» The ratint function

» Various rational functions

Exercise 1
4
When x is large, y is approximately )fT . Indeed, the formula for y is as follows:

> y := ratint(((x*3+1)/(x*2+1))*3,x);
X 15 %° ¥ 13 x 1
yi= o, +3xd + + + 1)

4 (241 2241 a2+ PE+1)’
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+3In(x*+1) —
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n p
The first term is Vi and the other terms are much smaller, at least when x is large. Indeed, when x

is large, all of the terms with ** + 1 on the bottom will be very small. Also, you should recall from

the theory of trigonometric functions that |arctan(x)| is always at most % , so this will also be
negligible

X 3
in comparison to e for large x. The terms 3 x and N will get large as x does, but much more

4 4
slowly than )fT does. For example, when x =1000, the term XT is of the order of a trillion, whereas

2
3Tx is of the order of a million, and 3 x is only 3000. The behaviour of ln(x2 +1 ) is a little less

obvious,
but in fact it grows much more slowly even than x, as you could check by plotting the graph.

We can ask Maple to separate the terms as follows:

> terms := [op(y)];
4 2 3 2
terms = x—,—3—x,3x, 15 x , al , 13 x , ! ,31n(x2 2)
4 2 2 2 2 2 2 2 2 2
4(x4+1) 2(x+1) 4(x"+1) (¥+1)

_ 21 arctan(x)

+1), i

SVe can then check the relative size when x =1000:
> evalf (subs (x=1000,terms)) ;
[2.500000000 10", —1.500000 10°, 3000., 0.003749992500, 4.999990000 10~ 3)




|_ 3.249993500 102, 9.999980000 1013, 41.44653468, —8.241430717 |

You can see that the first term is much bigger than the rest. We can also see this by plotting.
B
4
By x =35, the red curve is already much bigger than the others. If you change the rangeto 1. .100
(say) then only the red curve is visible because all other terms are squashed down onto the x axis.

> plot(terms,x=1..5);

In the picture below, the red curve is , and the other terms are plotted in various different colours.
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We can also just plot y and XT together. If we stop at x =9 then you can still see the difference

between
| the two curves, but if we went much further than that then they would be indistinguishable.

> plot([y,x*4/4],x=-9..9);
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X
| > unassign('y', 'terms');
Exercise 2
Here is the formula for y:
> y := ratint((a*x*2+b)/ (c*x*2+d) ,x);
arctan( \/1 ) ad arctan( \/1 ] b
ax dc dc
yi= 84X + “)

¢ cdc Jdc

Thisis y= ax (which gives a line of slope 4 ) plus some other terms, which will be much smaller
c c

dy

when x is large. One way to see this is to look at
X

when x is large, or in other words, the limit of

2
% as x tends to infinity. Of course % is just the function we first thought of, namely ax To x2 +§ .
cx +

When x is very large, b and d will be negligible compared with a x* and cxz, so the function is

. ax
approximately —— = —.
cXx ¢

> limit(diff (y,x) ,x=infinity);
- 5)

We can see this graphically if we choose some numbers for a, b, ¢ and d.
> plot(subs (a=7,b=-3,c=2,d=8, [y,a*x/c]) ,x=10..100) ;
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| > unassign('y');

Exercise 3

(a) It is true that the integral of a rational function can contain terms like a ln(x2 +ux+v). For
example:

>y = (8*x+8)/ (x*2+2*x+3) ;
8x+8
yi=— (6)
X +2x+3
> ratint(y,x);
4In(x* +2x+3) (7
or more generally:
>y = a*(2*x+u) / (x*2+u*x+v) ;
a(2x+u
yi= 2T ®)
ux+x +v
> ratint(y,x);
aln(ux-+x2—%v) 9

=

(b) It is not true that terms like x In(x + u) can occur in the integral of a rational function g(x).
If there were a term x In(x +u) in |g(x) dx, then there would have to be a term

&

9 (xIn(x +u)) in a4 Ug(x)

o . ) . In other words, there would be a term



In(x +u) + in g(x), which is not allowed, as g(x) is supposed to be a rational function.

X
X+u

(c) For essentially the same reason, there cannot be any terms like a In(x + u)2 in the integral

0
of a rational function, because o (a In(x + u)z) _Zalhn(xtu) , Which is not allowed as
X—u
a term in a rational function.
Exercise 4
If 5> — 4 ¢ < 0 then the function x* + b x + ¢ has no real roots, and the integral J% dx
X +bx+c
involves
the arctan( ) function. Here is an example:
>b 1= 2; ¢ := 3; b*2-4*c;
b:=2
c ==
-8 10)
> plot(x*2+b*x+c,x=-2..1,0..6);
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> ratint(1l/ (x*2+b*x+c) ,x);

ﬁarctan( ng + V2 )

2

; a

If 5> — 4 ¢ =0 then the function x* 4 b x + ¢ has only one real root (where the graph
touches the x axis but does not cross it) and the integral involves neither arctan( ) nor In( ); in fact, it
just

has the form - . Here is an example:

X—Uu



>Db :=4; ¢ := 4; b*"2-4*c;

b =
c =
a12)
> plot(x*2+b*x+c,x=-4..1,0..6) ;
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> ratint(1/ (x*2+b*x+c) ,x) ;
1
- 13
x+2 (13)
If0 < b* — 4 ¢ then the function x* + b x + ¢ has two real roots, and the integral is a
sum of two terms involving In( ). Here is an example:
>Db := -5; ¢ := 4; b*2-4%*c;
b= =5
c:=4
9 14

> plot(x*2+b*x+c,x=-1..5);
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_> ratint (1/ (x*2+b*x+c) ,x) ;

CIn(x=1) |, In(lx—4])
3 * 3

15)

| > unassign('b','c'");

Exercise 5
Terms like In(|x —u|) in [g(x) dx are associated with places where g(x) blows up to infinity (which
are known as the poles of g(x) ). More precisely, if there is a term In(|x — u|) in the integral, then

g(x) mustblow up at x=u. Conversely, if g(x) blows up at x =u then there will usually be a term

In(]x —u|) in the integral, but not always; there may instead be terms of the form (x —u) ". The
functions g, (x) and g,(x) are examples of this.

Here we consider g, (x) ; there are poles at x= -1 and x =1, and corresponding terms In(|x + 1)
and In(|x — 1) in the integral.
> vy :=g[2](x); z := ratint(y,x);

_ 1 1 1
y—x_1+xz_1+x3_1
243 x \/3j
v t
 llln(x—1) In(x+1) W F+x+1) 3arcan( T
o 6 R 6 B 3 (16)

> plot([y,z],x=-5..5,-10..10);




101

_10-

Here we consider g;(x). There are no In( ) terms in the integral, but nonetheless there are poles
atx=1,x=2and x=3.

> vy :=g[3](x); z := ratint(y,x);
1 1 1
= + +
PTG h—2® o3
1 1 1
o _ _ 17
} 3(x—3)>° 2@x—2)2 x—1 17

> plot([y,z],x=0..5,-100..100,numpoints=400) ;
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Here we consider g,(x). There is a pole at x = -1, and a corresponding term In(|x + 1|) in the
integral.

> vy := gl[4] (x); z := ratint(y,x);

1 1 1
yi= + +
x+1 x2+1 x3+1
Aln(jx + 1)) n(x*—x+1) Earcm(zgx_?)
z = —|3—|— + arctan(x) — i 6x + 3 (18)

> plot([y,z],x=-5..5,-10..10);
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Exercise 6

We only get terms like ! or ! in [g(x) dx if the denominator of g(x) has repeated roots.

X—u (x—u)"

A repeated root at x =u gives a factor (x —u)" in the denominator, with 1 < n. This gives a term

in the integral (and possibly also some terms like for smaller values of k).

—1 k

(x —u)" (x —u)

Here we consider g;(x):

>y :=gl3l1(x);
1 1 1

RTINS BN “
zl"he denominator has repeated roots at x =1, x=2 and x=3:
> d := denom(factor(y)):
d=(x—1)"(x—2)° (x=3)* (20)

These show up in the graph of d as points where the graph touches the x axis without crossing it,
or where it crosses but the tangent line at the crossing point is horizontal:

> plot(d,x=0..4,-0.3...0.3);
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The integral has terms of the form ;n foru=1,2 and 3.
_ (x —u)
> ratint(y,x);
) 1 - 1 - 1 @1
3 (x—3) 2 (x—2) x—1
Here we consider g, (x) :
>y = gl4] (x);
1 1 1
y = + + 22)

x+1 Z+1 ©+1
zl"he denominator has a root at x = - 1, which is not repeated:
> d := denom(factor(y)):

d=(+1) (x+1) (¥ —x+1) 23)
This is visible in the graph of d. Note that where the graph meets the x axis, the tangent line is not
horizontal, corresponding to the fact that the root is not repeated.
> plot(d,x=-2..2,-10..10);
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The integral has no terms of the form ! .
_ (x—u)"
> ratint(y,x);
41n(jx+ 1)) n(x> —x+1) ﬁar‘:tan(zgx_?)
n(lx | + arctan(x) — nmx =2 + 24)
3 6 3
Here we consider g¢(x) :
>y = glé6](x);
_ x(x+2) (x+4) 25)

(x+1)* (x+3)
zl“he denominator has repeated roots at x = -3 and x = -1:
> d := denom(factor(y)):;

di=(x+1)* (x+3)* (26)
These visible in the graph of d, as points where the curve meets the x axis without crossing it.
Note that the tangent line is horizontal at these points.
> plot(d,x=-4..2,-10..10);
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The integral has terms of the form ——— forx=-3 and x=-1.
> ratint(y,x);
3 In(|x +3|) 3 In(jx +1])
- 2
4 (x+3) * 2 +4(x—i—1) + 2 @7)

We now integrate some random rational functions, and observe that we do not get any terms like
1

(x —u)
never have repeated roots. The roots of a random polynomial are randomly distributed, so it
would be a big coincidence for two roots to be in the same place, and this does not often happen.

. The reason is simply that the denominator is a random polynomial, which will almost

> r := randpoly(x)/randpoly (x) ;
5 4 3 2
e 7 x +242x 5;5x 9;1x + 87 x — 56 28)
-62x +97x —73x —4x—83

> ratint(r,x);
—0.1781997919.x-—(115720506401n(x2-+(l6287014875-+(l6984629175.x) (29)

+0.9550059466 arctan(1.404778618 x + 0.4905928858 ) 4 0.3948880051 In(x*
+2.129324814 — 2.262979046 x) + 0.8455509582 arctan(1.085254918 x
— 1.227954570) + 0.05645161290 X




> r := randpoly(x)/randpoly (x) ;
_ 210X +62x" — 821" + 8027 —44x +71
17X =75x"—10x" =7 —40x + 42

1> ratint(r,x);

Q5882352941x-+(11061874592ln(x2+-08275212923-—(l3675458439x)
+0.5261842533 arctan(1.122427911 x — 0.2062718568) — 0.4428128431 In(|x
—0.6164177376]) — 7.992432621 In(|x + 4.258350792|) + 1.980656010 In(|x
+ 1.137377494])

> r := randpoly(x)/randpoly (x) ;
_ 50X +23x +755° —92%° +6x 474
725 +37x" =232 +87x% + 44 x 429

> ratint(r,x);
—(l6944444444.x——(1009138551763ln(x2—%1.143500883 —-L314095787x)

—0.03032363307 arctan(1.185289343 x — 0.7787918661) + 0.3440274514 In(x*

+0.2672062237 +0.5097812758 x) + 1.542925025 arctan(2.223666777 x
+0.5667918431) + 0.006533929131 In(|x + 1.318203400|)

(30)

€)Y

(32)

(33)



