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Exercise 1.1

| > restart;

> £ := (x) -> 2%x"4-2222%x~3+224220*x~2-2222000%*x+2000000;
fi=x - 2x" —2222 % 4224220 x* — 2222000 x + 2000000

_> solve (£ (x)=0, {x});
{x=1}, {x=10}, {x=1000}, {x=100}
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\_/Vhenever a polynomial f(x) has a root x=a, the term x —a is a factor of f(x). This indicates
that f(x) should be a multiple of the polynomial g(x) =(x—1) (x —10) (x —100) (x —1000).

However, the coefficient of xtin f(x) is 2, whereas the coefficient of x*in the expansion of

g(x) is 1. Thus, the multiplier must be 2, and we must have
f(x)=2g(x) =2 (x—1) (x—10) (x—100) (x —1000)
Maple confirms this as follows:

> factor(f(x));

2(x—1) (x—10) (x—1000) (x —100) 3)
Exercise 1.2
| > restart;
>y = x*-x"3-x"2-x/8+1/64;
—4_3_ 2 1 1
yi=x —X —X g X+ 64 )]
;> _EnvExplicit := true:
> solve(y=0,x);
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> sols := solve(y=0, {x});
e B T LT 1 E T T
sols-—x4+4+4+4,x4+4 4 4,x4 (6)
_ﬁ+ﬁ_ﬁ}{xzi_ﬁ_ﬁ+ﬁ}
4 4 4 ) 4 4 4 4

In each of the four solutions, the sign attached to /6 is the product of the signs attached to
V2 and /3 . Using this observation, we see that the four solutions are (1+y/2 )(1£y/3 )/4.



> z = 16*x"3-24*x"2-6*x+2;
z=16xX —24x" —6x+2 (7)
> simplify(subs(sols[1l],z),symbolic);
-2 ®
> simplify(subs(sols[2],z),symbolic);
V2 9
> simplify(subs(sols[3],z),symbolic);
V2 (10)
> simplify (subs(sols[4],z),symbolic);
2 (€8)
> seq(simplify (subs(sols[i],z) ,symbolic) ,i=1..4);
_\/77 \/77 \/77 _\/7 (12)
Exercise 1.3
| > restart;
> EnvExplicit := true;
_EnvExplicit := true 13)
>y = x*3-3*x+1;
yi=x —3x+1 (14)
> solve(y=0, {x});
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> sols := fsolve(y=0, {x});
sols == {x=—1.879385242}, {x=0.3472963553}, {x=1.532088886} (16)

> plot(y,x=-2..2);

ro N

The only negative root is x=-1.879 , whichis sols[1]. Maple notation for the gradient
% is diff (y,x). We can thus find the gradient at the negative root as follows:

> subs(sols[1l] ,diff(y,x));

7.59626666 a7
Exercise 1.4
> g = (x) -> (b*2 - ¢*2 + (1 + c*2)*x)/(1-c*2 + c"2*x);
2 2 2
g::xl—)b_c +2(C;|‘1)X (18)
1 —c +cx
(a)
> sols := solve(g(x)=x,{x});
sols = {x=—b_c}, {x=b+c} 19
c c
(b)

The above solutions involve division by ¢, so they do not make sense when ¢=0. We must
therefore check separately what happens when ¢=0. In that case, g(x) simplifies as follows:

> subs(c=0,g(x)) ;
b +x (20)



The equation g(x) =x thus becomes x + b*=x. This is always true if » =0, and never true if
b#0.

(c) Now return to the case ¢ # 0. The two solutions can then be written as x=1 — % and

x=1+ % These are the same (and both equal to 1) if =0, but are different otherwise.

(d) Our conclusion is as follows:
*If b=0 =c then g(x) =x for all x.

*If b=0 # ¢ then the only solutionto g(x) =xis x=1.
* If b #+ 0 =c then there are no solutions.

*If b # 0 # c then there are precisely two different solutions, namely 1 + % and 1 — %

Exercise 2.1
_> f := (x) -> sin(Pi*x+texp(-x));
f=xsin(nx+e™) (21)
=> solve (£ (x)=0, {x}) ;
[x—LambertW[ - Tlc j ], [x—LambertW[ -1, - 71t ] } 22)

(a)

> plot(f(x) ,x=0..10);

NANAAN

The graph looks rather like a sine wave, with roots at x=1,2,3,4 and so on. This makes sense,
because as soon as x becomes reasonably large, the term e becomes very small, so f(x) is
close to sin(Pi x). The positive roots of sin(Pix) are exactly x=1,2,3,4 and so on, so we
expect the roots of f(x) to be approximately the same.

(b) We now find some roots more precisely:



> fsolve (f(x)=0,x);

—0.5538270366 (23)
> fsolve (f(x)=0,x=2);
1.954935731 24)
> seq(fsolve(f(x)=0,x=n) ,n=1..10);
0.8661259484, 1.954935731, 2.983894990, 3.994135661, 4.997850630, 5.999210365, 25)
6.999709655, 7.999893208, 8.999960716, 9.999985549
(c)
> r := (n) -> n-exp(-n)/Pi-exp(-2*n)/Pi*2;
-n -2n
yi—n—n— —ez (26)
T T
> seqg(evalf(r(n)),n=1..10);
0.8691880059, 1.955065679, 2.983901134, 3.994135962, 4.997850645, 5.999210366, 27
6.999709655, 7.999893208, 8.999960715, 9.999985549
This is very close to our answer in (b). We can calculate the differences as follows:
> seq(fsolve(f(x)=0,x=n)-evalf(r(n)),n=1..10);
—0.0030620575, —0.000129948, —6.144 10°, —3.01 107, —=1.5107%, —1.107°, 0., 0., (28)
1.107°, 0.
Exercise 3.1
(a)
> plot(tan(Pi*x)*2-3,x=-3..3,-3..3,numpoints=200) ;
3_
2_
1_
-3 -2 -1 1 2 3
X
(b)
8 7 5 4 2 1 1 2 4 5 7 8
The roots are at 3 T3 T3 T3 T3 T30 3 30 3 30 30 3 and so on.



In other words, for every integer n, there is a root at n — % and another one at n + % .

(c)

> solve(tan (Pi*x)*2=3, {x});

4 He3)

(d)
> EnvAllSolutions := true;
_EnvAllSolutions = true 30)
> solve(tan (Pi*x)*2=3, {x});
{x=% +_Z]~}, {x= —% —I—_ZZ~} (31)

Exercise 4.1

| > restart;

> eqns := {
x/2 +y/3 +z/4=1,
x/3 + y/4 + z/5 = 2,
x/4 + y/5 + z/6 = 3

};

X Y 2 X Y 2 _5 X Y L Z
eqns {2+3+41,3+4+5 2 5 +L 4+ 3} (32)
j> sol := solve(eqns,{x,y,z});

sol == {x=132,y=—600,z=540} 33)

> sol := solve({x/2+y/3+z/4=1,x/3+y/4+2/5=2 ,x/4+y/5+2/6=3},{x,y,2})

sol == {x=132,y=—600,z=540} (34)
j> subs (sol,x*2+y*2+2z12) ;
2 3 2.2
X+ (F=3x+1) +z (35)
Exercise 4.2
(a)
> solve ({p+g+r=0,p+2*g+3*r=1}) ;
{p=-1+rg=1—-2rr=r} 36)

Note the equation p =p in the solution, indicating that p can take any value. This means that
there are infinitely many different solutions.



(b)
[> solve ({u+v=1001,u+2*v=1002 ,u+3*v=1006}) ;
> [solve ({u+v=1001,u+2*v=1002,u+3*v=1006})1];
[] 37

Maple gives an empty response, indicating that there are no solutions. This is easy to see
directly: if we subtract the first two equations we get v=1, whereas subtracting the second and
third equations gives v=4, showing that the equations are not consistent.

(c)

> solve ({
x + y + z = 2,
x + 2%y + 3*z
x + 4*y + 9*z
by

{x,y,z}

)

o
NN

{x=2,y=0,z=0} 398)

This has a unique, fully-determined solution.



