Mi llan roblem

[ Q1.1

| > with(plots):

> display (
plot([cos(t)/2-cos(2*t) /4,sin(t)/2-sin(2*t)/4,t=0..2*Pi]),
plot([cos(t)/4-1,sin(t)/4,t=0..2*Pi]),
plot([-0.1225+0.0945*cos(t), 0.7449+0.0945*sin(t) ,t=0..2*Pi]),
plot([-0.1225+0.0945*cos (t) ,-0.7449+0.0945*sin(t) ,t=0..2*Pi]),
scaling=constrained, axes=none

)

[ Here is a picture of the full Mandelbrot set:




QI.2:

| > with (plots):

;Here is the picture for n =6:

> implicitplot (abs (x)~6+abs(y) *6=6*(6/2) ,x=-3..3,y=-3..3,grid=[200,
200]1);

2-

;kmangZMMn=6myma:
> display (
implicitplot (abs (x) ~“2+abs (y) *2=2*(2/2) ,x=-3..3,y=-3..3,grid=




[200,200]),

implicitplot (abs (x) ~6+abs (y) ~6=6* (6/2) ,x=-3..3,y=-3..3,grid=
[200,200])

);

;Here is the full picture:
> display (
seq(
implicitplot (abs (x) “n+abs(y) “n=n*(n/2),
x=-3..3,y=-3..3,grid=[200,200]),
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>y := exp(-1/x);
1

T x
yi=e
We can work out the first few derivatives as follows:
> diff(y,x);

0y



> simplify(diff(y,x$2));

> simplify (diff (y,x$3));

e * (62 —6x+1)

6
X

> simplify(diff(y,x$4));
1
e " (24X =36 +12x—1)

8
X

> simplify(diff(y,x$5));
1

e © (120x* =240+ 1202 —20x + 1)
10
X

We see that (—)kk y is always of the form T
04 X

ten of these
polynomials are as follows:

for some polynomial p,(x). Explicitly, the first

> for k from 1 to 10 do pl[k] := expand(x”(2*k)*diff (y,x$k)/y); od;
py =1
pyi= -2x+1

D5 = 6x" —6x+1
pyi= 24X +36X —12x+1
psi=120x" —240 %" +120 x> —20x + 1
Pe = -720x° + 1800 x* — 1200 x° +300 x* — 30 x + 1
Py = 5040 x° — 15120 x° + 12600 x* — 4200 x* + 630 x* — 42 x + 1
pg = -40320x" + 141120 x° — 141120 ° + 58800 x* — 11760 x° + 1176 x° — 56 x + 1

Po = 362880 x° — 1451520 x + 1693440 x° — 846720 x” + 211680 x* — 28224 x” 42016 x”

—T72x+1

(0))

(&)

(C))

(6))

©)

@)



Do = -3628800 x” + 16329600 x° — 21772800 x + 12700800 x° — 3810240 x° + 635040 x

— 60480 x> + 3240 x> —90 x + 1

[ We see from this that pi(x) always has degree k — 1. The constant term is always p,(0) =1. You
should recognise
the numbers 2, 6, 24, 120, 720 as factorials, so the highest term in p,(x) is (-1 )kk! PN

[ We can plot the derivatives up to k=4 as follows. We have divided each function by its approximate
maximum value so that we can see them clearly in the same picture. We find that the higher
derivatives

oscillate wildly for moderately small values of x, but then flatten out for very small values of x, and
also

_for reasonably large values of x..

> plot ([
y/0.6,
diff(y,x)/0.55,
diff(y,x,x)/2.5,
diff(y,x,x,x)/30,
diff(y,x,x,x,x)/600],
x=0..2);
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;This plot of the sixth derivative reinforces the same message.
> plot(diff(y,x$6),x=0..3,-100..100) ;
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> plot([

Yy,

diff(y,x),
diff(y,x,x),
diff(y,x,x,x),
diff(y,x,x,x,x)],
x=0..0.1,0..0.002);
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| We can watch the curves flattening out near the origin as follows:
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| > with(plots):

We can enter the basic definitions as follows.

> g := sqrt(2);
p := log(3 + 2*q);
r := x-4*t;
s := g*(x - 8*t);
T := 32 * cosh(2*r-p) + 16 * cosh(2*s-p) + 16;
B := 4*(1+gq) * cosh(r)*cosh(s) + (4*g-8) *exp(r+s);
phi[0] := 2*cosh(r)*(-2);
phi[l] := 4*cosh(s)”*(-2);
phi[2] := 2*cosh(r-p)*(-2);
phi[3] := 4*cosh(s-p)*(-2);
phi[4] := T/B*2;
q:=v2 ®)
p=m(3+2V2)
r=x—4t
s=+2 (x—81%)
T:=32cosh(-2x+87+m(3+2y2)) +16cosh(-2v2 (x—8¢) +In(3+2v2))
+ 16
B:=:4(1-+qu)coﬂﬂ—x—%4t)coﬂﬂvﬁf(x——St))4—(4vﬁf——8)ex_4t+Jiwx_80
. 2
¢0. cosh(—x-+—4t)2
4
0, = 2
cosh(VfE_(x-—-St))
. 2
¢2"‘ 2
umh(—x4—4t+dn(3%—2vﬁf))
4
0, =

cosh(-v2 (x—81¢) +1n(3 +2J7))2

0, = (32cosh(-2x+8¢+mn(3+2y2)) + 16 cosh(-2V2 (x—8#) +In(3 +2V2))

+16)/(4 (1 —I—ﬁ) cosh(-x+41) cosh(ﬁ (x—8t)) —I—(4\/7




—8) ex—4z+ﬁ(x—8z))2

We now check that the Korteweg-de Vries equation is satisfied. The tidiest way is to introduce the
KdV operator as follows:

> K := (u) -> diff(u,t) + diff(u,x,x,x) + 6 * u * diff (u,x);
0 RS 0
Ki=u—— _ —_
u 6tu+ 3u—|—6u( u) )

We now apply K to the functions ¢.:

> simplify (K(phi[0]))
simplify (K(phi[1]))
simplify (K (phi[2]));
simplify (K (phi[31));
(10)

o o o O

If we just apply K directly to ¢, then we get several pages of dense output, because Maple is not very

good at simplifying
hyperbolic functions. As explained in the problem sheet, we need to convert everything to exponential
| form first.

> convert(phi[4],6exp);
(166—2x+8z+1n(3+2ﬁ)+16ezx—8r—1n(3+2ﬁ)+86—2J7(x—8z)+1n(3+2ﬁ) a1

+862J7(x—8z)—1n(3+2ﬁ)+16)/(4(l_i_ﬁ) (%e—x—i—m‘

2
+%ex—4t) (% e\/T(x—St)_'_%e—\/T(x—iﬁt)) +(4\/7—8) ex—4t+\/7(x—8t))

_> simplify (K (convert (phi[4],exp)));
0 12)

We can plot all the functions ¢, together as follows. The bottom one is ¢, and the top one is ¢,.

> animate (
plot,
[[phi[O0] ,phi[1]+5,phi[2]+10,phi[3]+15,phi[4]+20] ,x=-30..30],
t=-3..3,




frames=50,

scaling=constrained,
axes=none) ;

AN
J\
J\

We see that ¢ is essentially the same as ¢, but delayed slightly; this is already easy to see from the
formulae.

Similarly, ¢, is a slightly delayed copy of ¢,. When 7 is negative, the small hump in ¢, follows ¢, and
the




large hump in ¢, follows ¢,, so ¢, is approximately ¢, +¢,. Near 7=0 the two humps interact, the
large one

jumps forward a little to follow ¢,, and the small hump drops back a little to follow ¢,. Thus, when ¢ is
positive

we see that ¢, is approximately ¢, + ¢..

We can see all this again in the following animation. The middle graph is ¢,. The bottom graph is
¢4 - q)l - ¢2a
we find that this is very small when ¢ is negative. The top graph is ¢, — ¢, — ¢,; we find that this is

very small when
7 1S positive.
> animate (
plot,
[[phi[4]-phi[1]-phi[2]-10,phi[4] ,phi[4]-phi[0]-phi[3]+10] ,x=-30.
.30],
t=-3..3,
frames=50,
scaling=constrained,
axes=none) ;




We now calculate the momenta of ¢,..¢,:

> M[0] := int(phi[0],x=-infinity..infinity)
M[1l] := int(phi[l],x=-infinity..infinity);
M[2] := int(phi[2],x=-infinity..infinity);
M[3] := int(phi[3],x=-infinity..infinity);
M, = 4 (13)
M, =42
M, =4

M, =42



| We can do this more efficiently as follows:
> for i from 0 to 3 do

M[i] := int(phi[i] ,x=-infinity..infinity);
od;
M, =4
M, :=4\/7
M, = 4
M3:=4\/7

method=_Gquad) ;
M, == 9.656854250

| more accurately.
> evalf (M[4] - M[1] - M[2]);

method=_Gquad) ;
E, == 20.41827800

7> evalf (E[4] - E[1] - E[2]);

e

[ For M, we need a more elaborate method, as described in the problem sheet:

> M[4] := int(subs(t=0,phi[4]) ,x=-infinity..infinity,numeric,

[ We find that M, =M, + M,, apart from a tiny error that would go away if we computed the integral

2.10”
;We now repeat this for the energy:
> for i from 0 to 3 do
E[i] := int(phi[i]”*2,x=-infinity..infinity);
od;
16
fo= 3
E, = 3242
3
16
EAREEY
E = 3242
3
> E[4] := int(subs(t=0,phi[4]72) ,x=-infinity..infinity,numeric,

(14)

15)

(16)
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(18)
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