Introduction

The lecturer is Professor Neil Strickland.
N.P.Strickland@sheffield.ac.uk
» We will learn how to use Maple, a powerful software package for solving

MathematiCS Wlth |\/|ap|e mathematical problems.

» In the process, we will review and extend many parts of A-level

(MASlOO) mathematics, from a new perspective.

Skills to learn or practice: » You should practice expanding out products and powers of algebraic

» Expand out powers and products expressions.
» Factorize simple expressions by inspection » You should check and remember the following identities:
> Manipulate powers (using a"a™ = a""", (a")" = a"™ and so on) (a+b)a—b)=a"—b
» Manipulate and simplify algebraic fractions (a+ b)> =a° +2ab+ b’
Maple commands: (a— b)? =a° —2ab+ b°.
> expand, factor and combine
> simplify; the symbolic option » Often you will need to use these when a and b are themselves complicated
» collect and coeff EXpressions.

» Example: To simplify (w+x+y+2)> —(x+y+2)%
put a=w+x+y+zand b=x+y+z. Then
(WHx+y+z)—(x+y+z0°=a"—b"=(a+b)a—b)
= (w+2x+2y +22)w
=w’ + 2xw + 2yw + 2zw.



» Problem: Check the identity » You should practice finding simple factorizations by inspection.
>
CH+yY+ )P+ VW) = (u+yv+zw) + a®—b* = (a+b)(a—b)
(xv — yu)? + (yw — zv)* + (zu — xw)? = (a4 ab+ b*)(a—b)
> (xu4 yv + zw)? ax® + bx* + ay® + by® 7(a+b)(x +y)
> (PR AV WD) = P4V w4 1+t+t +2=1+1t)(1+1t%)
VAR 42+ P+ —5u+6=(u—2)(u—3)

2 2 2
zu+zv+zw

» Maple's factor command will handle more complicated cases.

2

> (xu4+yv+zw)” = U+ y2 Vi 22wt 2xyuv + 2xzuw + 2yzvw
+ (xv — yu)? + X3V = 2xyuv + y i’
+ (yw — zv)? +y*w? = 2yzvw + 2°V?
+ (zu — xw)? + 207 — 2xzuw + X*w?

» You should practice manipulating fractions of the form a/b, where a and b

» You should practice using the basic rules for powers:
are themselves complicated algebraic expressions.

anam — aner (an)m — anm
a"p" — (ab)n an/bn — (a/b)n —3"p" » The rules are as follows:
(a+b)" #a"+0b" (a+b)" =0 mpmab" " a, c_ad+be
b d bd
> Warning: the rule (3")" = a"" has exceptions, for example: a ¢ _ ad-—bc
L L . b d  bd
((-3)) =81+ =+3  but  (=3)"% =(-3)' = -3. ac_ax
b d bd
However, the rule works whenever a > 0 or n and m are integers. E/E _ad
»> Example: b"d  bc
azn a"
(21/231/341/4)3 — 93/233/3,3/4 (B) =4
= 2%/2(22)3/43 (E)’" _
— 23/293/23 b an

=2%3=24



An example: the cross-ratio

_ (d=a)(c—b)

> Put x(a, b, c,d) = (d=b)c=a)"

» Problem: Show that x(a, b, c,d) = x(a=*, b™*

>

The exponential function
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(a, b, c,d).

2 3 4
> oexp(x)=1+x+5+5+57+
Warning: infinite sums are subtle.

> e=exp(l)=1+1+ 3+ 3 + - ~271828.

>

exp(x +y) = exp(x)exp(y) exp(x —y) = exp(x)/exp(y)
exp(0) =1 exp(—x) = 1/exp(x)
exp(nx) = exp(x)” exp(x) =¢€*
&
/
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Special functions

The primary special functions are

exp, In, sin, cos, tan, arcsin, arccos, arctan.

Things you should know:

» The detailed shape of the graphs

» Domains, ranges and inverses

> Properties such as sin(x + y) = sin(x) cos(y) + cos(x) sin(y)

» Derivatives and integrals (covered in later lectures).

The secondary special functions are

sec, csc, cot, sinh, cosh, tanh,
sech, csch, coth, arcsinh, arccosh, arctanh.

» You should know how these are defined in terms of the primary functions
(for example, sinh(x) = (exp(x) — exp(—x))/2, and sec(x) = 1/ cos(x))

» You should either remember the properties of the secondary functions, or
be able to derive them from the properties of the primary functions

The formula exp(x) exp(y) = exp(x + y)

1 X
LZ 3x/?
20 3
y3 4)<y3
3 - 41
y4 5)<y4

4 51

>

2 453 y 5x* y
3! 41 5!
6><2y2 - 10)(3}/2 15x4y2
41 5! 6!
< 10x3%y3 20x3y3 35x*y3
5! 6! 7!
15><2y4 35x3y4 70)(4}/4

6!

7

8!



The logarithm

» The natural log function In(y) is the inverse of the exponential.

» In(y) is defined only when y > 0 (unless we use complex numbers).

> We have In(exp(x)) = In(e*) = x for all x, and exp(In(y)) = "V =y
when y > 0 (NOT In(x) = 1/ exp(x)).

>
In(xy) = In(x) + In(y) In(x/y) = In(x) —In(y)
In(1) =0 In(1/y) =—In(y)
In(y") =nin(y) Inle) =1
>
2
1 In(x)
0
1 e 2
~1
-2

Hyperbolic functions

» The hyperbolic functions are defined as follows:

sinh(x) = €= tanh(x) :z:)’;:((xx)) csch(x) :m
cosh(x) = €t coth(x) = = sech(x) = by

Use convert(...,exp) in Maple to rewrite in terms of exponentials.
» Properties are easily deduced from those of exp.
» These are related to trig functions using complex numbers, eg

sin(x) = sinh(ix)/i, where i = /—1.
>

cosh(x)
sinh(x)

tanh(x)

Logs to other bases

> log,(y) is the number t such that y = a' (defined for a,y > 0).
> log,,(1000) = log,,(10°) = 3
log,(1024) = log,(2'°) = 10
1081004 (2) = 108,04(1024/1°) = 1/10
logs(1/9) = logs(37%) = —2

> log,(y) = In(y)/In(a)
Check: g/ @) — (g(@)n()/In(@) — () — .

v

> log;o(y) = the number t such that 10" =y
~ the number of digits in y left of the decimal point.

» This is mostly of historical importance.

> log,(y) = the number t such that 2" = y
~ the number of bits in y.

» This is of some use in computer science and information theory.
> log.(y) = (the number t such that e’ = y) = In(y) = log(y).

Hyperbolic identities

» cosh(x)? —sinh(x)> =1
sech(x)? + tanh(x)* = 1
sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y)
cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y)

u—u71 u-%—u71

and cosh(x) = “&

» To check these, put u = €*, so sinh(x) =

>

cosh(x)? — sinh(x)? = (u+ut)? C(u- u1)?

4 4

_ (PH24+u?)— (P =2+u?)
4

—@-(-2)a=1

> Now put v = ¢, so uv = .

» sinh(x) cosh(y) + cosh(x)sinh(y) = (”_;’_1) ("Jr;_l) + (“+;_1) (V_Zv_l)

(uv + wl—uv v —ur vl — w0y — uflvfl)

4

= = = sinh(x + y)



Inverse hyperbolic functions

» The graph of y = sinh(x) crosses each hori-
zontal line precisely once, which means that
there is an inverse function x = sinh™}(y) =
arcsinh(y), defined for all y € R.

» This can be written in terms of In:

v/1+ y? = cosh(x).

» Thus y + /1 + y2 = sinh(x) + cosh(x) = ex_;

arcsinh(y) = In(y + /1 + y?).
» Check: Suppose y = sinh(x); we must show that x = In(y 4+ /1 + y?).
> We have 1+ y2 = 1 + sinh(x)? = cosh(x)? (and cosh(x),1 + y? > 0), so

—x
X

X | g—X
+e+2e —e

» so In(y + /1 + y2) = In(e*) = x as required.
» Similarly, arccosh(y) = In(y + \/y? — 1), defined for y > 1
= 1n (), defined when —1 < y < 1.

» and arctanh(y)

Trigonometric functions

» Let P be one unit away from the origin, at an angle of § measured
anticlockwise from the point A = (1,0).

P=(cos(0),sin(0))

sin(0)

cos(0)

A=(1,0)

> (We measure 6 in radians, so the length of the arc AP is 0.)

» The numbers cos(0) and sin(@) are defined to be the x and y coordinates

of P.
» We also put

tan(x)
cot(x)

sin(x)

cos(x
cos(x

sin(x)

csc(X) = G

sec(x) = =0

1
sinh(x) cosh(x) tanh(x)
arcsinh(x) arccosh(x) arctanh(x)

sin(6)

—4r vh'r

L)

VAT
REUVATS

N\

T

sin(m/2 4+ x) = cos(x)
sin(m + x) —sin(x)

sin(2r + x) = sin(x)
sin(—x) = —sin(x)

cos(m/2 + x
cos(m + x
cos(2m + x
cos(—x

)
)
) =
)




Preview of complex numbers

Complex numbers are expressions like z = 3+ 4/, where i satisfies j> = —1.
You can add and subtract complex numbers in an obvious way, for
example (3 +4i)+ (7 —3i) =10+.

To multiply: expand out and use i> = —1. For example:
(1+2i)(3+4))=3+4i+6i+8°=3+4i+6/—8=—5+10i.

Note that the powers of i repeat with period 4:

P=1 =i P B f=1 P S T 8o

By expanding and using this we find powers of any complex number.
A+ =142+ =1+42i+(-1)=2i
A+ =(1+i)P)=2=2"=16

Note that
i i (ix)2 (ix)3 (ix)4 (ix)5
-1 W W
exp(i) =1+ ix+ =+ =+ o
—ldix— X
tx ey e T T T

X2 X4 X3 X5
11—+ 4. =)
( St T )+(x T ),

cos(x) + sin(x)i.

ia —ia\ 2 ia _ ,—ia 2
cos(a)2+sin(a)2:(e +2€ ) +<e 2ie )

_ (621'3 + 2 + 672’-8)/4 + (e2ia _ 2 + 672ia)/(_4)
=2/4-2/(-4)=1

ia —ia\ 2 ia _ ,—ia 2
cos(a)z—sin(a)2:<e +26 ) _(e 2ie )

_ (621'2 +2+ 6721'3)/4_’_ (e2fa _ 2+ 6721'8)/4
= (*™ 4 e7?7) /2 = cos(2a)

2sin(a) cos(a) = (e ;ie )(e +26 >

_3 2ia o_ 0 _ _—2ia\ _ 2ia _ _—2ia P
=5 (e +e —e —e ) = (e e “7)/(2i) = sin(2a)

De Moivre's theorem

| '’ = exp(if) = cos(6) + sin(0)i|

e % = exp(—if) = cos(f) — sin(6)i

sin(0) =
cos(f) =

tan(0) =

o —i6

% = sinh(i0)/i
i0 —i0

% = cosh(i0)

sin(9) _ sinh(if)/i

cos(a)? + sin(a)?
sec(a)

sin(a + b)
cos(a+ b)
sin(2a)

cos(2a)

[N

cos(f) ~ cosh(if) = tanh(i0)/i.
=1
=1+ tan(a)?

= sin(a) cos(b) + cos(a) sin(b)
= cos(a) cos(b) — sin(a) sin(b)
2sin(a) cos(a)

=2cos(a)®? — 1 =1—2sin(a)>.

The addition formula

sin(a+ b) =

sin(a) cos(b) + cos(a) sin(b)

~ cos(a) sin(b)

7/2—a \

\ sin(a) cos(b)

sin(a) cos(b) + cos(a) sin(b) =

el _ g—ia e’bJre_’b ela+e—la elb _ e—lb
2 2 2 2j
_ efi(aer)

2j

=sin(a + b)



Finite Fourier series Examples

. . . . . . . - 1 H 4 4 H H
» A finite Fourier series is a sum of constant multiples of functions of the Problem: write sin(x)" + cos(x)" as a Fourier series.

form sin(nx) or cos(mx) (with n,m € Z). Note that the constant function

f(x) = a = acos(0x) is included. z“t u= eixy_45° Si“(X)2: (u— Uill)‘l/(2")43”d cos(x) = (u+u~")/2. Note that
» The phrase trigonometric polynomial means the same thing. " =-1soi"=(-1)"=1s0 (2i)' =2 =16. Note also that
» Many functions can be rewritten as finite Fourier series: (x+ y)4 =x"+ 43y + 6%y + 4xy® + y*

sin(x)> = 1
sin(x)* = 3sin(x) — 1sin(3x)
sin(x) sin(2x) sin(4x) = —sin(x)/4 + sin(3x)/4 + sin(5x) /4 — sin(7x) /4
sin(x)* + cos(x)* = 2 + lcos(4x)

sin(nx) sin(mx) = 1cos((n — m)x) — Lcos((n + m)x).

— jcos(2x) (use the binomial formula, or expand it out.) Thus

sin(x)* + cos(x)* = (u— v ")*/16 + (u+ u")*/16
= -4 +6—4u° +uh)/16 +
(V' + 40 +6+4u > +u"")/16
4 . =12/16 +2(u* +u~*)/16 = 3/4 f+uh/2)/4

> Method: Rewrite using cos(nf) = (e +e™)/2 and /16 +2(u" +u)/ A+ (W +u)/2)/

sin(nd) = (e — e=%)/2i, expand out, then rewrite using = (3 + cos(4x))/4

e™ = cos(m@) + sin(m0)i.
» Once a function has been rewritten in this form, it is very easy to

differentiate it or integrate it.

Special values Inverse trigonometric functions

You should know the following values of sin(#) and cos(6):

-

0 | sin(9) cos(f) tan(0)
/2 1 0 00

/3| V3/2  1/2 V3 Tz
/4| V2/2 V2/2 1 4
7/6 | 1/2  /3/2 /3/3
—1
Proved by considering these triangles: sin: [~ %, F]—=[-1,1] cos: [0,m]—[—1,1] tan: [~ 3, Z] R
/4 %
1 V2

_El/z /4 -1 1 -%

1 1 1 arcsin: [-1,1]—=[- 5, 7] arccos: [—1,1]—>[0,7] arctan: R—=[— 5, 5]

You should also be able to deduce things like cos(57/6) = —+/3/2.



Differentiation

Things you should know:

» The meaning of differentiation (slopes of graphs, time-dependent and
space-dependent variables, etc)

> Some derivatives from first principles: x2, 1/x, .
» Rules for finding derivatives:

The product rule ((uv) = u'v 4+ uv’)

The quotient rule ((u/v)’ = (u'v — uv’)/v?)

The chain rule (% = Z—;%)

The power rule ((u") = nu"~1u’)
The logarithmic rule (log(u)’ = v’/ u)
dx
=1

The inverse function rule (% /%)

» Derivatives of various classes of functions (eg the derivative of a rational
function is another rational function.)

vyVVVYyVYYVYY

You must learn to find derivatives quickly and accurately.

slope sy/sx
y+é8y

sy slope dy/dx

ox

X x+0x
Consider variables x and y related by y = f(x).dy/dx is the slope of
the tangent line to the graph.If x changes by a small amount dx, then y
will change by a small amount dy.The ratio dy/dx is the slope of a chord
cutting across the graph.The slope of the chord changes slightly as dx
decreases.As dx approaches zero, the chord approaches the tangent, and
dy/dx approaches dy/dx.

» Consider related variables x and y; so whenever x changes, so does y.
» Examples:

» p = price of chocolate ; d = demand for chocolate .
> t = time ; d = atmospheric CO, concentration .
» r = distance from sun ; g = strength of solar gravity .

» If x changes to x + dx, then y changes to y + dy.

dy _ . by _ I .
ol 61@)0 ox derivative of y with respect to x.
> If y = f(x), then dy = f(x + 0x) — f(x), so

, B o fx+ox) - f(x)
Fla = dx 51‘20 ox a h|—>o h

> We sometimes write y’ for dy/dx (care needed).

The function f(x) = x2

> Consider the function f(x) = x°.

» Then f(x + h) = (x + h)> = x* +2xh + h* | so

f(x+h)—f(x) _ (x—l—h)z—x2
h o h
7x2+2xh—|—h2—x2
- h
_ 2xh + h?
B h
=2x+h

» Thus
f'(x) = lim flxth) = f(x) = lim (2x + h) = 2x.
h—>0 h h—>0
» Similarly:
Z(x") = nx""" for all n.




The function f(x) =1/x The exponential function

» Consider the function f(x) = 1/x. > Consider the function f(x) = e* =1+ x + %T 4 %T 4o
1 1 x—(x+h) —h S
» f h) —f — — = = > % X X X
(x+h) = F0) x+h x x(x + h) x(x + h) fix+h) —f(x) = —e=e(e"-1)=¢ (h-i—%?-i—%?-l-'--)
so
fix+h)—f(x) -1 so
h _X(X+h) Mzex(l-f—%-‘r%‘f'”')
so so
f'(x) = lim Flx+h) = f(x) _ lim -1 _ -1
T h—o0 h T rox(x4+h) X2 . f(x+h)—f(x)

/ —
f(x)—hlmgo h

— lim &* bR
fme (14z 05 +)
e€(1+0+0+---)

=e*.

> Conclusion: exp’(x) = exp(x).

Special functions The product rule

» Consider variables u and v depending on x, and put w = uv. Then

exp’(x) = exp(x) log’(x) =1/x
sinh’(x) = cosh(x) arcsinh’(x) = (1 4+ x?)~/2
cosh’(x) = sinh(x) arccosh’(x) = (x*—1)7%/2 | w' = (uv) =u'v+ o | &= (uv) = v+ ud |
tanh’(x) = sech(x)? = 1 — tanh(x)? arctanh’(x) = (1—x?)7*
sin(x) = cos(x) arcsin’(x) = (1—x?)"1/2
cos’'(x) = —sin(x) arccos’(x) = —(1 —x?)7%/2 .
>
fan'(x) = sec(x)2 —14 tan(x)2 arctan’(x) = (1 + )1 If x changes to x + dx, then u changes to u+ du & v changes to v + jv
so w changes to
> We showed earlier that exp’(x) = exp(x) w+ 6w = (u+du)(v+dv)=uv+ (du)v+u(dv)+ (du)(dv)
> We deduce sinh’(x) using the identity sinh(x) = (e* — e™*)/2. Similarly ow = (du) v+ u(év) + (du)(dv)
for cosh and tanh. w (Luv U(LV du dv "
> Using cos(x) = cosh(ix) etc, we find sin’(x), cos’(x) and tan’(x). Sx  Ox dx  Ox Ox
> Using exp’(x) = exp(x) and the inverse function rule, we find that ~ @v + u@ + @ﬂéx ~ @v + u@
log/(x) = 1/x dx dx = dxdx dx dx

» The inverse function rule also gives the remaining derivatives. (The approximations become exact in the limit as 6x — 0.)



Examples of the product rule The quotient rule

» Consider variables u and v depending on x, and put w = u/v. Then
(uv) =v'v+uv

%(sin(x)cos(x)) = sin’(x)cos(x) + sin(x)cos’ (x) W= (;) - V_2

= cos(x)cos(x) + sin(x)(— sin(x))

= cos(x)? — sin(x)? > Indeed: u=vw ,so u’' = v'w+ vw’ (product rule) , so

9 Clog(x)) = 3x7log

™ (x) + x’log/(x) W u —v'w _ u Vi (ufv) _ u v _ u'v—uv
= 3x%log(x) + x*(x 1) Y Y Y Y v v
= (3log(x) + 1)x°
;i(e'”sin(bx)) = ae™sin(bx) + b cos(bx)

= e™(asin(bx) + bcos(bx))

Examples of the quotient rule The chain rule

i( X ) _ Llog(x) —xx~' _ log(x) —1

» Suppose that y depends on u, and u depends on x. Then

- - = log(x) " — log(x)

dx \ log(x) log(x)? log(x)? dy _ dydu
dx  dudx
(Aside: x/log(x) ~ ( number of primes < x)) = il
d X 1.(1 —x*) — x.(=2x) 1 —x*+2x* 1+ x°
x\12)~ 1—x2) = 1—x2) = (1—x2)2 » If x changes to x + dx, then u changes to u+ du and y changes to
y + dy. Clearly
Now consider tan’(x), remembering that tan(x) = sin(x)/ cos(x). % = %%
d [ sin(x) sin’(x)cos(x) — sin(x)cos’(x) In the limit, dx, du and dy all approach zero, and we get
dx (cos(x>> B cos(x)? dy  dy du
_ cos(x)cos(x) — sin(x)(—sin(x)) dx  dudx’
N cos(x)?
_ cos(x)? + sin(x)? _ = sec(x)? > Alternative notation: suppose that f(x) = g(h(x)). Then
cos(x)? cos(x)?

F'(x) = ' (h(x))H (x) |




Examples of the chain rule

> Consider y = cos(x?). This is y = cos(u), where u = x°.

du

5—2)(

dy _ dy du
dx  dudx

» Consider f(x) = exp(sin(x)).

% = —sin(u) = —sin(xz)

= —sin(x*).2x = —2xsin(x°).

f'(x) = exp’(sin(x)). sin’(x) = exp(sin(x)) cos(x).

» Consider y = asin(bx + ¢). Put u = bx + ¢, so y = asin(u).
Then % = b and £ = acos(u) so

dy
dx

_ dydu
" du dx

= acos(u).b = abcos(u) = abcos(bx + ¢).

The logarithmic rule

|

—Io(u)—l@ a_ 90 (u)
dx o\ ax dx  Udx 8
— log(cos(x)) = cos'(x) = —sin() _ —tan(x)
dx 8 " cos(x) " cos(x)
d (1 2
9 log(1+x?) = A Gl D

dx

1+x2 — 1+x2

» Consider y = x*, so log(y) = xlog(x). Then

d

2 log(y) = = (xlog(x))

=1.log(x) + x.x ' = log(x) + 1

dy

d
dx }’E log(y)

= x"(log(x) + 1).

The power rule

» If u depends on x and n does not, then

du
dx

d, o o
&(u ) =nu

> Reason: If y = u" then 2 = nu"! so % = drdy _ pyn—ldu

du du dx dx
> Consider y = v/1+ x2. Thisis y = u'/?, where u =1+ x*. Then
dy_ 1 p_ 1 du_,
du 2 2/1 + x2 dx
dy 1

X
2x = .
dx 21+ x2 V14 x?

o (sin(x)?) = 5sin(x)"cos(x)

»
> % (|°g(X)3) =3 Iog(x)2><71 =3 Iog(x)2/x

The inverse function rule

» If x and y are interdependent variables, then

dx dy
=12
dy /dx

> (Take limits in the obvious relation & = /%)
y ox

» Consider y = log(x), so x = €”.

e _ dy _dx 1
dy

d«  dy  x

1

> Alternative notation: if y = g(x) then x = f(y), where f = g~ and

g="f""1 Then

18'(x) = 1/f'(g(x)) |

> log/(x) = 1/ exp(log(x)) = 1/ exp(log(x)) = 1/x.



The arcsin function The arctanh function

> Consider y = arcsin(x), so x = sin(y). » Consider y = arctanh(x), so x = tanh(y) = cs;';:((i))
dx L dx ,
— =sin'(y) = cos(y — =
dy () () dy tanh'(y)
@y _ 1/% = cos(y) . _ sinh’(y) cosh(y) — sinh(y) cosh’(y)
dx dy cosh(y)?
~ cosh(y)? — sinh(y)?
> Also sin(y)?® + cos(y)? =1, so = cosh(y)?
_ 2 _ 2
cos(y) = /1 —sin(y)? = V1 — x2 =1—tanh(y)" =1-x
d dx 1
—1_ g . 2\—1/2 ay /98
cos(y) = (1—-x") o 1/dy T
> So arcsin’(x) = & = (1 - x?)"V2 > So arctanh’(x) = 2 = (1 —x*)"".

Classes of functions Implicit differentiation

> If f(x) is a polynomial, then so is f'(x). > Suppose that x and y are related by an equation such as y* + xy = x°.
> Eg f(x) = x + x10 4 x100; f'(x) = 14 10x° + 100x%° We cannot write y as a function of x, but we can still find dy/dx.
> Eg f(x) = (x —1)* + (x+ 1)% f(x) =4(x —1)3 +4(x+1)3

. . . L » Differentiate both sides. Terms in the equation involving y give terms in
> If f(x) is a rational function, then so is f'(x).

the derivative involving dy/dx. Rearranging gives dy/dx in terms of x and

27 X
> Eg f(x) = izﬂlF f'(x) = (><24T)2 y.
> Egf(X) =1+ 25+ 5 f’(x):_%_ﬁ_ﬁ > Suppose that y* + xy = x3, so
> If f(x) is a trigonometric polynomial, so is f'(x). d ( 4 ) g ( 3) 2
> Eg f(x) = sin(x) + sin(3x)/3 + sin(5x)/5; o V) =5 () =3
f'(x) = cos(x) + cos(3x) + cos(5x). v s s d
> Eg f(x) = sin(3x) + cos(3x); f'(x) = 3cos(3x) — 3sin(3x). Also -(y") = 4y 3£ by the power rule
> If f(x) is a polynomial times €*, so is f'(x). and £(xy) = £y + x% =y + xZ by the product rule ; so
> Eg f(x) = (x + x?)e¥; f'(x) = (14 3x + x?)e*. 3 d 2
> Eg f(x) = (x* — 4x3 + 12x2 — 24x + 24)eX; f/(x) = x*ex. 4y %—‘,—y—&—xd—i:fix
@y’ +x)g =3~y
dy 3x2—y

dx 4y34x "



Implicit examples

» Suppose x + sin(x) = y — cos(y).

& (x +sin(x)) = £ (y — cos(y))
1+ cos(x) = Z—i + sin(y)j—i

dy __ 1l4cos(x)

dx T 14sin(y)

> Suppose y = exp(x® + y?).

L= Lexp(x’ +y?) = L)

—xe’ e’ + ex2.2y%ey2
=2(x+y %) exp(x* + %)

(1 -2y exp(x* + y*)) & = 2xexp(x* + y?)

dy _ _2xexp(:P+y?)
dx 1—2y exp(x2+y?2)

> Consider a point (x,y) on the unit circle, so x* + y* = 1.

» Differentiate x> + y2 =1; 2x+ 2y% =0;
Ix

ﬂ772x X

dx 2y y
» Parametrically: x = cos(t), y = sin(t).

dy dy/dt  cos(t) = x

dx  dx/dt  —sin(t) y

> Directly: y = (1 — x?)/?

Ly yred g eyl ay X
dx72(1 x°) dx(l x)fzy (=2x) = %

Parametric differentiation

» Suppose that x and y are both functions of another variable t. Then

dy  dy/dt

dx ~ dx/dt

> Suppose that x =1+ t>and y =t + 3 (so t = y/x)

dy/dt =1+ 3¢ dx/dt = 2t

dy _dy/dt 143t  1+43(y/x)* _ x*+3y°

dx  dx/dt 2t  2(y/x) 2xy

> Suppose that x = t —sin(t) and y = 1 — cos(t).

dy/dt = sin(t) dx/dt =1 — cos(t)

dy _dy/dt _ sin(t) Vy(2—y) _ \/2—y
dx dx/dt 1—cos(t) y

y

Integration

Things you should know:

» The meaning of integration (take the sum of a large number of very small
contributions, and pass to the limit)

Integration as the reverse of differentiation
Integrals of standard functions and classes of functions
The method of undetermined coefficients

Integration by parts

vvyyVvyVvy

Integration by substitution



> To define [V f(x) dx
> Divide the interval [a, b] into many short intervals [x, x + h].
> For each short interval [x, x + h], find f(x)h.
> Add these terms together to get an approximation to fab f(x) dx.

» For the exact value of fab f(x) dx, take the limit h — 0.

y=Ff(x)

» In economics, government revenue depends on time, and total revenue in
the last decade is fﬁg;g revenue(t) dt.

> If a particle moves with velocity v(t) > 0 at time t, then the total distance
moved between times a and b is f (t) dt.

» A current flowing in a wire exerts a magnetic force on a moving electron.

There is a formula for the force contributed by a short section of wire; to
get the total force, we integrate.

a b

Consider the integral fab f(x) dx.For each short interval [x,x + h] C [a, b], we
have a contribution f(x)h. This is the area of the green rectangle.This is the
contribution from one short interval, but we need to add together the
contributions from many short intervals.

The Fundamental Theorem of Calculus Proof of the Fundamental Theorem

> An indefinite integral of f(x) is a function F(x) such that F'(x) = f(x).
» Examples: y=f(9
> log(x) is an indefinite integral of 1/x Area = F(x+h)— F(x)
> sin(x) is an indefinite integral of cosgx ~ f(x)h
> F(x) = x?+2x and G(x) = (x + 1)? are indefinite integrals of 2x + 2
» The Fundamental Theorem of Calculus
» For any number a, the function F(x f f(t) dt is an indefinite integral of
f(x).
> If F(x) is any indefinite integral of f(x), then
SR F(x) dx = [F(x)]" = F(b) — F(a).
> The functlons F(x) = [y 2t +2dt = x* + 2x and 0
= f71 2t +2 dt (x+ 1)2 are both indefinite integrals of 2x + 2.
b b
> |/, % = [Iog(x)]a = log(b) — log(a)
a X  x+h

F/(x) = lim (F(x+ h) = F(x))/h = f(x).



Is it /x2 dx = x/3 or /x2 dx = x*/34c?

Either is acceptable in the exam.

Neither one is strictly logically satisfactory.

x3/3 is an indefinite integral of x°.

Every indefinite integral of x> has the form x3/3 + ¢ for some c.

If you just want to calculate f: f(x) dx, it does not matter which
indefinite integral you use. Any two choices will give the same answer.

In solving differential equations, it often does matter which indefinite
integral you use. You must therefore include a '+c’ term, and do some
extra work to see what ¢ should be.

Maple's int () command will never give you a '+c' term.
If you need one, you must insert it yourself.

Undetermined coefficients

|

| 4
4

>
>

Suppose we know that for some constants a,...,d
/Iog(x)3 dx = (alog(x)* + blog(x)? + clog(x) + d)x

(How could we know this? — see later)
Problem: find a, b, c and d.

log(x)* = 2 ((a log(x)? + blog(x)* + clog(x) + d)x)
(3alog(x)’x " + 2blog(x)x ' 4 ex M)x +
(alog(x)® + blog(x) + clog(x) + d).1
= alog(x)® + (b+ 3a)log(x)* + (c + 2b) log(x) + (d + ¢)

Soa=1 b+3a=0,c+2b=0and d+ c =0 (compare coefficients)
Soa=1b=-3, c=6andd=-6

/ log(x)* dx = (log(x)* — 3log(x)? + 6log(x) — 6)x.

Checking and Guessing

|

| Integrals can easily be checked by difFerentiating|

> [sin(x)?dx # sin(x)*/3, because

> J et

2 2
> [2xe¥ dx =€,

% (sin(x)3 /3) = 3sin(x)? cos(x)/3 = sin(x)? cos(x)# sin(x)?.

5':X dx = $9 hecause

sin’(x).x — sin(x) cos(x) sm(x).

d [sin(x) _"x. in(x).1 _si
dx X o X2 T x x2

2
= 2x e~

2
because —; e
IX

> [ 31;22:;11 dx = log(x® + x*® + x + 1), because

dx

I+ +x+1) 3P4 2x+1
NB+x24+x+1 X3+ x2+x+17

log(x®> + x> +x+1) =

Standard integrals

Jexp(x)dx = exp(x)

J1/xdx =log(x)

J cosh(x) dx = sinh(x) J(14x*)72dx = arcsinh(x)
J'sinh(x) dx = cosh(x) J(x* =1)"2dx = arccosh(x)
[ sech(x)?dx = tanh(x) J(1—=x*)"tdx = arctanh(x)
Jcos(x) dx = sin(x) J(1—x*)"2dx = arcsin(x)
Jsin(x) dx = — cos(x) J(1—x*)"2dx = —arccos(x)

[ sec(x)?dx = tan(x) J(1+x*)"tdx = arctan(x)
[ x"dx = x""/(n+1) (n#-1)

f a“dx = a*/log(a)
J log(x) dx = xlog(x) —
J tan(x) dx = — log(cos(x))
Jsin(x)? dx = (2x —sin(2x))/4
fcos(x)2 dx = (2x + sin(2x))/4



Rational functions Rational function examples

» A rational function of x is a function defined using only constants,

2
> /X L = xfIn(x = 1)) + In(lx + 1))

addition, multiplication, division and integer powers. x2—1
> No roots, fractional powers, logs, exponentials, trigonometric functions x+1\° . 6 12 8
: : . > dx =1+ + +
and so on can occur in a rational function. x—1 x—1 (x—1)2  (x—1)3
L ol+x+x? 1 w =2 PR
»> Examples: P — S — P rxr1exax > /i);:::fdxzIn(x2+1)+23rctan(x)
> _ © X gin(x — log(x) arctan(x)
ton-Examples N N o > 1 = In(1+x + x°) L aretan (L%
. . . . _— — dX = — X X [
> If f(x) is a rational function, then [ f(x) dx is a sum of terms of the x 14+1+4x 2 V3 V3
following types: 4
» Rational functions > /m dx = In(|x + 1) — In(|x — 1) 4 2arctan(x)
> Terms of the form In(|x2— ul) d 1 d 2 +
» Terms of the form In(x* + vx 4+ w) a _ _ a 2 _ XTu
» Terms of the form arctan(ux + v). dx In(}x — uf) = X—u dx In(x" + ux 4 v) = x2 4 ux +v
4x3 4+ 8 8 2 d u u
> dx = — | —1|)—1 1) -1 1) 4+ 4arct — = =
/ = +3 n(|x — 1]) — In(]x + 1]) — In(x" + 1) + 4 arctan(x) ™ arctan(ux + v) T (v~ B 2o £ (2 1 1)

Trigonometric polynomials Affine substitution

If / f(x) dx = g(x) and a, b are constant, then

| [ sin(nx) dx = — cos(nx)/n J cos(nx) dx = sin(nx)/n|

/f(ax + b)dx = g(ax + b)/a

cos(2x) = cos(x)? — sin(x)? = 2cos(x)* — 1 =1 — 2sin(x)?

sin(x)® = 1/2 — cos(2x) /2 /cos(x) dx = sin(x) /cos(2x +3)dx =sin(2x + 3)/2
[sin(x)? dx = x/2 — sin(2x) /4 - -
[ cos(x)? dx = x/2 + sin(2x) /4 /ex dx =€ /e_ dx = e " /(-2)
sin(x)° = 3sin(x)/4 — sin(3x) /4 / tan(x) dx = — In(cos(x)) / tan(mx) dx = — In(cos(mx)) /7
[ sin(x)? dx = —3 cos(x)/4 + cos(3x)/12

sin(x) sin(2x) sin(4x) = —sin(x)/4 + sin(3x) /4 + sin(5x) /4 — sin(7x) /4
J sin(x) sin(2x) sin(4x) dx = cos(x)/4 — cos(3x)/12 — cos(5x)/20 + cos(7x)/28
sin(x)* 4 cos(x)* = 3/4 + cos(4x) /4
[ sin(x)* + cos(x)* dx = 3x/4 + sin(4x)/16



Exponential oscillations Integrating exponential oscillations

» An exponential oscillation is a function of the form The integral of an EO is another EO with the same growth rate and angular
frequency.
f(x) = e™(acos(wx) + bsin(wx)),
Ax . Ax .
where a, b, A and w are constants. /e (acos(wx) 4 bsin(wx)) dx = e™*(Acos(wx) + Bsin(wx))
» The growth rate is A\, and the angular frequency is w.
y=e %sin(207x) A= a\ — bw B = aw + b)\
)\2 +w2 AQ +w2

» Example: find
[ e (5 cos(4x)—3sin(4x)) dx [ e (5 cos(4x)—3sin(4x)) dx

> \=-2 w=4,a=5b=-3
a\—bw  5.(-2)—(-3)4

YA T s 1/10

> Special cases: > B= i\‘:::__z;\ = 5'4(1_2();3_)(4;2) =13/10
f(x) = " sin(wx) (a=0,b=1) /e_QX(S cos(4x) — 3sin(4x)) dx = e~ **(cos(4x) + 13sin(4x))/10
f(x) = acos(wx) + bsin(wx) (A=0)
f(x) = ae™ (w=0).

Integrating exponential oscillations Polynomial exponential oscillations

Alternatively: > A polynomial exponential oscillation is a function of the form

/e_2X(5 cos(4x) — 3sin(4x)) dx = e_QX(A cos(4x) + Bsin(4x)) for some A, B f(x) = e™ a(x) cos(wx) + b(x) sin(wx)),
where a(x) and b(x) are polynomials.

Cox . d [ _o ) » ) is the growth rate and w is the angular frequency. The degree is the
e (5 cos(4x) — 3sin(4x)) = dx (e (Acos(4x) + Bsm(4x))> highest power of x that occurs in a(x) or in b(x).
= —2e *(Acos(4x) + Bsin(4x)) + > The function f(x) = e ((1 + x”) cos(4x) + x> sin(4x))
e~ (—4Asin(4x) + 4B cos(4x)) is a PEO of growth rate —2, frequency 4 and degree 5.

> The function f(x) = e™((1 + x> + x°) sin(3x))
is a PEO of growth rate 4, frequency 3 and degree 6.

By comparing coefficients, we must have 4B —2A =5 and 2B + 4A = 3. » Fact: The integral of any PEO is another PEO with the same growth
These equations can be solved to give A =1/10 and B = 13/10. Thus rate, frequency and degree.

— 6*2’(((48 — 2A) cos(4x) — (2B + 4A) sin(4x))

/e72x(5 cos(4x) — 3sin(4x)) dx = e~ >(cos(4x) + 13sin(4x))/10.



Integrating PEO's — |

vy

vy

[ xe™sin(x) dx is a PEO of degree 1, growth —1, frequency 1.
[ xe™sin(x) dx = (Ax + B)e™* cos(x) + (Cx + D)e™* sin(x)
for some A, B, C, D.

xe “sin(x) = £ ((Ax+ B)e *cos(x)+ (Cx + D)e *sin(x))
= Ae "cos(x) — (Ax + B)e cos(x) — (Ax + B)e” *sin(x) +
Ce " sin(x) — (Cx + D)e™*sin(x) + (Cx + D)e™ ™ cos(x)
= (—A+ C)xe *cos(x) 4+ (A— B+ D)e *cos(x) +
(—A— C)xe "sin(x) + (=B + C — D)e™ “sin(x).
—-A+C=0A-B+D=0-A-C=1,-B+C—-D=0.
SoA=-1/2,B=-1/2, C=-1/2, D=0

[ xe™*sin(x) dx = —((x + 1)e ™" cos(x) + xe™*sin(x))/2.

Integration by parts — |

|

Consider /xex/" dx.

Consider /xex/a dx.

u=x dv/dx = e*/?

du/dx =1 v=ae/?

/Xex/adX: UV7/%VdX: axex/af/aex/adX: axe™/? — a2e*/?
X

vvyVvVyy

To integrate a product, call the factors u and %.
Differentiate u to find du/dx.

to find v.
/u—dx—uv—/—vdx

This is most useful when (a) du/dx is simpler than u (eg u polynomial)
and (b) v is no more complicated than dv/dx (eg dv/dx = cos(x)).

dv
Integrate ¢

Use the formula:

Integrating PEO's — I

vy

vyvyy

fx3e" dx is a PEO of degree 3, growth 1 and frequency 0.
fx3eX dx = (Ax3 + Bx?® + Cx + D)e* for some A, B, C, D.
e = dix ((Ax3 + Bx® 4+ Cx + D)eX)
= (3AX* +2Bx + C)e* + (AX’ + Bx* + Cx + D)e"
= (Ax* + (BA + B)xX* + (2B + C)x + (C + D))e".

A=13A+B=0,2B4+C=0,C+D=0.
soA=1,B=-3,C=6 D=-6
so [x*e* dx = (x* — 3x* + 6x — 6)e*.

Integration by parts — I

|

Consider /(1 — In(x))x "% dx.

Consider /(1 —In(x))x"? dx.

u=1-In(x) dv/dx = x2
du/dx = —x7! V= —x—1
/(1 —In(x))x 2 dx = uv — / %vdx =—(1—In(x))x"" - /X72 dx

= (In(x) = 1)x "+ x7! =In(x)/x

vvyYyy

To integrate a product, call the factors u and %.
Differentiate u to find du/dx.

dv du
/uadx—uv—/&vdx

dv .
Integrate ¢ to find v.

Use the formula:




Integration by parts — IlI

|

Consider /xsin(wx) dx.

Consider /xsin(wx) dx.

u=x dv/dx = sin(wx)
du/dx =1 v = —w ™! cos(wx)
/xsin(wx) dx = uv — / %vdx = —w 'xcos(wx) + /w_l cos(wx) dx

= —w™tx cos(wx) + w2 sin(wx)

vvyyvyy

To integrate a product, call the factors v and Z—
Differentiate u to find du/dx.

Integrate < to find v.

Use the formula.

Integration by substitution — |

>

|

>
>

Consider/ |n(()><()) dx.

Consider/ sin(x) dx
cos(x)"

Put u = cos(x), so du/dx = —sin(x), so dx = —du/ sin(x)

/ sm(x /SIT,("X)s:T((t(LI) :7/11_" du
cos(x)'™"

=u""/(n—-1)= — =1

vvyVvVyy

To find [ f(x)

Find du/dx, and rearrange to express dx in terms of x and du.

dx, pick out some part of f(x) and call it u.

Rewrite the integral in terms of v and du.

Evaluate the integral, then rewrite the result in terms of x.

Integration by parts — IV

|

Consider/arcsin(x) dx.

Consider /arcsin(x).l dx.
u = arcsin(x) dv/dx =1
du/dx = (1 — x?)7/2 v =x

)_1/2 dx

/arcsin(x).l dx = uv — / %v dx = arcsin(x).x — /x(l —x°
X

= xarcsin(x) + (1 — x?)'/2

vvyVyVYyy

To integrate a product, call the factors u and Z—
Differentiate u to find du/dx.

dv du
/uadx—uv—/&vdx

dv .
Integrate 77 to find v.

Use the formula:

Integration by substitution — Il

|

Consider /xef“2 dx.

Consider /Xe_4x2 dx.

Put u = —4x?, so du/dx = —8x, so dx = —du/(8x)

a2 ydu 1 u
= | —xe —=—- d
/Xe dx / xe Bx 3 / e’ du

=—e"/8= fe_4xz/8

vvyyvyy

To find [ f(x

Find du/dx, and rearrange to express dx in terms of x and du.

) dx, pick out some part of f(x) and call it u.

Rewrite the integral in terms of u and du.

Evaluate the integral, then rewrite the result in terms of x.



Integration by substitution — IlI

v

. dx
Consider / m .

Consider/ dx */ dx
424 4x+2 [ (2x+1)2+1°
Put u=2x+1, so du/dx =2, so dx = du/2

/ dx _/ du/2
Ax2+4x+2 ) v +1

= arctan(u)/2 = arctan(2x + 1) /2

vvyyvyy

To find [ f(x) dx, pick out some part of f(x) and call it u.
Find du/dx, and rearrange to express dx in terms of x and du.
Rewrite the integral in terms of v and du.

Evaluate the integral, then rewrite the result in terms of x.

Integration by substitution — V

v

Consider/log(x)2 dx.

Put x = €', so dx/dt = e, so dx = e’ dt

/Iog(x)2 dx = / log(e')’e’ dt = / t’e’ dt

= (£* — 2t 4 2)e" = (log(x)* — 2log(x) + 2)x

To find [ f(x) dx, put x equal to some function of t.
Find dx/dt, and rearrange to express dx in terms of t and dt.
Rewrite the integral in terms of t and dt.

Evaluate the integral, then rewrite the result in terms of x.

Integration by substitution — IV

Consider/L
Vx =x2'

Put x = t?, so dx/dt = 2t, so dx = 2t dt

Vx—x2=+t2—tt=t\/1-12

/ dx 7/ 2tdt 2/ dt
Vx — x? tv1—t? V1—t2
= 2arcsin(t) = 2arcsin(v/x)

vvyyy

To find [ f(x) dx, put x equal to some function of t.
Find dx/dt, and rearrange to express dx in terms of t and dt.
Rewrite the integral in terms of t and dft.

Evaluate the integral, then rewrite the result in terms of x.

Examples |

>

>

|

/tan(x) dx = / zlc>ns(()>(<)) dx = —/ ((::c:)ss’((;)) dx = — log(cos(x)).

Consider [ x*tan(x®) dx. Put u = x*, so du = 3x* dx, so dx = du/(3x?).
2 3 2 du 1
x“tan(x’)dx = [ x tan(u)ﬁ =3 tan(u) du = — log(cos(u))/3

= — log(cos(x*))/3

Consider fxe‘/; dx. Put t = \/x, so x = t?, so dx = 2t dt.
xe¥* dx = / e’ 2t dt = 2/t3e* dt = 2(t* — 3> 4+ 6t — 6)e’

= (2x*? — 6x + 12x"/% — 12)e¥~



Examples Il Examples Il

X —X X —X 2
> /(2(X2+1)ex)2 dx = /(4X4+8X2+4)92X dx > /1+cosh(x)+cosh(X)2 dx = /1+ ° J;e + (e +2e > dx

= (AX4+BX3—|—CX2—|—DX—|— E)e2X 1 _ 5 s
:Z/4+2ex+2e X4 e 424 e Tdx

(4x* 4 8x° + 4)e™ = i((Ax4 + BX® + C* + Dx + E)e™)

dX 1 X —X 1 _2x 1 _—2x
= — (bx+2e" —2e ;e —ze )
= (4Ax* 4+ 3Bx* 4+ 2Cx + D)e™ + 4 ( X t3 2
X —Xx 2x —2x
(AX4+BX3+CX2+DX+E).262X :gx_’_e —2e +%e —2e
= ™ (2Ax" + (4A+2B)x> + (3B + 20)x* +

3 . 1 .
(2C +2D)x + (D + 2E)) §x+smh(x)—|—zsmh(2x).

So4=2A,0=4A+2B,8=38B+2C,0=2C+2D, 4=D+2E
SoA=2,B=-4C=10,D=-10, E=7

/(2(x2 +1)e")’ dx = (2x* — 4x® + 10x* — 10x + 7)e™.

Examples IV Examples V

dx_ _ 1+sin(x) . X sin(x) cos(x) dx = X sin(2x) dx
> To showthat/cos(x) = log (T(X)) > /8 (x) cos(x) d. /4 (2x) d
d (1 + sin(x)> _ cos(x). cos(x) — (1 + sin(x))(=sin(x)) = —2xcos(2x) + / 2 cos(2x) dx
dx cos(x) cos(x)? = —2x cos(2x) + sin(2x).
_ cos(x)? + sin(x)? + sin(x) _ 1+ sin(x)
cos(x)? cos(x)? / / /
d 1+sin(x)\  (L14sin(x)\ " d [1+sin(x) > Consider [ 10e sin(x)’dx = [ 5e “dx+ | —5e *cos(2x) dx.
dx log ( cos(x) ) N ( cos(x) > dx ( cos(x) >
_ _cos(x) 1+sin(x) 1 /—5e7x cos(2x) dx = e”*(Acos(2x) + Bsin(2x))
1+ sin(x) cos(x)? cos(x)

—be cos(2x) = e *((2B — A) cos(2x) — (2A + B)sin(2x))
A=1, B=-2

/ 10e " sin(x)” dx = —5e ¥ + e * cos(2x) — 2 sin(2x).



Taylor series

2 3 ok
X = =1 4= X
e =exp(x) =14x+ =+ 5+ ;!
(1X7)2=X+2X2+3X3+4x4+-~~22kxk (for |x| < 1)
— X
k=0
2 X4 00( l)kx2k
cos(x)_l—?-yﬂ_;_.. _Z 20!
k=0
X3 x5 x! e (_1)kx2k+1
arctan(x)_x—€-|-€_7_~_..._kz:%W

» For any reasonable function f(x), there are coefficients ax such that

f(x) = Z ax”
k=0

(when x is sufficiently small). This is the Taylor series for f(x).

Truncated series

Often we only calculate with finitely many terms of the Taylor series.
tan(x) = x + x> /3 4 2x°/15 4+ O(x")

The notation O(x’) means that there are extra terms involving powers x*
with kK > 7. The above is the 7th order Taylor series for tan(x). It is a good

approximation to tan(x) if x is sufficiently small.
tan(x) = x + x3/3 4+ 2x%/15 + 17x7 /315 4+ O(x°)

Not every function has a Taylor series.
> fo(x) = 1/x does not, because fp(0) is undefined.

> fi(x) = |x| and fr(x) = x*/* do not, because the slopes f/(0) and f;(0) are
not defined.

> £(x) = In(x) does not, because £(x) is undefined for x < 0.
> fi(x) = e /" does not, for a more subtle reason.

For a full explanation, see Level 3 complex analysis.

Finding coefficients

oo
K
y:E akx", where ay=-— —
k=0 ’

f(x) = Z ax",  where a, = fM(0)/k!
k=0

Example:
exp¥(x) = -+ = exp”’(x) = exp” (x) = exp/(x) = exp(x) = &”
exp(0) = - - - = exp”’(0) = exp”(0) = exp’(0) = exp(0) = 1

Thus ax = 1/k!, and exp(x) = >, x*/k!.



Another example Other methods

Take f(x) = sin(x). It is often easiest to deduce a Taylor series from known series for other

£(x) = sin(x) £/ (x) = cos(x) £ (x) = — sin(x) £ (x) = — cos(x) functions.
) (x) = sin(x) 75) (x) = cos(x) 70) (x) = — sin(x) D (x) = — cos(x) 2 5 (—x2)k S x2k
e = Sk
7(8) (x) = sin(x) 79 (x) = cos(x) F19) () = — sin(x) F11) () = — cos(x) K K K Kt
xk 4 (7x)k xk x%
h(x) = (¥ +e7%)/2= = — =
£(0) =0 ) =1 () =0 f770) = —1 o e zk: 2 (k1) Keven k! 7 @)
@) =0 ®) =1 F©)0) =0 Do) = —1 (/= (& — )29 = 5 K (—x)k s xk=1 _x ]
sinh(x)/x = (e — e 2x) = _ =
By =0 o) =1 F19(0) = o (o) = —1 K 2x (k) Kodd k! 7 @+
@ —x)=1+x+x2 4+ +... =3
ag =0 a =1 ap =0 a3 = —1/3! X
a3 =0 a5 = 1/5! a6 =0 ag = —1/7! d 1 4 K k1 B
ag =0 ag = 1/9! a0 = 0 ajy = —1/11 X;(I,X> ’X;zk:x 7sz:kx ’zk:kx
X/ —x)? =3 kxk.
3 5 7 9 L ) k2k+1 K
X x" x (=1)""
sin(x X— =+ -+ =
() 3! 51 7! 9! 11I Z (2k +1)!

k=0

Odd and even functions Algebra of series

Recall that f(x) is even if f(—x) = f(x), and odd if f(—x) = —f(x).

For example, cos(x) is even and sin(x) is odd.  If tan(x) = x + x + 15x + O(x")
f(x) = Z ax* = Z ax* + Z ax”
k k even k odd tan(x)2 — (X+ X + 15)( ) + O( )
then
=x"+ I+ 25+
f(—x) = Zak(—x)k = Z ax* — Z arx. 4 : 6 15 s
P K even K odd 3+ 5+ X
Thus f(x) is even iff the Taylor series involves only even powers of x, and T25X6 + %XS + %X +0(x")

f(x) is odd iff the Taylor series involves only odd powers of x. =x*+ x +1 x + 0(x").

. X3 X5 X7 X9 Xll s (_1)/(X2/<+1
O e e T A T IR TR Dy craris
= (2k+1)
X2 X4 X6 X8 XIO o (_1)kX2k
cos(x):l—a—l-ﬂ—a-f—g—m—&-...:zw



We can also expand f(x) in terms of powers (x — &), for any .  More We will find the series for tan(x) near x = 7.
precisely,
f(x) = tan(x)
(700 = 3o blx— )t where b, = F9(a)/k] .
cos(x)?
_ . 2sin(x)
f” _ 3. . _
In’(x) = x 1 I (x) = —x 2 I’’’ (x) = 2x 3 n®x) = —6x—4 (X) 2 COS(X) Sm(X) COS(X)3
In(1) = 0 (1) =1 (1) = -1 (1) =2 n®a) = -6
by = by =1 by = —1/2 b3 =2/31=1/3 by = —6/4 = —1/4 I ey 1 - iy 59-1/2 -
()= (Z)—m—z (Z)—m—‘f
In(x) = (x = 1) = (x = 1)?/2+ (x = 1)*/3 = (x = 1)" /4 + O((x — 1)°). a0 =1/0l =1 a=2/11 =2 a=4/20=2

tan(x) =142(x — ) +2(x — %)2 + O((x — %)3)‘

More examples

Consider y = x/(e* —1).

=1 +x+x2/2+x3/6 + O(x4)
e —1=x+x>/2+x°/6+ O(x*)
1 e —1

=1+4x/2+x°/6+0(x*) =1+ u+ O(x°) u=x/2+x/6

_ —1_ 2 3y _ 1 _ 2 3

Y=114 l—-u+v +0W)=1—uv+u + 0O(x)
P =x/4+x3/6 + x" /36 = x* /4 + O(x°)

x =1—u+uv’+0(x)

ex—1

=1-x/2-x/6+x"/4+ 0(x*) =1 —x/2+ x*/12 + O(x°)



