
> >

> >

Miscellaneous problems

Q1.1

with(plots):

display(
 plot([cos(t)/2-cos(2*t)/4,sin(t)/2-sin(2*t)/4,t=0..2*Pi]),
 plot([cos(t)/4-1,sin(t)/4,t=0..2*Pi]),
 plot([-0.1225+0.0945*cos(t), 0.7449+0.0945*sin(t),t=0..2*Pi]),
 plot([-0.1225+0.0945*cos(t),-0.7449+0.0945*sin(t),t=0..2*Pi]),
 scaling=constrained,axes=none
);

Here is a picture of the full Mandelbrot set:

> >

> >

> >

Q1.2:

with(plots):
Here is the picture for n = 6:

implicitplot(abs(x)^6+abs(y)^6=6^(6/2),x=-3..3,y=-3..3,grid=[200,
200]);

x
K2 K1 0 1 2

y

K2

K1

1

2

Here are n = 2 and n = 6 together:

display(
 implicitplot(abs(x)^2+abs(y)^2=2^(2/2),x=-3..3,y=-3..3,grid=

> >

[200,200]),
 implicitplot(abs(x)^6+abs(y)^6=6^(6/2),x=-3..3,y=-3..3,grid=
[200,200])
);

x
K2 K1 0 1 2

y

K2

K1

1

2

Here is the full picture:

display(
 seq(
 implicitplot(abs(x)^n+abs(y)^n=n^(n/2),
 x=-3..3,y=-3..3,grid=[200,200]),
 n=1..9)
);

> >

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3

Q1.3:

listplot([seq(50^n/n!,n=0..100)],style=point);

> >

(1)(1)

> >

10 20 30 40 50 60 70 80 90 100
0

5.#1019

1.#1020

1.5#1020

2.#1020

2.5#1020

Q1.4:

y := exp(-1/x);

y d e
K

1
x

We can work out the first few derivatives as follows:

diff(y,x);

> >

(6)(6)

> >

> >

(5)(5)

(2)(2)

> >

> >

(3)(3)

(4)(4)

(7)(7)

e
K

1
x

x2

simplify(diff(y,x$2));

K
e
K

1
x 2 xK1

x4

simplify(diff(y,x$3));

e
K

1
x 6 x2K6 xC1

x6

simplify(diff(y,x$4));

K
e
K

1
x 24 x3K36 x2C12 xK1

x8

simplify(diff(y,x$5));

e
K

1
x 120 x4K240 x3C120 x2K20 xC1

x10

We see that
vk

vxk
 y is always of the form

e
K

1
x pk x

x2 k
 for some polynomial pk x . Explicitly, the first

ten of these
polynomials are as follows:

for k from 1 to 10 do p[k] := expand(x^(2*k)*diff(y,x$k)/y); od;
p1 d 1

p2 d K2 xC1

p3 d 6 x2K6 xC1

p4 d K24 x3C36 x2K12 xC1

p5 d 120 x4K240 x3C120 x2K20 xC1

p6 d K720 x5C1800 x4K1200 x3C300 x2K30 xC1

p7 d 5040 x6K15120 x5C12600 x4K4200 x3C630 x2K42 xC1

p8 d K40320 x7C141120 x6K141120 x5C58800 x4K11760 x3C1176 x2K56 xC1

p9 d 362880 x8K1451520 x7C1693440 x6K846720 x5C211680 x4K28224 x3C2016 x2

K72 xC1

> >

> >

p10 d K3628800 x9C16329600 x8K21772800 x7C12700800 x6K3810240 x5C635040 x4

K60480 x3C3240 x2K90 xC1

We see from this that pk x always has degree kK1. The constant term is always pk 0 = 1. You

should recognise
the numbers 2, 6, 24, 120, 720 as factorials, so the highest term in pk x is K1 k k! xkK1.

We can plot the derivatives up to k = 4 as follows. We have divided each function by its approximate
maximum value so that we can see them clearly in the same picture. We find that the higher
derivatives
oscillate wildly for moderately small values of x, but then flatten out for very small values of x, and
also
for reasonably large values of x..

plot([
y/0.6,
diff(y,x)/0.55,
diff(y,x,x)/2.5,
diff(y,x,x,x)/30,
diff(y,x,x,x,x)/600],
x=0..2);

x
0.5 1 1.5 2

K0.6

K0.4

K0.2

0

0.2

0.4

0.6

0.8

1

This plot of the sixth derivative reinforces the same message.

plot(diff(y,x$6),x=0..3,-100..100);

> >

x
1 2 3

K100

K50

0

50

100

We can watch the curves flattening out near the origin as follows:

plot([
y,
diff(y,x),
diff(y,x,x),
diff(y,x,x,x),
diff(y,x,x,x,x)],
x=0..0.1,0..0.002);

x
0 0.02 0.04 0.06 0.08 0.10

0

0.0005

0.0010

0.0015

0.0020

> >

> >

(8)(8)

Solitons

with(plots):

We can enter the basic definitions as follows.

q := sqrt(2);
p := log(3 + 2*q);
r := x-4*t;
s := q*(x - 8*t);
T := 32 * cosh(2*r-p) + 16 * cosh(2*s-p) + 16;
B := 4*(1+q) * cosh(r)*cosh(s) + (4*q-8)*exp(r+s);
phi[0] := 2*cosh(r)^(-2);
phi[1] := 4*cosh(s)^(-2);
phi[2] := 2*cosh(r-p)^(-2);
phi[3] := 4*cosh(s-p)^(-2);
phi[4] := T/B^2;

q d 2

p d ln 3C2 2

r d xK4 t

s d 2 xK8 t

T d 32 cosh K2 xC8 tC ln 3C2 2 C16 cosh K2 2 xK8 t Cln 3C2 2

C16

B d 4 1C 2 cosh KxC4 t cosh 2 xK8 t C 4 2 K8 exK4 tC 2 xK8 t

f
0
 d

2

cosh KxC4 t 2

f1 d
4

cosh 2 xK8 t
2

f
2
 d

2

cosh KxC4 tCln 3C2 2
2

f
3
 d

4

cosh K 2 xK8 t C ln 3C2 2
2

f4 d 32 cosh K2 xC8 tCln 3C2 2 C16 cosh K2 2 xK8 t C ln 3C2 2

C16 4 1C 2 cosh KxC4 t cosh 2 xK8 t C 4 2

> >

> >

(11)(11)

(10)(10)

> >

(12)(12)

(9)(9)

> >

> >

K8 exK4 tC 2 xK8 t
2

We now check that the Korteweg-de Vries equation is satisfied. The tidiest way is to introduce the
KdV operator as follows:

K := (u) -> diff(u,t) + diff(u,x,x,x) + 6 * u * diff(u,x);

K d u/
v

vt
 uC

v3

vx3
 uC6 u

v

vx
 u

We now apply K to the functions f
i
:

simplify(K(phi[0]));
simplify(K(phi[1]));
simplify(K(phi[2]));
simplify(K(phi[3]));

0

0

0

0

If we just apply K directly to f
4
 then we get several pages of dense output, because Maple is not very

good at simplifying
hyperbolic functions. As explained in the problem sheet, we need to convert everything to exponential
form first.

convert(phi[4],exp);

16 eK2 xC8 tC ln 3C2 2 C16 e2 xK8 tK ln 3C2 2 C8 eK2 2 xK8 t C ln 3C2 2

C8 e2 2 xK8 t K ln 3C2 2 C16 4 1C 2
1
2

 eKxC4 t

C
1
2

 exK4 t
1
2

 e 2 xK8 t C
1
2

 eK 2 xK8 t C 4 2 K8 exK4 tC 2 xK8 t
2

simplify(K(convert(phi[4],exp)));
0

We can plot all the functions f
i
 together as follows. The bottom one is f

0
 and the top one is f

4
.

animate(
plot,
[[phi[0],phi[1]+5,phi[2]+10,phi[3]+15,phi[4]+20],x=-30..30],
t=-3..3,

frames=50,
scaling=constrained,
axes=none);

t = -3.

We see that f0 is essentially the same as f2 but delayed slightly; this is already easy to see from the

formulae.
Similarly, f1 is a slightly delayed copy of f3. When t is negative, the small hump in f4 follows f2 and

the

> >

large hump in f
4
 follows f

1
, so f

4
 is approximately f

1
Cf

2
. Near t = 0 the two humps interact, the

large one
jumps forward a little to follow f

3
, and the small hump drops back a little to follow f

0
. Thus, when t is

positive
we see that f

4
 is approximately f

0
Cf

3
.

We can see all this again in the following animation. The middle graph is f
4
. The bottom graph is

f
4
Kf

1
Kf

2
;

we find that this is very small when t is negative. The top graph is f4Kf0Kf3; we find that this is

very small when
t is positive.

animate(
plot,
[[phi[4]-phi[1]-phi[2]-10,phi[4],phi[4]-phi[0]-phi[3]+10],x=-30.
.30],
t=-3..3,
frames=50,
scaling=constrained,
axes=none);

(13)(13)

> >

t = -3.

We now calculate the momenta of f0 ..f3:

M[0] := int(phi[0],x=-infinity..infinity);
M[1] := int(phi[1],x=-infinity..infinity);
M[2] := int(phi[2],x=-infinity..infinity);
M[3] := int(phi[3],x=-infinity..infinity);

M0 d 4

M1 d 4 2

M2 d 4

M3 d 4 2

> >

> >

(19)(19)

> >

> >

(17)(17)

(15)(15)

> >

> >

(14)(14)

(16)(16)

(18)(18)

We can do this more efficiently as follows:

for i from 0 to 3 do
 M[i] := int(phi[i],x=-infinity..infinity);
od;

M0 d 4

M1 d 4 2

M2 d 4

M3 d 4 2

For M4 we need a more elaborate method, as described in the problem sheet:

M[4] := int(subs(t=0,phi[4]),x=-infinity..infinity,numeric,
method=_Gquad);

M4 d 9.656854250

We find that M4 = M1CM2, apart from a tiny error that would go away if we computed the integral

more accurately.

evalf(M[4] - M[1] - M[2]);

2. 10-9

We now repeat this for the energy:

for i from 0 to 3 do
 E[i] := int(phi[i]^2,x=-infinity..infinity);
od;

E0 d
16
3

E1 d
32 2

3

E2 d
16
3

E3 d
32 2

3

E[4] := int(subs(t=0,phi[4]^2),x=-infinity..infinity,numeric,
method=_Gquad);

E4 d 20.41827800

evalf(E[4] - E[1] - E[2]);
0.

