + iz)z = a+ e+ i

∇× u = det

 i j k
∂
∂x

∂
∂y

∂
∂z

ax+ by + cz dx+ ey + fz gx+ hy + iz

 = (h− f, c− g, d− b).

Thus, u is incompressible when a + e + i = 0, and it is irrotational when h = f , g = c and d = b. In the
irrotational case, we can rewrite the equation for u as

u = (ax+ by + cz, bx+ ey + fz, cx+ fy + iz).

If we put
p = 1

2 (ax2 + ey2 + iz2) + bxy + cxz + fyz,

we find that

px = ax+ by + cz

py = bx+ ey + fz

pz = cx+ fy + iz,

so
∇(p) = (ax+ by + cz, bx+ ey + fz, cx+ fy + iz) = u.

Example 6.14. Consider the two-dimensional vector field

u = (x2 − y2 + 2xy, x2 − y2 − 2xy).

This has

div(u) =
∂

∂x
(x2 − y2 + 2xy) +

∂

∂y
(x2 − y2 − 2xy) = (2x+ 2y) + (−2y − 2x) = 0

curl(u) =
∂

∂x
(x2 − y2 − 2xy)− ∂

∂y
(x2 − y2 + 2xy) = (2x− 2y)− (−2y + 2x) = 0,

so it is both incompressible and irrotational.
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If u is an irrotational vector field, a potential function for u is a scalar field p such that ∇(p) = u. (Because
of Fact 6.11, only irrotational fields can have a potential.) Potential functions always exist (but they may
be multi-valued), and it is often useful to find them.

Example 6.15. Consider the vector field u = (y + z, z + x, x+ y). This has

∇× u = det

 i j k
∂
∂x

∂
∂y

∂
∂z

y + z z + x x+ y

 = (1− 1, 1− 1, 1− 1) = 0,

so it is irrotational. It therefore makes sense to look for a potential function, or in other words a function
p(x, y, z) with

px = y + z (A)

py = z + x (B)

pz = x+ y. (C)

As we want px = y + z, we must have

p =

∫
y + z dx = xy + xz + arbitrary constant .

We will call the constant here q. Note that as we integrated with respect to x, the quantity q does not need
to be completely constant, it just needs to be independent of x (so qx = 0). We thus have

p = xy + xz + q. (D)

We can differentiate (D) with respect to y to get

py = x+ qy. (E)

On the other hand, equation (B) says that py = x + z. By comparing (B) and (E) we see that qy = z.
Integrating this with respect to y gives

q =

∫
z dy = yz + r, (F)

where r is “constant” in the sense that it is independent of both x and y, so it can only depend on z. We
can substitute (F) in (D) to get

p = xy + xz + q = xy + xz + yz + r. (G)

We can differentiate (G) with respect to z to get

pz = x+ y + rz. (H)

On the other hand, equation (C) says that pz = x+ y. By comparing (C) and (H) we see that rz = 0. As r
can only depend on z and we have rz = 0 we see that r is a genuine constant. We can choose it to be zero,
and we find that the function p = xy + xz + yz is a potential function for u.

Example 6.16. Consider the vector field u = (0, 0, x2). This has

∇× u = det

 i j k
∂
∂x

∂
∂y

∂
∂z

0 0 x2

 = (0,−2x, 0) 6= 0,

so it is not irrotational, so it cannot have a potential function. We will nonetheless try to find one, and see
what goes wrong. A potential function p would have to have (px, py, pz) = (0, 0, x2). As px = py = 0, we see
that p can only depend on z. That means that the derivative pz also depends only on z, so we cannot have
pz = x2. Thus, there is no potential function.

Example 6.17. Consider again the two-dimensional vector field

u = (x2 − y2 + 2xy, x2 − y2 − 2xy).
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We saw in Example 6.14 that this is irrotational, so it has a potential function p, satisfying px = x2−y2+2xy
and py = x2 − y2 − 2xy. Integrating the first of these gives

p =

∫
x2 − y2 + 2xy dx = 1

3x
3 − xy2 + x2y + q,

where q depends only on y. This gives py = −2xy+x2+qy, but py is supposed to be equal to x2−y2−2xy, so
we must have qy = −y2, which gives q = − 1

3y
3 (plus a constant, which we may take to be zero). Altogether

this gives

p = 1
3x

3 − xy2 + x2y − 1
3y

3.

Example 6.18. Consider the vector field u =

(
−y

x2 + y2
,

x

x2 + y2
, 0

)
.

We have

∇× u = det

 i j k
∂
∂x

∂
∂y

∂
∂z

−y
x2+y2

x
x2+y2 0

 =

(
0, 0,

∂

∂x

(
x

x2 + y2

)
+

∂

∂y

(
y

x2 + y2

))
The relevant partial derivatives are

∂

∂x

(
x

x2 + y2

)
=

1.(x2 + y2)− x.2x
(x2 + y2)2

=
y2 − x2

(x2 + y2)2

∂

∂y

(
y

x2 + y2

)
=

1.(x2 + y2)− y.2y
(x2 + y2)2

=
x2 − y2

(x2 + y2)2
,

and when we add these together we get zero. This means that ∇× u = 0, so u is irrotational. It therefore
makes sense to look for a potential function p, which must satisfy

∇(p) = (px, py, pz) =

(
−y

x2 + y2
,

x

x2 + y2
, 0

)
.

Looking back to Example 6.6, we see that the required function is p = θ = arctan(y/x). This is most naturally
thought of as a multivalued function: for example, the value at (−1, 0, 0) could be any odd multiple of π.
This is bound up with the fact that u is not well-defined on the z-axis (where the formula x/(x2+y2) involves
division by zero). There is much more that could be said about this kind of phenomenon (with applications
to magnetic fields around superconductors, for example) but we will not explore that here.

7. Vector fields in polar coordinates

7.1. Two dimensions. At any point in the plane, we can define vectors er and eθ as shown:

er
eθ

i

j

In situations with circular symmetry, it is often more natural to describe vector fields in terms of er and eθ
rather than i and j. One can translate between the two descriptions as follows:

er = cos(θ)i + sin(θ)j eθ = − sin(θ)i + cos(θ)j

i = cos(θ)er − sin(θ)eθ j = sin(θ)er + cos(θ)eθ.

Here are two examples of vector fields described in terms of er and eθ:
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u = sin(θ)er u =
√
r(eθ + er/10)

We will need to express the operators grad, div and curl in terms of polar coordinates.

Fact 7.1. (a) For any two-dimensional scalar field f (expressed as a function of r and θ) we have

∇(f) = grad(f) = fr er + r−1fθ eθ.

(b) For any 2-dimensional vector field u = m er + p eθ (where m and p are expressed as functions of r
and θ) we have

div(u) = r−1m+mr + r−1pθ

curl(u) = r−1p+ pr − r−1mθ.

Note that the product rule gives (rm)r = m+ rmr and (rp)r = p+ r pr. Using this, we can rewrite
the above equations as

div(u) = r−1 ((rm)r + pθ)

curl(u) = r−1 ((rp)r −mθ) =
1

r
det

[
∂
∂r

∂
∂θ

m rp

]
.

(c) For any two-dimensional scalar field f we have

∇2(f) = r−1fr + frr + r−2fθθ = r−1(rfr)r + r−2fθθ

We will explain part (a) of the above. Consider the field u = fr er + r−1fθ eθ; we need to show that
this is the same as grad(f). For this, we need a version of the two-variable chain rule. Suppose we make
a small change of δr to r. This will cause a change of δx ' xr δr to x, which in turn causes a change of
approximately fx δx ' fx xr δr to f . At the same time, our change in r also causes a change of δy ' yr δr
to x, which in turn causes a change of approximately fy δy = fy yr δr to f . Altogether, the change in f is
δf ' (fxxr + fyyr)δr. By passing to the limit δr → 0, we see that fr = fxxr + fyyr. Similarly, we have
fθ = fxxθ + fyyθ. Moreover, we can differentiate the formulae

x = r cos(θ) y = r sin(θ)

to get

xr = cos(θ) yr = sin(θ)

xθ = −r sin(θ) yθ = r cos(θ),
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so

fr = fxxr + fyyr = cos(θ)fx + sin(θ)fy

fθ = fxxθ + fyyθ = −r sin(θ)fx + r cos(θ)fy

u = fr er + r−1fθ eθ

= fx cos(θ)er + fy sin(θ)er − fx sin(θ)eθ + fy cos(θ)eθ

= fx (cos(θ)er − sin(θ)eθ) + fy (sin(θ)er + cos(θ)eθ)

= fxi + fyj = grad(f).

The formulae for div(u) and curl(u) in polar coordinates can be checked in a similar way, but the calcu-
lations are lengthy and not very illuminating, so we will omit them.

Example 7.2. Consider the function f = rn. Clearly fr = nrn−1 and fθ = 0, so

grad(f) = fr er + r−1fθ eθ = nrn−1er.

Note also that r = (x, y) = (r cos(θ), r sin(θ)) = r er, so er = r/r, so we can rewrite the above as grad(rn) =
nrn−2r. This is the same as the formula we obtained in Example 6.1(c).

Example 7.3. Consider the function f = θ. Clearly fr = 0 and fθ = 1, so

grad(f) = fr er + r−1fθ eθ = r−1eθ = r−2(−r sin(θ), r cos(θ)) =

(
−y

x2 + y2
,

x

x2 + y2

)
.

This is the same as the formula we obtained in Example 6.6.

Example 7.4. Consider the vector field u =
√
r(eθ + er/10) from the plot above. This is u = per + qeθ

where p = r
1
2 /10 and q = r

1
2 , so pθ = qθ = 0 and pr = r−

1
2 /20 and qr = r−

1
2 /2. It follows that

div(u) = r−1p+ pr + r−1qθ

= r−1r
1
2 /10 + r−

1
2 /20 + 0 = 3r−

1
2 /20

curl(u) = r−1q + qr − r−1pθ

= r−1r−
1
2 + r−

1
2 /2− 0 = 3r−

1
2 /2.

7.2. Cylindrical polar coordinates. In cylindrical polar coordinates we use unit vectors er, eθ and ez as
shown below:

er

eθ

ez

Thus, er and eθ are the same as for two-dimensional polar coordinates, and ez is just the vertical unit
vector k. The equations are:

er = cos(θ)i + sin(θ)j eθ = − sin(θ)i + cos(θ)j ez = k

i = cos(θ)er − sin(θ)eθ j = sin(θ)er + cos(θ)eθ k = ez.
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The rules for div, grad and curl are as follows:

Fact 7.5. (a) For any three-dimensional scalar field f (expressed as a function of r, θ and z) we have

∇(f) = grad(f) = fr er + r−1fθ eθ + fzez.

(b) For any three-dimensional vector field u = m er + p eθ + q ez (where m, p and q are expressed as
functions of r, θ and z) we have

div(u) = r−1m+mr + r−1pθ + qz = r−1(rm)r + r−1pθ + qz

curl(u) =
1

r
det

er reθ ez
∂
∂r

∂
∂θ

∂
∂z

m rp q

 .
(c) For any three-dimensional scalar field f we have

∇2(f) = r−1fr + frr + r−2fθθ + fzz = r−1(rfr)r + r−2fθθ + fzz.

Example 7.6. Consider the vector field u given in cylindrical polar coordinates by u = r(eθ + ez). Here
m = 0 and p = q = r, so

curl(u) =
1

r
det

er reθ ez
∂
∂r

∂
∂θ

∂
∂z

0 r2 r


=

1

r

((
∂

∂θ
(r)− ∂

∂z
(r2)

)
er −

(
∂

∂r
(r)− ∂

∂z
(0)

)
reθ +

(
∂

∂r
(r2)− ∂

∂θ
(0)

)
ez

)
=

1

r
(−reθ + 2rez) = 2ez − eθ.

7.3. Spherical polar coordinates. In spherical polar coordinates we use unit vectors er, eθ and eφ as
shown below:

er

eθ

eφ

Note that eθ has the same meaning as it did in the cylindrical case, but er has changed. It used to be
the unit vector pointing horizontally away from the z-axis, but now it points directly away from the origin.
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The vectors er, eφ and eθ are related to i, j and k as follows.

er = sin(φ) cos(θ)i + sin(φ) sin(θ)j + cos(φ)k

eφ = cos(φ) cos(θ)i + cos(φ) sin(θ)j− sin(φ)k

eθ = − sin(θ)i + cos(θ)j

i = sin(φ) cos(θ)er + cos(φ) cos(θ)eφ − sin(θ)eθ

j = sin(φ) sin(θ)er + cos(φ) sin(θ)eφ + cos(θ)eθ

k = cos(φ)er − sin(φ)eφ.

The rules for div, grad and curl in spherical polar coordinates are as follows:

Fact 7.7. (a) For any three-dimensional scalar field f (expressed as a function of r, φ and θ) we have

∇(f) = grad(f) = fr er + r−1fφ eφ + (r sin(φ))−1fθeθ.

(b) For any three-dimensional vector field u = m er + p eφ + q eθ (where m, p and q are expressed as
functions of r, φ and θ) we have

div(u) = r−2(r2m)r + (r sin(φ))−1(sin(φ)p)φ + (r sin(φ))−1qθ

curl(u) =
1

r2 sin(φ)
det

er reφ r sin(φ)eθ
∂
∂r

∂
∂φ

∂
∂θ

m rp r sin(φ)q

 .
(c) For any three-dimensional scalar field f we have

∇2(f) = r−2(r2fr)r + (r2 sin(φ))−1(sin(φ)fφ)φ + (r2 sin2(φ))−1fθθ.

Example 7.8. The electric potential created by a point charge at the origin is V = A/r, where A is

a constant and r =
√
x2 + y2 + z2 (as in spherical polar coordinates). The corresponding electric field

is E = grad(V ). As there are no magnetic fields, and no charges away from the origin, we should have
div(E) = 0 and curl(E) = 0. We will check that this all works out as expected.

First, we have Vr = −A/r2 and Vφ = Vθ = 0, so the rule

grad(V ) = Vr er + r−1Vφ eφ + (r sin(φ))−1Vθeθ

just gives
E = grad(V ) = −Ar−2er.

In other words, we have E = mer + peφ + qeθ with m = −Ar−2 and p = q = 0. The general rule for the
divergence is

div(E) = r−2(r2m)r + (r sin(φ))−1(sin(φ)p)φ + (r sin(φ))−1qθ.

As p = q = 0, the second and third terms are zero. In the first term, we have r2m = −A, which is constant,
so (r2m)r = 0 as well. This means that div(E) = 0 as expected.

Finally, we have

curl(E) =
1

r2 sin(φ)
det

er reφ r sin(φ)eφ
∂
∂r

∂
∂φ

∂
∂θ

m rp r sin(φ)q

 =
1

r2 sin(φ)
det

 er reφ r sin(φ)eφ
∂
∂r

∂
∂φ

∂
∂θ

−Ar−2 0 0

 .
As ∂

∂φ (−Ar−2) = ∂
∂θ (−Ar−2) = 0, we see that all terms vanish so curl(E) = 0 as well.

8. Curves

Often we need to deal with curves in three-dimensional space. For example:

(a) A wire in an electrical machine is a curve. To calculate the magnetic field created by a current in
the wire, or the force exerted on the wire by an externally applied magnetic field, we need equations
for the curve.

(b) The path of a moving particle over time defines a curve. If the particle is charged then it will feel a
force from any electric or magnetic fields; to understand the effect of this, we need various equations
relating the position, velocity, force and acceleration to the fields.
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We can describe a curve by giving the x, y and z coordinates (or equivalently, the position vector r =
(x, y, z)) in terms of another parameter t. (In the case of a moving particle we often take t to be time, but
that is not compulsory.)

Example 8.1. The equation

r = (x, y, z) = (at, b cos(t), b sin(t))

describes a helix winding around the x-axis.

This is the path followed by an electron moving in a uniform magnetic field. It could also describe a wire
wound round a cylinder.

Example 8.2. Suppose that a car with axles of length a and wheels of radius b drives at constant speed c
along the x-axis. A pebble stuck in the front left tyre will move along the curve with equation

r = (ct, a/2, b)− b(sin(ct/b), 0, cos(ct/b)) = (ct− b sin(ct/b), a/2, b− b cos(ct/b)).

The first term (ct, a/2, b) reflects the overall motion of the car, and the second term comes from the rotation
of the wheel.

Example 8.3. A thrown ball will follow a parabolic path like

r = (at, bt, ct− dt2)

for some constants a, . . . , d.

Often we need to integrate along a curve C. The general idea should by now be familiar. We first divide
C into many small pieces, each running from some position r to a nearby position r + δr. Each such piece
will give a contribution to the integral, and we add up the contributions to get an approximation to the
required value. For the exact value, we pass to the limit where the length of the small pieces tends to zero.

(a) The length of the curve is approximately the sum of the lengths |δr| over all the small pieces. The
exact length is denoted by

∫
C
|dr|.

(b) The vector from the beginning to the end of the curve is the sum of the vectors δr over all the small
pieces. In the limit we denote this by

∫
C
dr.

(c) If a particle moves along a curve C through a force field F, then the work done against the force is
−
∫
C
F.dr.
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For integrals of type (b) and (c), it makes a difference which direction we follow when traversing the
curve: the answer we get when traversing the curve backwards will be the negative of the answer we get
when traversing the curve forwards.

In practice, we calculate these integrals as follows. We parametrise the curve as r = (x(t), y(t), z(t)) for
some range of values of t (say a ≤ t ≤ b), and we write ẋ = dx/dt and so on. We then have

dr =
dr

dt
dt = ṙdt = (ẋ dt, ẏ dt, ż dt)

|dr| =
√
ẋ2 + ẏ2 + ż2 dt,

so

length(C) =

∫
C

|dr| =
∫ b

t=a

√
ẋ2 + ẏ2 + ż2 dt

work =

∫
C

F.dr =

∫ b

t=a

F.ṙ dt

and so on.

Example 8.4. Let C be the curve from (0, 0, 0) to (6, 12, 8) given by

r = (x, y, z) = (6t, 3
√

2t2, 2t3)

for 0 ≤ t ≤ 1. We will calculate the length of this curve. We have

dr = (6, 6
√

2t, 6t2) dt

|dr| =
√

36 + 72t2 + 36t4 dt = 6
√

1 + 2t2 + t4 dt = 6(1 + t2) dt,

so

length =

∫
C

|dr| =
∫ 1

t=0

6(1 + t2) dt =

[
6t+ 2t3

]1
t=0

= 8.

Example 8.5. Consider a particle moving along a path r = (x, y, z) = (t, 0, t/2) (for 0 ≤ t ≤ 1) against a
force field F = (y2 + z2 − 1, 0, 0). (This could reasonably model the wind force in a wind tunnel of radius
one centred on the x-axis.) Note that

dr = (1, 0, 1/2) dt

F = (y2 + z2 − 1, 0, 0) = (t2/4− 1, 0, 0)

F.dr = (t2/4− 1) dt.

The work done against the force is therefore

work = −
∫
C

F.dr =

∫ 1

t=0

(1− t2/4) dt =

[
t− t3/12

]1
t=0

=
11

12
.

If f is a function of one variable, it is a basic fact that∫ b

x=a

f ′(x) dx = f(b)− f(a).

(This is known as the Fundamental Theorem of Calculus.) There is an analogous principle for path integrals,
as follows:

Fact 8.6. For any curve C from a point a to a point b, and any scalar field p, we have∫
C

∇(p).dr = p(b)− p(a).

The reason is simple: for any short piece of the curve, the quantity

∇(p).δr = pxδx+ pyδy + pzδz

is (to a good approximation) the change in p along that piece, and when we add up all these small changes,
we get the overall change in p from a to b.

This gives us the following method.
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Method 8.7. Suppose we have a curve C from a to b, and we want to calculate the integral I =
∫
C
F.dr for

some vector field F. Suppose that F is conservative. We can then find a potential function p with ∇(p) = F,
and it will follow that

∫
C
F.dr = p(b)− p(a).

Note that in this method, we do not need to know anything about C except where it starts and ends. This
often makes calculations much easier.

Example 8.8. Let C be given by (x, y, z) = (1 − 2t2, 1, 2t3) for 0 ≤ t ≤ 1, and consider the vector field
F = (−y/(x2 + y2), x/(x2 + y2), 0). It would be very unpleasant to calculate

∫
C
F.dr directly. However,

we know from Example 6.18 that F is conservative, with the polar coordinate function θ as a potential, so∫
C
F.dr is just the change in θ from the start of C to the end of C. At the start of C we have t = 0 so

(x, y, z) = (1, 1, 0), so θ = π/4. At the end we have t = 1, so (x, y, z) = (−1, 1, 2), which lies above the point
(−1, 1, 0) in the xy-plane; this means that θ = 3π/4. This means that∫

C

F.dr =
3π

4
− π

4
=
π

2
.

We have cheated a little bit here (although our answer is in fact correct) by ignoring the multi-valued
nature of θ. This becomes important if we need to deal with curves that wind several times around the
z-axis. However, we will not explore this further at the moment.

If we have trouble finding a potential function, it may be better to use the following approach:

Method 8.9. Suppose we have a curve C from a to b, and we want to calculate the integral I =
∫
C
F.dr

for some vector field F. Suppose that F is conservative. We can then find a different curve C ′ from a to b
for which the calculation is easier, and then I will be equal to

∫
C′ F.dr.

The reason why this method works is that both
∫
C
F.dr and

∫
C′ F.dr are equal to p(b) − p(a), where p

is the potential function. For this to be valid, we need to know that p exists (so we must check that F is
conservative) but we do not actually need to find p.

Example 8.10. Let C be the helical path given by r = (t, cos(10πt), sin(10πt)) for 0 ≤ t ≤ 1, which runs
from a = (0, 1, 0) to b = (1, 1, 0). Let F be the vector field (yz, xz, xy). We would like to calculate

∫
C
F.dr.

We first check whether F is conservative, by finding the curl:

∇× F = det

 i j k
∂
∂x

∂
∂y

∂
∂z

yz xz xy

 = (x− x, y − y, z − z) = 0.

As F is conservative, we can replace C by a simpler path without changing the integral. In particular, we
can use the straight line L given by r = (x, y, z) = (t, 1, 0). On L we have F = (0, 0, t) and dr = (1, 0, 0)dt
so F.dr = 0, so we conclude that

∫
C
F.dr =

∫
L
F.dr = 0.

Example 8.11. Let C and L be as in the last example, and consider the vector field G = (0,−z, y). This
one has

∇×G = det

 i j k
∂
∂x

∂
∂y

∂
∂z

0 −z y

 = (1− (−1), 0− 0, 0− 0) = (2, 0, 0) 6= 0.

As G is not conservative, the integrals
∫
C
G.dr and

∫
L
G.dr need not be the same. (They could be the same

by coincidence, but that would be unlikely.) On C we have

r = (x, y, z) = (t, cos(10πt), sin(10πt))

dr = (ẋ, ẏ, ż) dt = (1,−10π sin(10πt), 10π cos(10πt)) dt

G = (0,−z, y) = (0,− sin(10πt), cos(10πt))

G.dr = 10π(sin2(10πt) + cos2(10πt)) dt = 10π dt∫
C

G.dr =

∫ 1

t=0

10π dt = 10π.
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On L we have

r = (x, y, z) = (t, 1, 0)

dr = (ẋ, ẏ, ż) dt = (1, 0, 0) dt

G = (0,−z, y) = (0, 0,−1)

G.dr = 0∫
L

G.dr = 0.

Thus, the integrals over C and L are different, as expected.

We can also use Method 8.7 in reverse, as follows.

Method 8.12. Let F be an conservative vector field. We can then define a potential function for F by the
rule

p(a, b, c) = the integral

∫
C

F.dr, for any curve C from (0, 0, 0) to (a, b, c) .

The answer will not depend on the choice of curve, so we can choose whichever curve makes the integral
easiest. A straight line is often good, but sometimes a broken line (from (0, 0, 0) to (a, 0, 0) to (a, b, 0) to
(a, b, c), for example) is better.

We should emphasis again that this is only valid for conservative fields. Fields that are not conservative
do not have a potential function.

If you consider carefully the logical relationship between the various statements made above, you will see
that we have not really justified the above method. It is possible to close this gap, but we will not do so
here.

Example 8.13. In Example 8.10, we checked that the vector field F = (yz, xz, xy) is conservative, so it has
a potential function p. To find p(a, b, c), we evaluate

∫
L
F.dr, where L is the straight line from (0, 0, 0) to

(a, b, c). This can be parametrised by r = (x, y, z) = (ta, tb, tc) for 0 ≤ t ≤ 1, which gives

dr = (a, b, c)dt

F = (t2bc, t2ac, t2ab)

F.dr = 3t2abc dt

p(a, b, c) =

∫
L

F.dr =

∫ 1

t=0

3t2abc dt =

[
t3abc

]1
t=0

= abc.

It is convenient to write this calculation in terms of a, b and c, to avoid confusion between the end of the
path (where (x, y, z) = (a, b, c)) and the points along the path (where (x, y, z) = (ta, tb, tc)). However, we
can restate the final answer as p(x, y, z) = xyz, which is more convenient for later use.

Everything that we have done so far works equally well in two dimensions or three dimensions. Now,
however, we will consider a different kind of integral that only makes sense in the plane. The picture below
shows a vector field F and a curve C, with the vector dr pointing along the curve, and another vector dn of
the same length perpendicular to dr.
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C

dr

dn

The integral
∫
C
F.dr measures the extent to which F points along the curve. For some purposes, however,

we want to measure the flow of F across the curve, in which case we want to evaluate
∫
C
F.dn rather than∫

C
F.dr.
Note that dr = (dx, dy) = (ẋ, ẏ)dt, and dn is obtained by rotating this through a quarter turn clockwise,

so dn = (dy,−dx) = (ẏ,−ẋ)dt.

dr=(dx,dy)

dn=(dy,−dx)

Example 8.14. Consider the vector field F = (x2 − y2, 2xy) and the straight line L from (1, 0) to (0, 1),
given by r = (1− t, t) for 0 ≤ t ≤ 1.
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dr dn

This gives dr = (−1, 1) dt and

F = ((1− t)2 − t2, 2(1− t)t) = (1− 2t, 2t− 2t2),

so

F.dr = (1− 2t, 2t− 2t2).(−1, 1)dt = (4t− 1− 2t2)dt.

Integrating this, we get ∫
C

F.dr =

∫ 1

t=0

(4t− 1− 2t2)dt =

[
2t2 − t− 2

3 t
3

]1
t=0

= 1
3 .

On the other hand, we have dn = (dy,−dx) = (1, 1) dt so

F.dn = (1− 2t2) dt,

so ∫
C

F.dn =

∫ 1

t=0

(1− 2t2) dt =

[
t− 2

3 t
3

]1
t=0

= 1
3 .

Example 8.15. Let C be the unit circle, and take F = (x+ 2y, 3x+ 4y). We will calculate
∫
C
F.dn, which

is the flow of F crossing from inside the circle to outside the circle.

dr
dn

66



We parametrise C as r = (x, y) = (cos(t), sin(t)) for 0 ≤ t ≤ 2π. This gives

dr = (ẋ, ẏ)dt = (− sin(t), cos(t)) dt

dn = (ẏ,−ẋ)dt = (cos(t), sin(t)) dt

F = (cos(t) + 2 sin(t), 3 cos(t) + 4 sin(t))

F.dn = (cos2(t) + 5 sin(t) cos(t) + 4 sin2(t))dt.

Now ∫ 2π

0

sin(t) cos(t) dt = 1
2

∫ 2π

0

sin(2t) dt = 0∫ 2π

0

sin2(t) dt =

∫ 2π

0

cos2(t) dt = π

so ∫
C

F.dn =

∫ 2π

0

(cos2(t) + 5 sin(t) cos(t) + 4 sin2(t))dt = π + 0 + 4π = 5π.

9. Integral theorems

Some important facts about electromagnetism are as follows:

(a) For any three-dimensional region, the total electric field crossing the boundary of the region is ε−10

times the total charge in the region.
(b) On the other hand, the magnetic field crossing the boundary always cancels out to give a total of

zero.
(c) Now suppose we have a surface S in three-dimensional space. Suppose that has a boundary that is a

closed curve C (so the surface could be a disk or a hemispherical bowl, but not a complete sphere).
Then the circulation of E around C is minus the rate of change of the total magnetic field passing
through S.

(d) Similarly, the circulation of B around C is µ0 times the rate of change of the current passing through

S (including the “displacement current” ε0Ė).

These are not really new physical facts; they are mathematically equivalent to Maxwell’s equations, which
we discussed earlier. Maxwell’s equations told us about the values of scalar and vector fields and their
derivatives at every point in space. The above statements are about various kinds of integrals of such scalar
and vector fields over curves, surfaces and three-dimensional regions. The main point of this final section of
the course is to understand why these integral statements are the same as the earlier differential statements.

9.1. The two-dimensional divergence theorem. Let D be a region in the plane. The edge of the region
will be a curve, which we call C. For any vector field u, we can consider the integral

∫
C
u.dn measuring

the flux of u across C. This kind of integral depends on the direction in which we traverse the curve. We
will always traverse in the direction which keeps the region D on our left. This means that we are basically
going anticlockwise, although it may not always seem that way if C has a complicated shape. Recall also
that dn is defined to be the vector obtained by turning dr through a quarter turn clockwise, so it points to
the right of the direction of travel, and thus away from the region on the left.
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In this direction

we keep the region on the left

so dn points outwards

In this direction

we keep the region on the right

so dn points inwards

The two-dimensional divergence theorem says that for any vector field u that is well-behaved everywhere
in D, we have ∫∫

D

∇.u dA =

∫
C

u.dn.

Here “well-behaved” means that there are no discontinuous jumps (as with a square wave) or kinks (as with
a sawtooth). Functions like 1/(x2 + y2) (which blows up to infinity at the origin) are allowed if the origin
lies outside D, but disallowed if the origin is inside D.

It is not too hard to see roughly why the theorem should be true. We can imagine that the vector field
is describing the flow of some kind of particles. In regions where ∇.u > 0 the flow lines are spreading apart
which means that new particles must be being created. In regions where ∇.u < 0 the flow lines are coming
together which means that particles are being destroyed. The net rate of creation of particles is given by the
integral

∫∫
D
∇.u dA. This rate of creation must be balanced the net flow of particles crossing the boundary

curve C to leave the region, which is given by
∫
C
u.dn.

div(u) > 0 div(u) = 0 div(u) < 0

We can give a slightly more formal argument as follows. We can write u = (p, q) for some scalar functions
p and q, so ∇.u = px + qy. We will show that

∫∫
D

qy dA =

∫
C

(0, q).(dy,−dx) = −
∫
C

q dx (A)∫∫
D

px dA =

∫
C

(p, 0).(dy,−dx) =

∫
C

p dy. (B)

Adding these two gives
∫∫
D
∇.u dA =

∫
C
u.dn as claimed. For the first of these equations, we will assume

for simplicity that the curve region D has the following general shape:
68



Lower boundary C0: y = f(x)

Upper boundary C1: y = g(x)

a b

Recall that for any function m(y), we have∫ y1

y=y0

m′(y)dy = m(y1)−m(y0).

We can fix x and regard q(x, y) as a function of y alone, and we get∫ y1

y=y0

qy(x, y) dy = q(x, y1)− q(x, y0).

This works for any y0 and y1. In particular, it works for y0 = f(x) and y1 = g(x), so we have∫ g(x)

y=f(x)

qy(x, y) dy = q(x, g(x))− q(x, f(x)).

Note that the right hand side is the change in q from the bottom boundary of D to the top boundary. We
now integrate both sides:∫ b

x=a

∫ g(x)

y=f(x)

qy(x, y) dy dx =

∫ b

x=a

q(x, g(x)) dx−
∫ b

x=a

q(x, f(x)) dx. (C)

The left hand side is
∫∫
D
qy dA.

We can parametrise the lower boundary C0 as y = f(x) for a ≤ x ≤ b. This gives∫
C0

q(x, y) dx =

∫ b

x=a

q(x, f(x))dx. (D)

We could also parametrise the upper boundary C1 as y = g(x) for a ≤ x ≤ b. However, this runs along C1

keeping D on the right, but we are supposed to go in the opposite direction, keeping D on the left. The
integral in the wrong direction is minus the integral in the right direction, we we see that∫

C1

q(x, y) dx = −
∫ b

x=a

q(x, g(x))dx. (E)

After substituting (D) and (E) in (C) we see that∫∫
D

qy dA = −
(∫

C0

qy dy +

∫
C1

qy dy

)
= −

∫
C

qy dy,

which verifies equation (A). Equation (B) can be checked in the same way, except that we need to do the
outer integral with respect to y and the inner integral with respect to x.

Example 9.1. Let D be the disc where x2+y2 ≤ m2, so C is a circle of radius m. Take u = (ax+by, cx+dy)
for some constants a, b, c and d. Then div(u) = (ax + by)x + (cx + dy)y = a + d, so

∫∫
D

div(u)dA =
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(a+ d)area(D)= πm2(a+ d). On the other hand, we can parametrise C by r = (x, y) = (m cos(t),m sin(t)),
so dn = (ẏ,−ẋ)dt = (m cos(t),m sin(t)) dt. On C we also have

u = (ax+ by, cx+ dy) = (am cos(t) + bm sin(t), cm cos(t) + dm sin(t))

so

u.dn = (am cos(t) + bm sin(t))(m cos(t))dt+

(cm cos(t) + dm sin(t))(m sin(t))dt

= m2(a cos2(t) + (b+ c) sin(t) cos(t) + d sin2(t))dt

=
m2

2
(a+ a cos(2t) + (b+ c) sin(2t) + d− d cos(2t))

=
m2

2
((a+ d) + (a− d) cos(2t) + (b+ c) sin(2t))∫

C

u.dn =
m2

2

[
(a+ d)t+ 1

2 (a− d) sin(2t)− 1
2 (b+ c) cos(2t)

]2π
t=0

=
m2

2
2π(a+ d) = πm2(a+ d).

Example 9.2. Let D be the rectangle as shown below. The boundary curve C consists of the four segments
C1, C2, C3 and C4.

D

(0,0) (a,0)

(0,b) (a,b)

C1

C3

C4 C2

Consider the horizontal vector field u = (e−x−y, 0). This has div(u) = ∂
∂x (e−x−y) = −e−x−y = −e−xe−y, so∫∫

D

div(u)dA = −
∫ a

x=0

e−x dx

∫ b

y=0

e−y dy = −
[
− e−x

]a
x=0

[
− e−y

]b
y=0

= −(1− e−a)(1− e−b) = e−a + e−b − e−a−b − 1.

On C1 and C3 the normal dn is vertical but u is horizontal so u.dn = 0. On C2 we have dn = (1, 0)dy and
x = a so u = (e−a−y, 0) so u.dn = e−a−ydy so∫

C2

u.dn =

∫ b

y=0

e−a−ydy =

[
− e−a−y

]b
y=0

= e−a − e−a−b

We can parametrise C4 in the right direction by (x, y) = (0, b− t) for 0 ≤ t ≤ b. This gives dn = (ẏ,−ẋ)dt =
(−1, 0)dt and u = (e−x−y, 0) = (et−b, 0) so u.dn = −et−b so∫

C4

u.dn =

∫ b

t=0

−et−b dt =

[
− et−b

]b
t=0

= −1 + e−b

This gives ∫
C

u.dn = (e−a − e−a−b) + (−1 + e−b) = e−a + e−b − e−a−b − 1 =

∫∫
D

div(u)dA

as expected.
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Example 9.3. The picture shows the curve C with equations

x = 2 cos(t) + cos(2t) y = 2 sin(t)− sin(2t)

(for 0 ≤ t ≤ 2π). This is called the deltoid curve.

D

C

This curve encloses a region D. It is hard to find the area of D directly. However, we can evaluate it by a
trick using the divergence theorem. Consider the vector field F = (x, 0), so div(F) = ∂x/∂x + ∂0/∂y = 1,
so
∫∫
D

div(F)dA = area(D). The Divergence Theorem tells us that this is the same as
∫
C
F.dn. Here

dn = (ẏ,−ẋ) dt = (2 cos(t)− 2 cos(2t), 2 sin(t) + 2 sin(2t)) dt

F = (x, 0) = (2 cos(t) + cos(2t), 0)

F.dn = (2 cos(t)− 2 cos(2t))(2 cos(t) + cos(2t))

= 4 cos2(t)− 2 cos(t) cos(2t)− 2 cos2(2t)

= (2 + 2 cos(2t))− (cos(3t) + cos(t))− (1 + cos(4t))

= 1− cos(t) + 2 cos(2t)− cos(3t)− cos(4t)∫ 2π

t=0

F.dn = 2π

so we conclude that the area of D is 2π.

9.2. Green’s theorem. Let D be a region in the plane whose boundary is a closed curve C. Green’s
theorem says that for any vector field u that is well-behaved everywhere in D, we have

∫∫
D

curl(u) dA =

∫
C

u.dr.

To see this, let v be the field obtained by turning u clockwise by π/2.
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u and dr v and dn

We can apply the divergence theorem to v to get
∫∫
D

div(v)dA =
∫
C
v.dn. If u = (p, q) then v = (q,−p),

so div(v) = qx − py = curl(u) and

v.dn = (q,−p).(dy,−dx) = p dx+ q dy = (p, q).(dx, dy) = u.dr

so ∫∫
D

curl(u) dA =

∫
C

u.dr.

as claimed

Example 9.4. Let D be the unit disc, so the boundary curve C is the unit circle. Let u be the vector field
(x3, x3). Green’s Theorem tells us that

∫∫
D

curl(u) dA =
∫
C
u.dr. We will check this by evaluating both

sides. First, we have

curl(u) = det

[
∂
∂x

∂
∂y

x3 x3

]
=

∂

∂x
(x3)− ∂

∂y
(x3) = 3x2 − 0 = 3x2.

We will evaluate
∫∫
D

curl(u) dA using polar coordinates, so x = r cos(θ) and dA = r dr dθ. This gives∫∫
D

curl(u) dA =

∫ 2π

θ=0

∫ 1

r=0

3(r cos(θ))2 r dr dθ

= 3

(∫ 2π

θ=0

cos2(θ)dθ

)(∫ 1

r=0

r3 dr

)
= 3× π × (1/4) = 3π/4.

On the other side, we can parametrise C as (x, y) = (cos(θ), sin(θ)) (for −π ≤ θ ≤ π), which gives

dr = (− sin(θ), cos(θ)) dθ

u = (x3, x3) = (cos3(θ), cos3(θ))

u.dr = (cos4(θ)− sin(θ) cos3(θ)) dθ.

We will need to rewrite this in a form that is easier to integrate. We can square the relation cos2(θ) =
(1 + cos(2θ))/2 to get

cos4(θ) = (1 + 2 cos(2θ) + cos2(2θ))/4.

We also have cos2(2θ) = (1 + cos(4θ))/2, so after some rearrangement we get

cos4(θ) = (3 + 4 cos(2θ) + cos(4θ))/8.
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On the other hand, we have

sin(θ) cos3(θ) = (sin(θ) cos(θ)) cos2(θ) = 1
2 sin(2θ)× 1

2 (1 + cos(2θ))

= 1
4 (sin(2θ) + sin(2θ) cos(2θ))

= 1
4 sin(2θ) + 1

8 sin(4θ).

Putting these together, we get

u.dr =
1

8
(3 + 4 cos(2θ) + cos(4θ)− 2 sin(2θ)− sin(4θ)) .

It is standard that∫ 2π

θ=0

sin(2θ)dθ =

∫ 2π

θ=0

sin(4θ)dθ =

∫ 2π

θ=0

cos(2θ)dθ =

∫ 2π

θ=0

cos(4θ)dθ = 0,

so ∫
C

u.dr =
1

8

∫ 2π

θ=0

3 + 4 cos(2θ) + cos(4θ)− 2 sin(2θ)− sin(4θ)dθ

=
1

8

∫ 2π

θ=0

3dθ =
1

8
× 3× 2π = 3π/4.

As expected, this is the same as
∫∫
D

curl(u) dA.

Example 9.5. Let D be the triangle with vertices (0, 0), (1, 0) and (1, 1).

(0,0) (1,0)

(1,1)

y=x

y=0

x=1

C1

C2
C3

Let u be the vector field (−y2, x2 − xy + y2). This has

curl(u) = det

[
∂
∂x

∂
∂y

−y2 x2 − xy + y2

]
= (2x− y)− (−2y) = 2x+ y,

so ∫∫
D

curl(u) dA =

∫ 1

x=0

∫ x

y=0

2x+ y dy dx =

∫ 1

x=0

[
2xy + 1

2y
2

]x
y=0

dx

=

∫ 1

x=0

2x2 + 1
2x

2 dx =

∫ 1

x=0

5
2x

2 dx =

[
5
6x

3

]1
x=0

= 5/6.

We will check that this is the same as
∫
C
u.dr as predicted by Green’s Theorem, where C is the boundary

curve of the region D. This consists of three segments C1, C2 and C3 as shown in the diagram. On C1 we
have y = 0 so u = (−y2, x2−xy+ y2) = (0, x2), but also dy = 0 so dr = (dx, 0) so u.dr = 0, so

∫
C1

u.dr = 0.

On C2 we have x = 1 (so dx = 0) and

u = (−y2, x2 − xy + y2) = (−y2, 1− y + y2),

so
u.dr = (−y2, 1− y + y2).(0, dy) = (1− y + y2) dy,
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so

∫
C2

u.dr =

∫ 1

y=0

(1− y + y2) dy =

[
y − 1

2y
2 + 1

3y
3

]1
y=0

= 1− 1
2 + 1

3 = 5/6.

On C3 we have y = x so dr = (dx, dx) but u = (−y2, x2 − xy + y2) = (−y2, y2). From this it is clear that
u.dr = 0 on C3, so

∫
C3

u.dr = 0. Putting this together, we get

∫
C

u.dr =

∫
C1

u.dr +

∫
C2

u.dr +

∫
C3

u.dr = 0 + 5/6 + 0 = 5/6.

As expected, this is the same as
∫∫
D

curl(u) dA.

10. Surfaces

As well as considering curved paths, we also need to consider curved surfaces in three-dimensional space.
Such a surface can be parametrised as r = (x(s, t), y(s, t), z(s, t)) for some pair of parameters s and t.

Example 10.1. (a) The upper half of a spherical shell of radius 2 can be described in terms of param-
eters φ and θ by

(x, y, z) = (2 sin(φ) cos(θ), 2 sin(φ) sin(θ), 2 cos(φ))

(for 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π/2).

(b) Let S be a cylindrical surface of radius 1, centred on the line joining (1, 1,−1) to (1, 1, 1). Then S
can be described in terms of parameters s and t by

(x, y, z) = (1 + cos(s), 1 + sin(s), t)
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(for 0 ≤ s ≤ 2π and −1 ≤ t ≤ 1).

(c) Let S be the plane where x + y + z = 3. This can be parametrised in many different ways, one of
which is

(x, y, z) = (1− s, 1 + s− t, 1 + t) = (1, 1, 1) + s(−1, 1, 0) + t(0,−1, 1).

The picture shows the point P = (1, 1, 1), which lies on S. Any other point on S (such as Q) can be
reached from P by adding a multiple of the red vector (−1, 1, 0) and a multiple of the blue vector
(0,−1, 1).

(d) For any function f(x, y), the equation z = f(x, y) defines a surface. We can use the variables x and
y themselves as parameters, and then the full parametrisation is

(x, y, z) = (x, y, f(x, y)).
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There are two different kinds of integrals over a surface S that we need to be able to calculate. Firstly,
given a scalar function f we can consider the integral with respect to area, written

∫∫
S
f dA, defined in the

same way as the integrals over plane regions that we studied in Section 4.1. To evaluate this kind of integral,
we first need a parametrisation r = (x(s, t), y(s, t), z(s, t)), then we need an expression for dA in terms of s
and t. If we let s and t vary by small amounts δs and δt, then the corresponding part of the surface will be
a small parallelogram spanned by the vectors rs δs = (xsδs, ys δs) and rt δt = (xtδt, yt δt).

s s+δs

t

t+δt

δt rt

δs rs

δA

We write δA for the area of this parallelogram. We also write δA for the vector (rs×rt)δs δt; as explained in
Section 5, this is perpendicular to rs and rt (which means that it is normal to the surface), and |δA| = δA.
In the limit we get dA = (rs × rt)ds dt and dA = |dA| = |rs × rt|ds dt.
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Example 10.2. Consider again a hemispherical shell of radius a as in Example 10.1(a). We have

r = (a sin(φ) cos(θ), a sin(φ) sin(θ), a cos(φ))

rφ = (a cos(φ) cos(θ), a cos(φ) sin(θ), −a sin(φ))

rθ = (−a sin(φ) sin(θ), a sin(φ) cos(θ), 0)

rφ × rθ = det

 i j k
a cos(φ) cos(θ) a cos(φ) sin(θ) −a sin(φ)
−a sin(φ) sin(θ) a sin(φ) cos(θ) 0


= (a2 sin2(φ) cos(θ), a2 sin2(φ) sin(θ), a2 sin(φ) cos(φ))

= a2 sin(φ)er

dA = a2 sin(φ)er dφ dθ

dA = |dA| = a2 sin(φ)dθ dφ.

It follows that the area of the surface is

A =

∫∫
S

1 dA =

∫ 2π

θ=0

∫ π
2

φ=0

a2 sin(φ)dθ dφ

= 2a2π

∫ π
2

φ=0

sin(φ) dφ = 2a2π

[
− cos(φ)

]π
2

φ=0

= 2a2π.

Example 10.3. Consider a cylindrical surface as in Example 10.1(b). We have

r = (1 + cos(s), 1 + sin(s), t)

rs = (− sin(s), cos(s), 0)

rt = (0, 0, 1)

rs × rt = det

 i j k
− sin(s) cos(s) 0

0 0 1

 = (cos(s), sin(s), 0)

|rs × rt| = |(cos(s), sin(s), 0)| =
√

cos2(s) + sin2(s) = 1

dA = |rs × rt| ds dt = ds dt.

It follows that the area of the surface is∫∫
S

1 dA =

∫ 2π

s=0

∫ 1

t=−1
1 ds dt = 2π(1− (−1)) = 4π.

Example 10.4. Consider a surface of the form z = f(x, y) as described in Example 10.1(d). We have

r = (x, y, f(x, y))

rx = (1, 0, fx)

ry = (0, 1, fy)

rx × ry = det

i j k
1 0 fx
0 1 fy

 = (−fx,−fy, 1)

dA = (rx × ry) dx dy = (−fx,−fy, 1) dx dy

|rx × ry| =
√
f2x + f2y + 1

dA =
√
f2x + f2y + 1dx dy.

Example 10.5. Now consider the surface S given by

z = cosh(x+ y)/
√

2 = (ex+y + e−x−y)/
√

8
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for 0 ≤ x, y ≤ 1. This is of the type considered above, with f(x, y) = cosh(x+ y)/
√

2. We have

fx = sinh(x+ y)/
√

2

fy = sinh(x+ y)/
√

2√
1 + f2x + f2y =

√
1 + 1

2 sinh2(x+ y) + 1
2 sinh2(x+ y) =

√
1 + sinh2(x+ y)

=

√
cosh2(x+ y) = cosh(x+ y)

dA =
√

1 + f2x + f2y dx dy = cosh(x+ y) dx dy.

It follows that the area of the surface is

A =

∫∫
S

1 dA =

∫ 1

x=0

∫ 1

y=0

cosh(x+ y)dy dx

=

∫ 1

x=0

[
sinh(x+ y)

]1
y=0

dx =

∫ 1

x=0

sinh(x+ 1)− sinh(x) dx

=

[
cosh(x+ 1)− cosh(x)

]1
x=0

= (cosh(2)− cosh(1))− (cosh(1)− cosh(0)) = cosh(2)− 2 cosh(1) + 1

=
e2 + e−2

2
− 2

e+ e−1

2
+ 1 = 1

2e
2 − e+ 1− e−1 + 1

2e
−2.

The second kind of integral over surfaces is analogous to the integral
∫
C
F.dn that measures the flux of

a two-dimensional vector field F across a curve C. In the three-dimensional case, the corresponding thing
is the flux of a vector field across a surface. As we explained above, the vector dA is normal to the surface,
and the length is the area element dA. This means that dA is a natural analog of the vector dn in the
two-dimensional case, so the total flux of a vector field F across a surface S is

∫∫
S
F.dA.

Example 10.6. Let S be the surface given by z = xy for 0 ≤ x, y ≤ 1, and let F be the vector field
(x+ y + z, x+ y + z, x+ y + z). This gives an instance of Example 10.4 with f(x, y) = xy, so

r = (x, y, xy)

rx × ry = (−y,−x, 1)

dA = (−y,−x, 1) dx dy

F = (x+ y + xy, x+ y + xy, x+ y + xy)

F.dA = (−y(x+ y + xy)− x(x+ y + xy) + (x+ y + xy)) dx dy

=
(
x+ y − x2 − y2 − xy − xy2 − x2y

)
dx dy∫∫

S

F.dA =

∫ 1

x=0

∫ 1

y=0

(
x+ y − x2 − y2 − xy − xy2 − x2y

)
dx dy

=

∫ 1

x=0

(
x+ 1

2 − x
2 − 1

3 −
1
2x−

1
3x−

1
2x

2
)
dx

=

∫ 1

x=0

(
1
6 + 1

6x−
3
2x

2
)
dx

= 1
6 + 1

6 .
1
2 −

3
2 .

1
3 = 2

12 + 1
12 −

6
12

= − 1
4 .

11. Further integral theorems

11.1. The (three-dimensional) Divergence Theorem. Let E be the three-dimensional solid region
enclosed by a surface S, and let u be a vector field that is well-behaved everywhere in E. The Divergence
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Theorem says that ∫∫∫
E

div(u) dV =

∫∫
S

u.dA

This can be proved by an argument similar to that used for the two-dimensional version. The physical
interpretation is also similar: in a steady state, the rate of flow of particles escaping through S must balance
the rate of creation of particles in E.

Example 11.1. Let S be the unit sphere, and let E be the solid ball enclosed by S. Consider the vector
field u = (x, 0, 0). This has div(u) = ∂x/∂x+ ∂0/∂y + ∂0/∂z = 1 , so∫∫∫

E

div(u)dV =

∫∫∫
E

dV = volume of E = 4π/3.

On S we have

r = (x, y, z) = (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ))

u = (x, 0, 0) = (sin(φ) cos(θ), 0, 0).

The unit normal vector is n = er = r , so u.n = x2 = sin2(φ) cos2(θ).
We have also seen before that dA = sin(φ) dφ dθ , so∫∫

S

u.dA =

∫∫
S

u.n dA =

∫ 2π

θ=0

∫ π

φ=0

sin3(φ) cos2(θ) dφ dθ

=

(∫ 2π

θ=0

cos2(θ) dθ

)(∫ π

φ=0

sin3(φ) dφ

)
= π

∫ π

φ=0

1

4
(3 sin(φ)− sin(3φ))dφ

=
π

4

[
− 3 cos(φ) + 1

3 cos(3φ)

]π
φ=0

=
π

4
((3− 1

3 )− (−3 + 1
3 )) =

4π

3

As expected, this is the same as
∫∫∫

E
div(u)dV .

Example 11.2. Let E be the solid vertical cylinder of radius a and height 2b centred at the origin, and let
S be the surface of E. Consider the vector field u = (−y, x, z3). We have

div(u) =
∂

∂x
(−y) +

∂

∂y
(x) +

∂

∂z
(z3) = 0 + 0 + 3z2 = 3z2.

The region E can be described in cylindrical polar coordinates by 0 ≤ r ≤ a and −b ≤ z ≤ b (with 0 ≤ θ ≤ 2π
as usual). Moreover, the volume element in those coordinates is dV = r dr dθ dz. It follows that∫∫∫

E

div(u) dV =

∫ b

z=−b

∫ 2π

θ=0

∫ a

r=0

3z2r dr dθ dz

= 2π

(∫ a

r=0

r dr

)(∫ b

z=−b
3z2 dz

)

= 2π

[
1
2r

2

]a
r=0

[
z3
]b
z=−b

= 2πa2b3.

Now consider instead
∫∫
S
u.dA =

∫∫
S
u.n dA. Let S1 be the bottom end of E, where z = −b. Let S2 be

the top end, where z = b. Let S3 be the curved outer surface, where r = a. We then have∫∫
S

u.n dA =

∫∫
S1

u.n dA+

∫∫
S2

u.n dA+

∫∫
S3

u.n dA.

On S1, the outward unit normal is clearly n = −k = (0, 0,−1). We also have z = −b, so u = (−y, x,−b3),
so u.n = b3. As this is constant, it follows that∫∫

S1

u.n dA =

∫∫
S1

b3 dA = b3 × ( area of S1) = πa2b3.

On S2 we have n = (0, 0, 1) and u = (−y, x, b3), and it follows easily that
∫∫
S2

u.n dA is also equal to πa2b3.
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For S3 it is convenient to work in cylindrical polar coordinates again. The outward unit normal is
n = er = (cos(θ), sin(θ), 0), and the vector field is

u = (−y, x, z3) = (−r sin(θ), r cos(θ), z3).

From this it is clear that u.n = 0, so
∫∫
S3

u.n dA = 0. Putting this together, we get∫∫
S

u.n dA = πa2b3 + πa2b3 + 0 = 2πa2b3,

which is the same as
∫∫∫

E
div(u) dV , as expected.

Example 11.3. Let E be the solid region where −1 ≤ x, y ≤ 1 and 0 ≤ z ≤ (1− x2)(1− y2). Let S be the
surface of E, and let u be the vector field (x, y, 0). This has

div(u) =
∂

∂x
(x) +

∂

∂y
(y) +

∂

∂z
(0) = 1 + 1 + 0 = 2,

so ∫∫∫
E

div(u) dV =

∫ 1

x=−1

∫ 1

y=−1

∫ (1−x2)(1−y2)

z=0

2 dz dy dx

=

∫ 1

x=−1

∫ 1

y=−1
2(1− x2)(1− y2) dy dx

= 2

(∫ 1

x=−1
1− x2 dx

)(∫ 1

y=−1
1− y2 dy

)
= 2

[
x− 1

3x
3

]1
x=−1

[
y − 1

3y
3

]1
y=−1

.

Here [
x− 1

3x
3

]1
x=−1

= (1− 1
3 )− (−1 + 1

3 ) = 2
3 − (− 2

3 ) = 4
3 ,

and
[
y − 1

3y
3
]1
y=−1 is the same, so ∫∫∫

E

div(u) dV = 2× 4
3 ×

4
3 = 32

9 .

Now consider instead
∫∫
S
u.dA =

∫∫
S
u.n dA. Let S1 be the bottom surface of E (where z = 0) and let S2

be the top surface (where z = (1−x2)(1−y2). (Note that there is no side surface, because (1−x2)(1−y2) = 0
whenever x = ±1 or y = ±1.) On S1 the unit normal vector is n = (0, 0,−1) but u = (x, y, 0) so u.n = 0 so∫∫
S1

u.dA = 0. The surface S2 is given by z = f(x, y), where

f(x, y) = (1− x2)(1− y2) = 1− x2 − y2 + x2y2.

It follows by Example 10.4 that on S2 we have

dA = (−fx,−fy, 1) dx dy = (2x− 2xy2, 2y − 2x2y, 1) dx dy,

so
u.dA = (x, y, 0).(2x− 2xy2, 2y − 2x2y, 1) dx dy = (2x2 + 2y2 − 4x2y2) dx dy.

This gives ∫∫
S2

u.dA =

∫ 1

y=−1

∫ 1

x=−1
(2x2 + 2y2 − 4x2y2) dx dy.

For the inner integral we have∫ 1

x=−1
(2x2 + 2y2 − 4x2y2) dx =

[
2
3x

3 + 2xy2 − 4
3x

3y2
]1
x=−1

=
(
2
3 + 2y2 − 4

3y
2
)
−
(
− 2

3 − 2y2 + 4
3y

2
)

= 4
3 (1 + y2).
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Feeding this into the outer integral gives∫∫
S2

u.dA =
4

3

∫ 1

y=−1
1 + y2 dy =

4

3

[
y + 1

3y
3

]1
y=−1

=
4

3

(
(1 + 1

3 )− (−1− 1
3 )
)

= 4
3 ×

8
3 = 32

9 .

This is the same as
∫∫∫

E
div(u) dV , as expected.

11.2. Stokes’s Theorem. Stokes’s Theorem is analogous to Green’s Theorem, but it applies to curved
surfaces as well as to flat regions in the plane. The statement is as follows. Suppose we have a surface S
whose boundary is a closed curve C, and a well-behaved vector field u. Then∫∫

S

curl(u).dA = ±
∫
C

u.dr.

We need a little more discussion to eliminate the ambiguity in the sign. To make sense of the right hand
side, we need to specify the direction in which we move around C. The integral in one direction will be the
negative of the integral in the opposite direction. Similarly, on the left hand side we have the integral of
curl(u).n dA, where n is a unit vector normal to the surface. There are two possible directions for n (each
opposite to the other) and there is no natural rule to choose between them. However, the choice of n can be
linked to the choice of direction around the curve as follows: if you walk in the specified direction with your
feet on C and your head pointing in the direction of n, then the surface S should be on your left. Provided
that we follow this convention, we will have∫∫

S

curl(u).dA =

∫∫
S

curl(u).n dA = +

∫
C

u.dr.

Example 11.4. Consider the surface S given by z = x2 − y2 with x2 + y2 ≤ 1. We will check Stokes’s
Theorem for the vector field (−y, x, 0).

We can parametrise S as

r = (x, y, z) = (r cos(s), r sin(s), r2 cos2(s)− r2 sin2(s))

with 0 ≤ r ≤ 1 and 0 ≤ s ≤ 2π. Using the standard identity cos2(s)− sin2(s) = cos(2s), we can also rewrite
the parametrisation as

r = (x, y, z) = (r cos(s), r sin(s), r2 cos(2s)).

This gives

rr = (cos(s), sin(s), 2r cos(2s))

rs = (−r sin(s), r cos(s), −2r2 sin(2s))

rr × rs = det

 i j k
cos(s) sin(s) 2r cos(2s))
−r sin(s) r cos(s) −2r2 sin(2s)


= (−2r2 sin(s) sin(2s)− 2r2 cos(s) cos(2s), 2r2 cos(s) sin(2s)− 2r2 sin(s) cos(2s), r cos2(s) + r sin2(s))

Using the standard identities

sin(a) sin(b) + cos(a) cos(b) = cos(a− b) = cos(b− a)

sin(a) cos(b)− cos(a) sin(b) = sin(a− b) = − sin(b− a)

this becomes

rr × rs = (−2r2 cos(s), 2r2 sin(s), r)

dA = (rr × rs) dr ds = (−2r2 cos(s), 2r2 sin(s), r) dr ds.
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Next, we have

curl(u) = det

 i j k
∂
∂x

∂
∂y

∂
∂z

−y x 0


= (0− 0)i− (0− 0)j + (1− (−1))k = (0, 0, 2)

curl(u).dA = 2r dr ds∫∫
S

curl(u).dA =

∫ 2π

s=0

∫ 1

r=0

2r dr ds

=

∫ 2π

s=0

1 ds = 2π.

On the other hand, we can parametrise the boundary curve C (where r = 1) as

r = (x, y, z) = (cos(s), sin(s), cos(2s)).

On this curve we have

u = (−y, x, 0) = (− sin(s), cos(s), 0)

dr = (− sin(s), cos(s),−2 sin(2s)) ds

u.dr = (sin2(s) + cos2(s)) ds = ds∫
C

u.dr =

∫ 2π

s=0

ds = 2π.

As expected, this is the same as
∫∫
S

curl(u).dA.

Example 11.5. Let S be the triangular surface shown on the left below, given by x + y + z = 1 with
x, y, z ≥ 0. Let u be the vector field (z, x, y).

(0,0,0) (0,1,0)

(0,0,1)

(1,0,0)

C1

C2

C3 S

(0,0) (1,0)

(0,1)

y=1−x

D

The boundary consists of the edges C1, C2 and C3. We can parametrise C1 by r = (x, y, z) = (1 − t, t, 0)
for 0 ≤ t ≤ 1. This gives dr = (−1, 1, 0)dt. We can also substitute x = 1 − t and y = t and z = 0 in the
definition u = (z, x, y) to get u = (0, 1− t, t). This gives u.dr = (1− t)dt, so

∫
C1

u.dr =

∫ 1

t=0

(1− t) dt =

[
t− 1

2 t
2

]1
t=0

= 1/2.
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The other edges work in the same way, as in the following table:

edge C1 C2 C3

r (1− t, t, 0) (0, 1− t, t) (t, 0, 1− t)
dr (−1, 1, 0)dt (0,−1, 1)dt (1, 0,−1)dt

u (0, 1− t, t) (t, 0, 1− t) (1− t, t, 0)

u.dr (1− t)dt (1− t)dt (1− t)dt∫
u.dr 1/2 1/2 1/2

Altogether, we have
∫
C
u.dr = 3/2.

On the other hand, we have

curl(u) = det

 i j k
∂
∂x

∂
∂y

∂
∂z

z x y

 = (1, 1, 1).

The shadow of S in the xy-plane is the triangle D shown on the right. The surface has the form z = f(x, y),
where f(x, y) = 1− x− y and (x, y) lies in D. By Example 10.4 we have

dA = (−fx,−fy, 1) dx dy = (1, 1, 1) dx dy.

This gives ∫∫
S

curl(u).dA =

∫
D

(1, 1, 1).(1, 1, 1) dx dy = 3

∫ 1

x=0

∫ 1−x

y=0

dydx

= 3

∫ 1

x=0

(1− x) dx = 3

[
x− 1

2x
2

]1
x=0

= 3/2.

As expected, this is the same as
∫
C
u.dr.

Example 11.6. Let S be the surface given in cylindrical polar coordinates by r = a with −b ≤ z ≤ b and
0 ≤ θ ≤ 2π.

C1

C2

a

2b

We will check Stokes’s Theorem for the vector field u = (−zy, zx, z2).
We parametrise S as

r = (x, y, z) = (a cos(θ), a sin(θ), z)

rθ = (−a sin(θ), a cos(θ), 0)

rz = (0, 0, 1)

rθ × rz = det

 i j k
−a sin(θ) a cos(θ) 0

0 0 1

 = (a cos(θ), a sin(θ), 0)

dA = (rθ × rz) dθ dz = a(cos(θ), sin(θ), 0) dθ dz.
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Note that with this parametrisation, dA points outwards, away from the z-axis. We also have

curl(u) = det

 i j k
∂
∂x

∂
∂y

∂
∂z

−zy zx z2

 = (0− x, −y − 0, z − (−z)) = (−x,−y, 2z).

On the surface S this becomes

curl(u) = (−a cos(θ), −a sin(θ), 2z)

curl(u).dA = (−a2 cos2(θ)− a2 sin2(θ)) dθ dz = −a2 dθ dz∫∫
S

curl(u).dA = −a2
∫ 2π

θ=0

∫ b

z=−b
dθ dz = −a2 × 2π × 2b = −4πa2b.

The boundary of S consists of the two circles C1 and C2 shown in the diagram. To understand the direction
of these curves, recall that when you walk with your head in the direction of dA (outwards from the z-axis),
you need to keep the surface on your left. This means we must follow the arrows as shown in the diagram, so
we traverse C1 clockwise as seen from above, and C2 anticlockwise. Thus, a suitable parametrisation for C1

is (x, y, z) = (a cos(t),−a sin(t), b), and a suitable parametrisation for C2 is (x, y, z) = (a cos(t), a sin(t),−b),
with 0 ≤ t ≤ 2π in both cases. On C1 we have

dr = (−a sin(t),−a cos(t), 0) dt

u = (−zy, zx, z2) = (ab sin(t), ab cos(t), b2)

u.dr = −a2b sin2(t)− a2b cos2(t) = −a2b∫
C1

u.dr =

∫ 2π

t=0

−a2b dt = −2πa2b.

On C2 we have

dr = (−a sin(t), a cos(t), 0) dt

u = (−zy, zx, z2) = (ab sin(t),−ab cos(t), b2)

u.dr = −a2b sin2(t)− a2b cos2(t) = −a2b∫
C2

u.dr =

∫ 2π

t=0

−a2b dt = −2πa2b.

Putting these together, we get ∫
C

u.dr = −4πa2b,

which is the same as
∫∫
S

curl(u).dA, as expected.
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