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More differentiation

_________________________________________________________________________________

Exercise 1.1
Here are the graphs of y = xn eKx for n = 3, 4 and 5:

plot(x^3*exp(-x),x=0..8);
plot(x^4*exp(-x),x=0..8);
plot(x^5*exp(-x),x=0..8);
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You can just about see that the peaks occur at x = 3, x = 4 and x = 5, suggesting that for general n  

we should have a peak at x = n .  To check this, we must solve 
dy
dx

= 0.

y := x^n * exp(-x);
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(5)(5)

> > 

> > 

(4)(4)

(3)(3)

(2)(2)

> > 

> > 

> > 

(1)(1)yd xn eKx

simplify(diff(y,x));

eKx xnK1 nKxn

solve(diff(y,x)=0,{x});
x = n

This shows that the peak does indeed occur at x = n .  To find the height of the peak, we must put
x = n  in y:

y[max] := subs(x=n,y);
ymaxd nn eKn

It follows that 
y

ymax
=

x
n

n

 enKx, so the maximum value of  
x
n

n

 enKx is 1.  We can plot these 

functions for different n  together as follows:

plot([seq((x/n)^n*exp(n-x),n=1..8)],x=0..20);
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_________________________________________________________________________________

Exercise 1.2

p := (x) -> -10*x^6+156*x^5-945*x^4+2780*x^3-4080*x^2+2880*x;
pd x1K10 x6C156 x5K945 x4C2780 x3K4080 x2C2880 x

plot(p(x),x=0..5);
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(12)(12)
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(11)(11)
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(9)(9)

(6)(6)
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We see from the picture that the maximum value is about 1000, occurring at about x = 3. 
There also seem to be two inflection points, where the curve flattens out but does not
have a maximum or minimum.  To check this, we solve for p' x = 0:

p1 := diff(p(x),x);

p1dK60 x5C780 x4K3780 x3C8340 x2K8160 xC2880

solve(p1=0,x);
3, 1, 1, 4, 4

This shows that the critical points are at x = 1, x = 3 and x = 4.  The numbers 1 and 4 are
repeated because they are double roots of p' x , and therefore inflection points of p x .
To check this, we differentiate again:

p2 := diff(p(x),x,x);

p2dK300 x4C3120 x3K11340 x2C16680 xK8160

subs(x=1,p2);
0

subs(x=3,p2);
K240

subs(x=4,p2);
0

As p' 3 = 0 and p'' 3 ! 0 we see that x = 3 is a local maximum; by looking at the graph we
see that it is a global maximum.  The maximum value of p x  is thus given by p 3 :

p(3);
1053
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(15)(15)

> > 

> > 

> > 

> > 

(13)(13)

> > 

The values of p x  at the inflection points are strictly smaller, as expected:

p(1),p(4);
781, 1024

_________________________________________________________________________________

Exercise 2.1

restart;

u := x*sin(x^2+y^2)-y*cos(x^2+y^2);
ud x sin x2Cy2 Ky cos x2Cy2

with(plots):

implicitplot(u=0,x=-5..5,y=-5..5,grid=[100,100]);

x
K4 K2 0 2 4

y

K4

K2

2

4

slope1 := implicitdiff(u=0,y,x);

slope1dK
2 sin x2Cy2  y xC2 cos x2Cy2  x2Csin x2Cy2

2 y2 sin x2Cy2 C2 x y cos x2Cy2 Kcos x2Cy2

The answer can be rewritten more nicely using the original relation
 x sin x2Cy2 = y cos x2Cy2 , 

which allows us to rewrite sin x2Cy2  as 
y cos x2Cy2

x
, after which we can cancel 

the cos terms.

subs(sin(x^2+y^2) = (y/x)*cos(x^2+y^2),slope1);



> > 
(21)(21)

(16)(16)

> > 

(20)(20)

> > 

> > 

(18)(18)

(17)(17)

> > 

> > 

(19)(19)

K
2 y2 cos x2Cy2 C2 cos x2Cy2  x2C

y cos x2Cy2

x

2 y3 cos x2Cy2

x
C2 x y cos x2Cy2 Kcos x2Cy2

simplify(%);

K2 x3K2 x y2Ky

2 x2 yC2 y3Kx

slope1 := %;

slope1d
K2 x3K2 x y2Ky

2 x2 yC2 y3Kx

We now write the curve parametrically in terms of t:

xt := t * cos(t^2); yt := t * sin(t^2);
xtd t cos t2

ytd t sin t2

To check that this really is the same curve as before, we put x = t cos t2  and y = t sin t2  in u  and 
make sure that we get zero:

subs(x=xt,y=yt,u);

t cos t2  sin t2 cos t2
2
C t2 sin t2

2
Kt sin t2  cos t2 cos t2

2
Ct2 sin t2

2

simplify(subs(x=xt,y=yt,u));
0

We can also check graphically:

plot([xt,yt,t=-5..5]);
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(26)(26)
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We now calculate 
dy
dx

 again from the parametric representation:

diff(xt,t);
cos t2 K2 t2 sin t2

diff(yt,t);

sin t2 C2 t2 cos t2

slope2 := diff(yt,t)/diff(xt,t);

slope2d
sin t2 C2 t2 cos t2

cos t2 K2 t2 sin t2

This should be the same as what we get by putting x = t cos t2  and y = t sin t2  in our earlier answer:

simplify(subs(x=xt,y=yt,slope1));

sin t2 C2 t2 cos t2

cos t2 K2 t2 sin t2

_________________________________________________________________________________

Exercise 2.2

restart;
We start by entering the definitions given in the question:

u := (x^2+y^2)^2 + 85*(x^2+y^2) - 500 + 18*x*(3*y^2-x^2);

ud x2Cy2 2
C85 x2C85 y2K500C18 x Kx2C3 y2



> > 

(27)(27)

> > 

> > 

(28)(28)

> > 

> > 

xt := 6*cos(t) + 8*cos(t)^2 - 4;
yt := 2*sin(t)*(3-4*cos(t));

xtd 6 cos t C8 cos t 2K4

ytd 2 sin t  3K4 cos t

We now plot the curve u = 0 and the curve given parametrically in terms of t:

with(plots):

implicitplot(u=0,x=-10..10,y=-10..10,grid=[100,100]);
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plot([xt,yt,t=0..2*Pi]);
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The curves certainly look the same.  This can be tested as follows:

simplify(subs(x=xt,y=yt,u));
0
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We next find 
dy
dx

 by implicit differentiation:

slope1 := simplify(implicitdiff(u=0,y,x));

slope1d
K2 x3K2 y2 xC27 x2K27 y2K85 x

y 2 x2C2 y2C54 xC85

Alternatively, we can find 
dy
dx

 from the parametric representation:

slope2 := simplify(diff(yt,t)/diff(xt,t));

slope2d
8 cos t 2K3 cos t K4

sin t  8 cos t C3

This is the same as what we get by rewriting slope1 in terms of t:

simplify(subs(x=xt,y=yt,slope1));
8 cos t 2K3 cos t K4

sin t  8 cos t C3

_________________________________________________________________________________

Exercise 3.1

r := (n) -> diff(x^n*ln(x)/n!,x$n);

rd n/
vn

vxn
 

xn ln x
n!

seq(r(n),n=1..10);

ln x C1, ln x C
3
2

, ln x C
11
6

, ln x C
25
12

, ln x C
137
60

, ln x C
49
20

, ln x C
363
140

,

ln x C
761
280

, ln x C
7129
2520

, ln x C
7381
2520

seq(r(n)-r(n-1),n=2..10);
1
2

,
1
3

,
1
4

,
1
5

,
1
6

,
1
7

,
1
8

,
1
9

,
1

10

We see from this that r n Kr nK1 =
1
n

.  We start with r 1 = ln x C1, and then

     r 2 = r 1 Cr 2 Kr 1 = r 1 C
1
2

= ln x C1C
1
2

     r 3 = r 2 Cr 3 Kr 2 = r 2 C
1
3

= ln x C1C
1
2
C

1
3

     r 4 = r 3 Cr 4 Kr 3 = r 3 C
1
4

= ln x C1C
1
2
C

1
3
C

1
4

and so on.  In general, we have

r n = ln x C1C
1
2
C ...C

1
n

= ln x C>
k= 1

n
1
k
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(39)(39)

> > 

> > 

(37)(37)

> > 

(38)(38)

(35)(35)

> > 

> > 

> > 

> > 

(40)(40)

Maple knows about a constant called gamma (Euler's constant, approximately 0.577) and a special 

function called Y with the property that >
k= 1

n
1
k

=Y nC1 Cgamma for any positive integer n .

(You can enter ?Psi to find out more.)  Using this, we could also write

r n = ln x CY nC1 Cgamma
We can check this as follows:

seq(r(n),n=1..8);

ln x C1, ln x C
3
2

, ln x C
11
6

, ln x C
25
12

, ln x C
137
60

, ln x C
49
20

, ln x C
363
140

,

ln x C
761
280

seq(ln(x)+Psi(n+1)+gamma,n=1..8);

ln x C1, ln x C
3
2

, ln x C
11
6

, ln x C
25
12

, ln x C
137
60

, ln x C
49
20

, ln x C
363
140

,

ln x C
761
280

unassign('r');

We can prove that the formula is valid by induction, but we will not give the details here. 
_________________________________________________________________________________

Exercise 3.2

y := t^2*exp(t);

yd t2 et

z := simplify(
     diff(y,t,t,t) + 
 a * diff(y,t,t) + 
 b * diff(y,t) +
 c *y
);
 

zd et aCbCcC1  t2C 4 aC2 bC6  tC2 aC6

We want this to be zero for all t, so the coefficients of the individual powers of t must all be
zero.  To find these coefficients, we use the collect function:

collect(z,t);

et aCbCcC1  t2Cet 4 aC2 bC6  tCet 2 aC6

We must therefore find a, b  and c such that 
1CaCbCc = 6C4 aC2 b = 6C2 a = 0

solve({1+a+b+c=0,6+4*a+2*b=0,6+2*a=0},{a,b,c});



(42)(42)
> > 

(46)(46)

> > 

> > 

> > 

(43)(43)

> > 

> > 

> > 

(41)(41)

(40)(40)

(45)(45)

(44)(44)

(47)(47)

a =K3, b = 3, c =K1

The conclusion is that y'''K3 y''C3 y'Ky = 0.

You might think that we could do this more quickly by just solving z = 0.  This does not work,
because it does not capture the fact that a, b  and c are supposed to be constants.  Maple
gives us the following answer, in which b  and c can be anything, but a  depends on t:

solve(z=0,{a,b,c});

a = a, b = b, c =K
t2C4 tC2  a

t2
K

tC2  b
t

K
t2C6 tC6

t2

A correct approach along these lines is to replace the equation z=0 by the expression identity(z=0,
t) to indicate that the equation is supposed to hold for all t. 
This is probably the best approach, if you can remember the syn

solve(identity(z=0,t),{a,b,c});
a =K3, b = 3, c =K1

_________________________________________________________________________________

Exercise 3.3

p := (n) -> sort(expand(exp(x^2)*diff(exp(-x^2),x$n)));

pd n/sort expand ex
2
 

dn

dxn
 eKx

2

p(2);

4 x2K2

p(3);

K8 x3C12 x

p(4);
16 x4K48 x2C12

seq(print(p(n)),n=1..10);
K2 x

4 x2K2

K8 x3C12 x

16 x4K48 x2C12

K32 x5C160 x3K120 x

64 x6K480 x4C720 x2K120

K128 x7C1344 x5K3360 x3C1680 x

256 x8K3584 x6C13440 x4K13440 x2C1680

K512 x9C9216 x7K48384 x5C80640 x3K30240 x



(48)(48)

> > 

> > 

(47)(47)

(49)(49)

1024 x10K23040 x8C161280 x6K403200 x4C302400 x2K30240

We first look at the leading term of  p n .  The leading term of p 1  is K2 x, the leading term of p 2  
is 4 x2, the leading term of p 3  is K8 x3 and so on.  The signs alternate, the constant is 2n, and the 
power of x is xn.  More succinctly, the leading term in p n  is K2 x n.

Next, note that when n  is even we only get even powers of x, and when n  is odd we only get odd powers
of x.  For example, p 7  involves only x, x3, x5 and x7, whereas p 6  involves x2, x4 and x6 (and a 
constant term, which we can think of as a multiple of x0).

Now look at the last term in p n .  When n  is even, the last term is a constant, but when n  is odd, it is a 
multiple of x.  It is best to consider these separately, starting with the even case, where we may write 
n = 2 m.

seq(print(p(2*m)),m=1..6);

4 x2K2

16 x4K48 x2C12

64 x6K480 x4C720 x2K120

256 x8K3584 x6C13440 x4K13440 x2C1680

1024 x10K23040 x8C161280 x6K403200 x4C302400 x2K30240

4096 x12K135168 x10C1520640 x8K7096320 x6C13305600 x4K7983360 x2C665280

We see that the last term is K1 m times a constant, with the sequence of constants being 
2, 12, 120, 1680, 302040, 665280 and so on.  If we enter this in the Online Encyclopedia of Integer 
Sequences  we get an answer including the line 

Name:      Quadruple factorial numbers: (2n)!/n!.

We need to be a little careful with this formula.  The encyclopedia assumes that the numbers we entered

correspond to n = 1, 2, 3, ...  and gives the formula 
2 n !
n!

.  In fact our numbers correspond to 

m = 1, 2, 3, ...  (where n = 2 m) so the right formula for the constant term in p 2 m  is 
K1 m 2 m !

m!
.

Of course this kind of experimental approach does not really prove that the formula is correct, but it is 
very suggestive.

We now look at the case where n  is odd, say n = 2 mK1:

seq(print(p(2*m-1)),m=1..5);
K2 x

K8 x3C12 x

K32 x5C160 x3K120 x

K128 x7C1344 x5K3360 x3C1680 x

K512 x9C9216 x7K48384 x5C80640 x3K30240 x

The final terms are the same as before, but multiplied by x.  In other words, the last term in p 2 mK1  
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(51)(51)

(50)(50)

> > 

> > 

(52)(52)

is 
K1 m 2 m ! x

m!
. 

We can now predict that p 12  should start with K2 x 12 = 4096 x12 , and that it should contain 
multiples of x10, x8, x6, x4, x2 and a constant term.  This is the case where n = 2 m and m = 6, so the 

constant term is 
K1 6$12!

6!
= 665280.  We check this as follows:

p(12);
4096 x12K135168 x10C1520640 x8K7096320 x6C13305600 x4K7983360 x2C665280

We now compare p n  with the Hermite polynomial Hn x , entered in Maple as simplify

(HermiteH(n,x)):

q := (n) -> simplify(HermiteH(n,x));
qd n1 simplify HermiteH n, x

seq(print([p(n),q(n)]),n=1..6);
K2 x, 2 x

4 x2K2, 4 x2K2

K8 x3C12 x, 8 x3K12 x

16 x4K48 x2C12, 16 x4K48 x2C12

K32 x5C160 x3K120 x, 32 x5K160 x3C120 x

64 x6K480 x4C720 x2K120, 64 x6K480 x4C720 x2K120

We see that q n  is the same as p n  when n  is even, and the same as Kp n  when n  is odd.  In other 
words, we have q n = K1 n p n .


