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Differentiation
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Exercise 1
(a)

q := sscanf("f*6#%\"xG6\"6#%*CopyrightGF%-%#ifG6%-%%typeG6$9$%)
constantG-%&evalfG6#-%#LiG6#F.-.%\"qGF5F%F%F%","%m")[1];

qd proc x ... end proc

plot(q(x),x=-1..10,-3..7);
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The function is undefined for x! 0.  It zero (and the graph is flat) at x = 0, then it drops down to KN at 
x = 1, then climbs back to zero at about x = 1.4, and increases thereafter towards N.
(b)
When x! 0, the function q' x  is undefined (because q x  is).  We have q' 0 = 0, and then 
q' x ! 0 for 0 < x < 1 (because the graph is sloping downwards).  The derivative is undefined again 
when x = 1, but q' x  > 0 for x > 1 (because the graph is sloping upwards).
(c)

Q := (x,h) -> (q(x+h)-q(x))/h;
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Qd x, h 1
q xCh Kq x

h

e := exp(1);
ede

Digits := 30;
Digitsd 30

(d)
Q(e^2,0.01);

0.499830983358648545443169703000

Q(e^2,0.0000001);
0.499999998308308974805400000000

Q(e^2,10^(-10));
0.49999999999830830900000000000

It is clear from this that q' e2 =
1
2

.

(e)
Q(e^3,10^(-10));

0.33333333333305673850000000000

Q(e^4,10^(-10));
0.2499999999999427630000000000

It is clear from this that q' e3 =
1
3

 and q' e4 =
1
4

.  We therefore guess that q' et =
1
t

 for all t.  

Moreover, given x > 0, we can write x = et with t = ln x , so q' x =
1

ln x
.  This means that q x  is 

actually the same as a standard function called Li x , which is defined by Li x =
0

x
1

ln t
dt; you can 

enter  ?Li for more information.
_________________________________________________________________________________

Exercise 2
(a)
The roots of f ' x  occur where the graph of f x  is flat, or in other words, the tangent line is 
horizontal.  This occurs wherever f x  has a local maximum or a local minimum (and possibly also in 
some other places, called inflexion points).
(b)

f := (x)->x^3-x;

fd x1 x3Kx

plot(f(x),x=-1.1..1.1);
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There are roots of f x  at x =K1, x = 0 and x = 1.  Between x =K1 and x = 0 we have a root of f ' x  at
about x =K0.6, corresponding to the top of the left-hand hump.  Between x = 0 and x = 1 we have a root 
of f ' x  at about x = 0.6, corresponding to the top of the right-hand hump.  Thus, Rolle's principle is 
satisfied.

solve(f(x)=0,x);
0, 1,K1

D(f)(x);
solve(D(f)(x)=0,x);

3 x2K1

3
3

,K
3

3

3*x^2-1;

3 x2K1

plot([f(x),D(f)(x)],x=-1.1..1.1,-1..1);
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(c)
g := (x)->sin(x)+sin(3*x)/3;

gd x1 sin x C
sin 3 x

3

plot([g(x),D(g)(x)],x=-2*Pi..2*Pi);
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We can see roots of g x  at x =K2 Pi, KPi, 0, Pi and 2 Pi; in general, the roots are at x = n Pi for 
integers n .  Between x = 0 and x = Pi there are two maxima and one local minimum, giving three roots 
of g' x .  (This is perfectly consistent with Rolle's principle, which says only that there is at least one 
root of g' x  between 0 and Pi .)  Similarly, between x = Pi and x = 2 Pi there are two minima and one 
local maximum for g x , corresponding to the three places where the graph of g' x  (in green) crosses 
the x-axis.  We can find the location of the these roots as follows:

solve(D(g)(x)=0,x);
p
4

,
3 p
4

,
p
2

Maple has reported only the roots between 0 and Pi .  We see from the graph that these roots can be 

shifted by any multiple of Pi, so the roots have the form nC
Pi
4

 or nC
Pi
2

 or nC
3 Pi

4
 for integers n .

 (We can get Maple to produce this answer by setting _EnvAllSolution:=true; however, it 
reports the result in a convoluted and confusing form, so it is better to just inspect the graph.)
(d)
Suppose that a  and b  are two different roots of f x , so f a = 0 and f b = 0.  As x moves from a  to
b , the function f x  cannot increase all the time (otherwise f b  would be greater than 0) and it cannot
decrease all the time (otherwise f b  would be less than 0).  It must increase some of the time and 
decrease some of the time, so there must be some point at which it changes over from increasing to 
decreasing (or vice-versa), and at that point we will have f ' x = 0.
(e)
As we see in the plot below, the roots of h x = tan x  are at x = n Pi for integers n .

plot(tan(x),x=-Pi..Pi,-10..10,discont=true);
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The graph is always sloping upwards, so h' x  > 0 for all x.  In fact, we have h' x = sec x 2

= 1Ctan x 2, which shows that 1% h' x  for all x.  In any case, h' x  has no roots at all, contradicting
Rolle's principle.  So what goes wrong in the argument that we outlined?  As x moves from 0 to Pi , the 

function increases from 0 up towards N, then jumps down discontinuously.   When x =
Pi
2

, neither 

h x  nor h' x  is really well-defined.

D(tan)(x);

tan x 2C1

plot(D(tan)(x),x=-Pi..Pi,0..10);
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Exercise 3
(a)
Put y = xn.  Then y' = n xnK1 and y'' = n nK1  xnK2 and y''' = n nK1  nK2  xnK3.  If n = 0 then 

y' = 0, so we cannot divide by y', so S y  is undefined.  For any other value of n , we have  
y''
y'

=
nK1

x
 and  

y'''
y'

=
nK1  nK2

x2
  .  This gives

S y =
y'''
y'
K

3 
y''
y'

2

2
 =

nK1  nK2

x2 K
3 

nK1
x

2

2
=

2 n2K3 nC2 K3 nK1 2

2 x2

=
1Kn2

2 x2

This is zero for n = 1 or n =K1.
(b)

S := (y) -> diff(y,x,x,x)/diff(y,x) - 
            (3/2)*(diff(y,x,x)/diff(y,x))^2;
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S(x^n);

xn n3

x3 K
3 xn n2

x3 C
2 xn n

x3  x

xn n
K

3 
xn n2

x2 K
xn n

x2

2

 x2

2 xn 2
 n2

simplify(S(x^n));

Kn2C1

2 x2

solve(%=0,n);
K1, 1

(c)
y := (a*x+b)/(c*x+d);

yd
a xCb
c xCd

simplify(diff(y,x));
a dKb c

c xCd 2

simplify(diff(y,x,x));

K
2 c a dKb c

c xCd 3

simplify(diff(y,x,x,x));

6 c2 a dKb c

c xCd 4

simplify(S(y));
0

(d)
z := (a*p^x+b)/(c*p^x+d);

zd
a pxCb

c pxCd

simplify(S(z));

K
6 p2 x c2 d2Cp4 x c4C4 p3 x c3 dC4 px c d3Cd4  ln p 2

2 c pxCd
4

1/simplify(expand(1/%));



(29)(29)

> > 

> > 

(31)(31)

(32)(32)

> > 

> > 

(28)(28)

(30)(30)

K
ln p 2

2

(e)
T := (u) -> diff(u,x)^(1/2) * diff(diff(u,x)^(-1/2),x,x);

Td u/
v

vx
 u  

v2

vx2
 

1

v

vx
 u

Now try some examples:

w := x^n; simplify([S(w),T(w)]);

wd xn

Kn2C1

2 x2
,

n2K1

4 x2

w := sin(x)^2; simplify([S(w),T(w)]);
wd sin x 2

K4 cos x 4C4 cos x 2K3

2 sin x 2 cos x 2
,

4 cos x 4K4 cos x 2C3

4 sin x 2 cos x 2

w := ln(x); simplify([S(w),T(w)]);
wd ln x

1

2 x2 ,K
1

4 x2

In each case we see that T w =K
S w

2
.  In fact, this is true for any w .  This can be shown as follows. 

We first use the chain rule to get:

v

vx
 

v

vx
 u

K
1
2

=K
1
2

 
v

vx
 u

K
3
2

 
v2

vx2  u

We then differentiate once more, using the product rule and the chain rule, to get 

v2

vx2  
v

vx
 u

K
1
2

=K
1
2

 K
3
2

 
v

vx
 u

K
5
2

 
v2

vx2  u
2

K
1
2

 
v

vx
 u

K
3
2

 
v3

vx3  u

We now multiply both sides by 
v

vx
 u  and simplify to get

v

vx
 u  

v2

vx2
 

v

vx
 u

K
1
2

=
3
4

 
v

vx
 u
K2

 
v2

vx2
 u

2

K
1
2

 
v

vx
 u
K1

 
v3

vx3
 u

or in different notation



> > 

> > 

> > 

(33)(33)

T u =
3 

u''
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u'''
2 u''

= K
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u'''
u'
K

3 
u''
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2

2
=K

S u
2

as claimed.
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Exercise 4

y := cos(-2*ln(x));
yd cos 2 ln x

plot(y,x=0..0.02);
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plot(y,x=0..1000);
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a[0] := exp(-Pi/4);

a0d e
K
p
4

Here is the general formula for the derivative of f x :

diff(y,x);

K
2 sin 2 ln x

x

We can find the gradient at x = a0 using the subs  command:

m[0] := subs(x=a[0],diff(y,x));

m0dK
2 sin 2 ln e

K
p
4

e
K
p
4

However, it looks better if we simplify this: 

m[0] := simplify(subs(x=a[0],diff(y,x)));

m0d 2 e

p
4

The equation of the line of slope m0 passing through a0, 0  is just y = m0 xKa0 .  

We can plot this together with y as follows:

plot([y,m[0]*(x-a[0])],x=0 .. 2*a[0]);
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To find the other roots, note that cos t = 0 precisely when t has the form kK
1
2

 Pi for some 

integer k.

Thus, we have y = cos K2 ln x  = 0 precisely when K2 ln x = kK
1
2

 Pi,  so 

ln x =
1
4
K

k
2

 Pi,

so x = e

1
4
K

k
2

 Pi
.  We write ak for this root.  

The steps that we did for a0 can be repeated for a3 as shown below.  Then to do a4 (for example) 

just change the 3 to  4 and press ENTER four times. 

k := 3;
kd 3

a[k] := exp((1/4-k/2)*Pi);

a3d e
K

5 p
4

m[k] := simplify(subs(x=a[k],diff(y,x)));

m3d 2 e

5 p
4

plot([y,m[k]*(x-a[k])],x=0 .. 2*a[k]);
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We find that the tangent lines always meet the y-axis at y = 2 or y =K2.  This is not too hard to see 
directly.

In general we have 
dy
dx

=K
2 sin 2 ln x

x
.  When x = ak we have 2 ln x =

1
2
Kk  Pi and so

 sin 2 ln x = K1 k   , so  mk =
2 K1 kC1

ak
  .   The line Lk has equation y = mk xKak  so the

intercept at x = 0 is Kmk ak  , which is 2 K1 k.

 


