More differentiation

Exercise 1.1

Here are the graphs of y=x"¢ " forn=3,4 and 5:
> plot (x*3*exp (-x) ,x=0..8);

plot (x*4*exp(-x) ,x=0..8);

plot (x*5*exp(-x) ,x=0..8) ;
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You can just about see that the peaks occur at x =3, x =4 and x =5, suggesting that for general n

we should have a peak at x =n. To check this, we must solve % =0.

|_> y = x*n * exp(-x);



yi=ae” &)

> simplify(diff(y,x));

e " (xn_ln —x") )

1> solve (diff (y,x)=0, {x});
{x=n) @)

This shows that the peak does indeed occur at x =n. To find the height of the peak, we must put
x=niny:

> y[max] := subs(x=n,y):;
Vmax =1 € " “4)
. x \" x \"
It follows that —— = ( = ) e" 7, so the maximum value of ( = ) ¢’ "is 1. We can plot these
ymax n n

functions for different n together as follows:
> plot([seq((x/n)*n*exp(n-x),n=1..8)],x=0..20);
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Exercise 1.2
>p = (x) -> -10*x"6+156*x75-945*x*4+2780*x~3-4080*x*2+2880*x;
pi=xm -10x"+156 x° — 945 x* + 2780 x° — 4080 x> + 2880 x )

> plot(p(x),x=0..5);
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We see from the picture that the maximum value is about 1000, occurring at about x =3.
There also seem to be two inflection points, where the curve flattens out but does not
have a maximum or minimum. To check this, we solve for p'(x) =0:

> pl := diff(p(x),x);
pl =-60x" 4 780 x" — 3780 x° + 8340 x* — 8160 x + 2880

> solve (pl=0,x);

3,1,1,4,4

This shows that the critical points are at x=1, x =3 and x=4. The numbers 1 and 4 are
repeated because they are double roots of p'(x), and therefore inflection points of p(x).
To check this, we differentiate again:

> p2 := diff(p(x),x,x);
p2 :=-300x" +3120 " — 11340 x* + 16680 x — 8160

> subs (x=1,p2) ;

0
> subs (x=3,p2) ;
—240
> subs (x=4,p2) ;
0

As p'(3)=0and p"(3) <0 we see that x =3 is a local maximum; by looking at the graph we
see that it is a global maximum. The maximum value of p(x) is thus given by p(3):

> p(3);
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The values of p(x) at the inflection points are strictly smaller, as expected:

> p(1),p(4);
781, 1024

13)

Exercise 2.1
| > restart;
> u := x*sin(x*2+y”*2) -y*cos (x*2+y*2);
. (2 2 2 2
u ==xs1n(x +y ) —ycos(x +y )

| > with(plots):
> implicitplot (u=0,x=-5..5,y=-5..5,grid=[100,100]) ;

N

7

> slopel := implicitdiff (u=0,y,x);
2 sin(x2 +y2) yx+2 cos(x2 +y2) ° 4+ sin(x2 +y2)

slopel = 3

2y2 sin(x2+y2) —|—2xycos(x2+y2) —cos(x +y2)

The answer can be rewritten more nicely using the original relation
C(2 2y _ 2,2
x sin(x +y ) —ycos(x +y ),

2, 2
i s cos(x” +
which allows us to rewrite sin (x> +17) as Y (’; v)
the cos terms.

> subs(sin (x*2+y*2) = (y/x)*cos(x*2+y”~2) ,slopel) ;

, after which we can cancel

(14)

15)



(x* +5%)
X

2y2 cos(x2 -I—yZ) +2 cos(x2 -I—yZ) ¥+ Y €08

- 16)
2y3 cos(x2+y2) 2 2 2 2
. +2xycos(x +y)—cos(x +y)
> simplify (%)
3 2
2); 2x)3/ y a7
2xy+2y —x
> slopel := %;
) xy2 —y
slopel = > 3 (18)
2Xy+2y —x
‘We now write the curve parametrically in terms of ¢:
> xt =t * cos(t*2); yt := t * sin(t*2);
xt = tcos(#)
vt == tsin(#) 19

To check that this really is the same curve as before, we put x =¢ cos( tz) and y=t¢ sin( tz) in u# and
make sure that we get zero:

> subs (x=xt,y=yt,u);

2 2 2 2
tcos(tz) sin(tzcos(tz) +7 sin(tz) )—tsin(tz) cos(tzcos(tz) -I—tzsin(tz) ) (20)

> simplify (subs (x=xt,y=yt,u));
0 (21)
We can also check graphically:
> plot([xt,yt,t=-5..5]);




dy
dx

> diff (xt,t);

We now calculate

again from the parametric representation:

cos(tz) —27 sin(tz) 22)
1> diff(yt,t);

sin(#) +2 # cos(#) (23)
_> slope2 := diff (yt,t)/diff (xt,t);

sin(tz) +27 cos(tz)

cos(tz) —27 sin(tz)

slope2 = (24)
This should be the same as what we get by putting x =¢ cos( tz) and y =1 sin ( £ ) in our earlier answer:
> simplify (subs (x=xt,y=yt,slopel)) ;
sin(tz) +2t2cos(t2)
2) _ 5 2in( A
cos(t ) 2t s1n( )

(25)

Exercise 2.2

[> restart;
We start by entering the definitions given in the question:

> u = (x*2+y*2)*2 + 85* (x*2+y*2) - 500 + 18*x* (3*y*2-x"2);
(2, 2?2 2 2 2 2
u=(x"+1y) +85x +85)y" —500 +18x ( -x"+3)°) (26)



> xt := 6*cos(t) + 8*cos(t)*2 - 4;
yt := 2*sin(t)*(3-4*cos(t));
xﬁ=6ch)+8am02—4
yt = 2sin(t) (3 —4cos(?)) 27
SVe now plot the curve u =0 and the curve given parametrically in terms of ¢:
| > with(plots):
> implicitplot (u=0,x=-10..10,y=-10..10,grid=[100,100]) ;

N
N
N
N

> plot([xt,yt,t=0..2*Pi]) ;

imumW%cmmkamkmemm&Thswnmﬁ%wd%ﬂme:
> simplify (subs (x=xt,y=yt,u));

0 (28)



We next find g:l by implicit differentiation:
X

> slopel := simplify(implicitdiff (u=0,y,x));

—2x3—2y2x+27x2—27y2—85x

slopel =

y (25 +2)7 +54x+385)

. d . .
Alternatively, we can find ZZZ from the parametric representation:
X

> slope2

simplify (diff(yt,t)/diff(xt,t));
8 cos(£)> — 3 cos(t) —4

slope2 =

sin(#) (8 cos(#) +3)

This is the same as what we get by rewriting slopel in terms of ¢:

> simplify (subs (x=xt,y=yt,slopel)) ;
8 cos(t)2 — 3 cos(t) — 4

sin(¢) (8 cos(t) +3)

(29)

(30)
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Exercise 3.1

> r := (n) -> diff (x*n*1n(x)/n!,x$n);
o R (x”ln(x) )
ri=n—
o n!
> seq(r(n),n=1..10);
3 11 25 137 49
In(x) +1,In(x) + ) ,In(x) + 6 ,In(x) + 2 ,In(x) + 60 ,In(x) + 20 ,In(x) +
761 7129 7381
In(x) + 720 ,In(x) + 7520 ,In(x) + 7520

_> seq(r(n)-r(n-1) ,n=2..10) ;
1

We see from this that »(n) —r(n —1) :%_ We start with »(1) =In(x) + 1, and then
r(2)=r(l) +r(2) —r(l) =r(l) +% =In(x) +1 +%
r(3)=r(2) +7r(3) —r(2) =r(2) —I—% =In(x) + 1 -l—% -l—%
r(4)=r(3) +r(4) —r(3) =r(3) +% =In(x) +1 +% +% +
and so on. In general, we have
1 1
r(n)=In(x) +1 + B +...+ o =In(x) +

363
140°

(32)

(33)

(34)



Maple knows about a constant called gamma (Euler's constant, approximately 0.577) and a special

n
function called ¥ with the property that Z% =¥ (n + 1) + gamma for any positive integer 7.
k=1

(You can enter ?Psi to find out more.) Using this, we could also write

r(n) =In(x) +¥(n +1) + gamma
We can check this as follows:

> seq(r(n),n=1..8);
11 25 137 49 363

3
In(x) +1, In(x) + 5 In(x) + 6 In(x) + T In(x) + 60 In(x) + 20 In(x) + 140 35)
761
1 e
n(x) + 730
> seq(ln(x)+Psi (n+l)+gamma,n=1..8);
3 11 25 137 49 363
In(x) + 1, In(x) + 5> In(x) + 6 In(x) + T In(x) + 60 In(x) + 0 In(x) + 140’ 36)
761
1 -
n(x) + 720
| > unassign('r');
We can prove that the formula is valid by induction, but we will not give the details here.
Exercise 3.2
>y = t*2*%exp(t);
yi=rF¢ (37
> z := simplify (
diff(y,t,t,t) +
a * diff(y,t,t) +
b * diff(y,t) +
c *y
)
>
z=¢((a+b+c+1) P+ 4a+2b+6)t+2a+6) (38)
We want this to be zero for all ¢, so the coefficients of the individual powers of ¢ must all be
zero. To find these coefficients, we use the collect function:
> collect(z,t);
da+b+c+ )P+ (4a+2b+6)t+¢ (2a+6) (39)

We must therefore find a, b and c¢ such that
l+a+b+c=6+4a+2b=6+2a=0

(> solve ({1l+a+b+c=0,6+4*a+2*b=0,6+2*a=0}, {a,b,c}) ;



|_ {a=—-3,b=3,c=—1} (40)
The conclusion is that y"" — 3 y" +3y'—y=0.

You might think that we could do this more quickly by just solving z=0. This does not work,
because it does not capture the fact that a, » and ¢ are supposed to be constants. Maple
ives us the following answer, in which b and ¢ can be anything, but a depends on #:

> solve(z=0,{a,b,c});

2 2
{a:a,b:b’c:_ (1 —|—4;+2)a B (t+t2)b 1 +62t+6 1)
4 4

A correct approach along these lines is to replace the equation z=0 by the expression identity (z=0,
t) to indicate that the equation is supposed to hold for all 7.
This is probably the best approach, if you can remember the syn

> solve(identity(z=0,t), {a,b,c});

{a=—=3,h=3,c=—1} @2)
Exercise 3.3
> p := (n) -> sort(expand(exp (x"2)*diff (exp(-x"2),x$n)));
p = n—>s0rt[expand[e"2 [ dn e_xzj JJ (43)
dx
> p(2);
455 —2 44)
> p(3);
-8+ 12x (45)
> p(4);
16x" —48 3" + 12 (46)
> seq(print(p(n)),n=1..10);
-2x
4x*—2
-8+ 12x

16x" —48x* + 12
-32x° +160x° — 120 x
64 x° — 480 x* + 720 > — 120
-128 x7 + 1344 x° — 3360 x° + 1680 x
256 x° — 3584 x° + 13440 x* — 13440 x* + 1680
-512x° +9216 x' — 48384 x° + 80640 x° — 30240 x

(AN



|_ 1024 x'* — 23040 x* + 161280 x° — 403200 x* + 302400 x* — 30240 %)

We first look at the leading term of p(7n). The leading term of p(1) is -2 x, the leading term of p(2)
is 4 xz, the leading term of p(3) is -8 x> and so on. The signs alternate, the constant is 2", and the
power of x is x". More succinctly, the leading term in p(n) is (-2 x)".

Next, note that when » is even we only get even powers of x, and when 7 is odd we only get odd powers
of x. For example, p(7) involves only x, x3, x> and x7, whereas p(6) involves x2, x* and x° (and a
constant term, which we can think of as a multiple of xO).

Now look at the last term in p(n). When n is even, the last term is a constant, but when # is odd, it is a

multiple of x. It is best to consider these separately, starting with the even case, where we may write
n=2m.

> seq(print(p(2*m)) ,m=1..6) ;
4x*—2

16x" —48x* + 12
64 x° — 480 x* + 720 x* — 120
256 x° — 3584 x° + 13440 x* — 13440 x* + 1680
1024 x'% — 23040 x* + 161280 x°* — 403200 x* + 302400 x* — 30240

4096 x'2 — 135168 x'* + 1520640 x* — 7096320 x° + 13305600 x* — 7983360 x> 4+ 665280  (48)

We see that the last term is (-1)" times a constant, with the sequence of constants being

2,12, 120, 1680, 302040, 665280 and so on. If we enter this in the Online Encyclopedia of Integer
Sequences we get an answer including the line

Name: Quadruple factorial numbers: (2n)!/n!.
We need to be a little careful with this formula. The encyclopedia assumes that the numbers we entered

(2n)!
!

n.

correspond to n =1, 2, 3, ... and gives the formula . In fact our numbers correspond to

(-D)" (2m)!

m! ’
Of course this kind of experimental approach does not really prove that the formula is correct, but it is
very suggestive.

m=1,2,3,... (where n =2 m) so the right formula for the constant term in p(2 m) is

We now look at the case where n is odd, say n=2m — 1:
> seq(print(p(2*m-1)) ,m=1..5);
-2x

-8 +12x
-32x° +160x° — 120 x
-128 x7 + 1344 x° — 3360 x° + 1680 x
-512 %7 + 9216 x' — 48384 x° + 80640 x° — 30240 x (49)

The final terms are the same as before, but multiplied by x. In other words, the last termin p(2m — 1)




(-DH)™" (2m)! x
m! )

1S

We can now predict that p(12) should start with (-2 x) 12— 4096 xlz, and that it should contain
multiples of xlo, x8, x6, x4, x* and a constant term. This is the case where 7 =2 m and m = 6, so the
(-1)°121
6!

constant term is =665280. We check this as follows:

> p(12);
[ 4096 x'2 — 135168 x'* + 1520640 x* — 7096320 x° + 13305600 x* — 7983360 x> 4+ 665280  (50)

We now compare p(n) with the Hermite polynomial H, (x), entered in Maple as simplify

_(HermiteH (n,x)):

> q := (n) -> simplify(HermiteH(n,x))
q = n — simplify(HermiteH(n, x)) (51)

> seq(print([p(n),q(n)]),n=1..6);
[-2x,2x]

(432 —2,4x" —2]
[-8x° +12x 8% — 12 x]
4 2 4 2
[16x" —48x" +12,16x" —48x" + 12]
[-32° 4+ 160 x° —120x,32x° — 160 x° + 120 x]
[64 x° — 480 x* + 720 x* — 120, 64 x° — 480 x* + 720 x* — 120] (52)

{Ve see that g (n) is the same as p(n) when n is even, and the same as -p(n) when n is odd. In other

words, we have g(n) = (-1)"p(n).




