
(6)(6)

> > 

> > 

> > 

> > 

(3)(3)

(1)(1)

(4)(4)

(2)(2)
> > 

> > 

> > 

> > 

> > 

(5)(5)

Solving equations

____________________________________________________________________________
_____

Exercise 1.1

restart;

f := (x) -> 2*x^4-2222*x^3+224220*x^2-2222000*x+2000000;

fd x1 2 x4K2222 x3C224220 x2K2222000 xC2000000

solve(f(x)=0,{x});
x = 1 , x = 10 , x = 1000 , x = 100

Whenever a polynomial f x  has a root x = a, the term xKa  is a factor of f x .  This indicates
that f x  should be a multiple of the polynomial g x = xK1  xK10  xK100  xK1000 .  
However, the coefficient of x4 in f x  is 2, whereas the coefficient of x4 in the expansion of 
g x  is 1 .  Thus, the multiplier must be 2 , and we must have

f x = 2 g x = 2 xK1  xK10  xK100  xK1000
Maple confirms this as follows:

factor(f(x));
2 xK1  xK10  xK1000  xK100

____________________________________________________________________________
_____

Exercise 1.2

restart;

y := x^4-x^3-x^2-x/8+1/64;

yd x4Kx3Kx2K
1
8

 xC
1

64

_EnvExplicit := true:

solve(y=0,x);

1
4
C

6
4
C

3
4
C

2
4

,
1
4
C

6
4
K

3
4
K

2
4

,
1
4
K

6
4
C

3
4
K

2
4

,
1
4

K
6

4
K

3
4
C

2
4

sols := solve(y=0,{x});

solsd x =
1
4
C

6
4
C

3
4
C

2
4

, x =
1
4
C

6
4
K

3
4
K

2
4

, x =
1
4

K
6

4
C

3
4
K

2
4

, x =
1
4
K

6
4
K

3
4
C

2
4

In each of the four solutions, the sign attached to 6  is the product of the signs attached to 

2  and 3 .  Using this observation, we see that the four solutions are (1± 2 )(1± 3 )/4.



> > 

> > 

> > 

> > 

(13)(13)

(10)(10)

> > 

(12)(12)

> > 

(15)(15)

(9)(9)

> > 

> > 

(14)(14)

> > 

> > 

(7)(7)

(8)(8)

(11)(11)

z := 16*x^3-24*x^2-6*x+2;

zd 16 x3K24 x2K6 xC2

simplify(subs(sols[1],z),symbolic);

K 2

simplify(subs(sols[2],z),symbolic);

2

simplify(subs(sols[3],z),symbolic);

2

simplify(subs(sols[4],z),symbolic);

K 2

seq(simplify(subs(sols[i],z),symbolic),i=1..4);

K 2 , 2 , 2 ,K 2

____________________________________________________________________________
_____

Exercise 1.3

restart;

_EnvExplicit := true;
_EnvExplicitd true

y := x^3-3*x+1;

yd x3K3 xC1

solve(y=0,{x});

x =
K4C4 I 3

1 3

2
C

2

K4C4 I 3
1 3

, x =K
K4C4 I 3

1 3

4

K
1

K4C4 I 3
1 3 C

I 3  
K4C4 I 3

1 3

2
K

2

K4C4 I 3
1 3

2
, x =

K
K4C4 I 3

1 3

4
K

1

K4C4 I 3
1 3



(18)(18)

> > 

> > 

(17)(17)

(16)(16)

(19)(19)

> > 

(20)(20)

> > 

> > 

> > 

K

I 3  
K4C4 I 3

1 3

2
K

2

K4C4 I 3
1 3

2

sols := fsolve(y=0,{x});
solsd x =K1.879385242 , x = 0.3472963553 , x = 1.532088886

plot(y,x=-2..2);

x
K2 K1 0 1 2

K1

1

2

3

The only negative root is x =K1.879 , which is  sols[1].  Maple notation for the gradient 
dy
dx

 is  diff(y,x).  We can thus find the gradient at the negative root as follows:

subs(sols[1],diff(y,x));
7.59626666

____________________________________________________________________________
_____

Exercise 1.4

g := (x) -> (b^2 - c^2 + (1 + c^2)*x)/(1-c^2 + c^2*x);

gd x1
b2Kc2C c2C1  x

1Kc2Cc2 x

(a)
sols := solve(g(x)=x,{x});

solsd x =K
bKc
c

, x =
bCc
c

(b)
The above solutions involve division by c, so they do not make sense when c = 0.  We must 
therefore check separately what happens when c = 0 .  In that case, g x  simplifies as follows:

subs(c=0,g(x));

b2Cx



(21)(21)

> > 

• • 

• • 

• • 

• • 

> > 

> > 

(22)(22)

The equation g x = x thus becomes xCb2 = x.  This is always true if b = 0, and never true if 
bs 0.

(c) Now return to the case cs 0 .  The two solutions can then be written as x = 1K
b
c

 and 

x = 1C
b
c

.  These are the same (and both equal to 1) if b = 0 , but are different otherwise.  

(d) Our conclusion is as follows:

If b = 0 = c then g x = x for all x.

If b = 0 s c then the only solution to g x = x is x = 1.

If bs 0 = c then there are no solutions.

If bs 0 s c then there are precisely two different solutions, namely 1C
b
c

 and 1K
b
c

.

____________________________________________________________________________
_____

Exercise 2.1

f := (x) -> sin(Pi*x+exp(-x));
fd x1 sin p xCeKx

solve(f(x)=0,{x});

x = LambertW K
1

p
, x = LambertW K1,K

1

p

(a)
plot(f(x),x=0..10);

x
2 4 6 8 10

K1

K0.5

0

0.5

1

The graph looks rather like a sine wave, with roots at x = 1,2,3,4 and so on.  This makes sense,
because as soon as x becomes reasonably large, the term eKx becomes very small, so f x  is 
close to sin Pi x .  The positive roots of sin Pi x  are exactly x = 1,2,3,4 and so on, so we 
expect the roots of f x  to be approximately the same.

(b) We now find some roots more precisely:



(26)(26)

> > 

> > 

(27)(27)

(25)(25)

(23)(23)

> > 

(28)(28)

> > 

> > 

> > 

> > 

(24)(24)

fsolve(f(x)=0,x);
K0.5538270366

fsolve(f(x)=0,x=2);
1.954935731

seq(fsolve(f(x)=0,x=n),n=1..10);
0.8661259484, 1.954935731, 2.983894990, 3.994135661, 4.997850630, 5.999210365,

6.999709655, 7.999893208, 8.999960716, 9.999985549

(c)
r := (n) -> n-exp(-n)/Pi-exp(-2*n)/Pi^2;

rd n1 nK
eKn

p
K

eK2 n

p
2

seq(evalf(r(n)),n=1..10);
0.8691880059, 1.955065679, 2.983901134, 3.994135962, 4.997850645, 5.999210366,

6.999709655, 7.999893208, 8.999960715, 9.999985549

This is very close to our answer in (b).  We can calculate the differences as follows:

seq(fsolve(f(x)=0,x=n)-evalf(r(n)),n=1..10);
K0.0030620575,K0.000129948,K6.144 10K6,K3.01 10K7,K1.5 10K8,K1. 10K9, 0., 0.,

1. 10K9, 0.

____________________________________________________________________________
_____

Exercise 3.1
(a)

plot(tan(Pi*x)^2-3,x=-3..3,-3..3,numpoints=200);

x
K3 K2 K1 1 2 3

K3

K2

K1

1

2

3

(b)

The roots are at K
8
3

,  K
7
3

,  K
5
3

,  K
4
3

,  K
2
3

,  K
1
3

,  
1
3

,  
2
3

,  
4
3

,  
5
3

,  
7
3

,  
8
3

 and so on.  



(30)(30)

> > 

(32)(32)

(36)(36)

> > 

> > 

(31)(31)

(34)(34)

(33)(33)

> > 

> > 

> > 

> > 

(35)(35)

> > 

(29)(29)

> > 

In other words, for every integer n , there is a root at nK
1
3

, and another one at nC
1
3

.

(c)
solve(tan(Pi*x)^2=3,{x});

x =
1
3

, x =K
1
3

(d)
_EnvAllSolutions := true;

_EnvAllSolutionsd true

solve(tan(Pi*x)^2=3,{x});

x =
1
3
C_Z1~ , x =K

1
3
C_Z2~

____________________________________________________________________________
_____

Exercise 4.1

restart;

eqns := {
 x/2 + y/3 + z/4 = 1,
 x/3 + y/4 + z/5 = 2,
 x/4 + y/5 + z/6 = 3
};

eqnsd
x
2
C

y
3
C

z
4

= 1,
x
3
C

y
4
C

z
5

= 2,
x
4
C

y
5
C

z
6

= 3

sol := solve(eqns,{x,y,z});
sold x = 132, y =K600, z = 540

sol := solve({x/2+y/3+z/4=1,x/3+y/4+z/5=2,x/4+y/5+z/6=3},{x,y,z})
;

sold x = 132, y =K600, z = 540

subs(sol,x^2+y^2+z^2);

x2C x3K3 xC1
2
Cz2

____________________________________________________________________________
_____

Exercise 4.2
(a)

solve({p+q+r=0,p+2*q+3*r=1});
p =K1Cr, q = 1K2 r, r = r

Note the equation p = p in the solution, indicating that p can take any value.  This means that 
there are infinitely many different solutions.



> > 

> > 

> > 

(37)(37)

(38)(38)

(b)
solve({u+v=1001,u+2*v=1002,u+3*v=1006});

[solve({u+v=1001,u+2*v=1002,u+3*v=1006})];

Maple gives an empty response, indicating that there are no solutions.  This is easy to see 
directly: if we subtract the first two equations we get v = 1, whereas subtracting the second and 
third equations gives v = 4 , showing that the equations are not consistent.
(c)

solve({
  x +   y +   z = 2,
  x + 2*y + 3*z = 2,
  x + 4*y + 9*z = 2
 },
 {x,y,z}
);

x = 2, y = 0, z = 0

This has a unique, fully-determined solution.


