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Introduction

The first half of this course is about planar differential equations, like this
example:

ẋ =
dx

dt
= − 9

40
x2 +

3

10
y 2 − 3

40
ẏ =

dy

dt
=

5

8
x2 +

23

20
y 2 − 71

40

There is no formula for the solution. The aim is to learn how to understand the
equations even without a formula for the solution. We can draw a picture:

We will start by looking quickly at some examples. Later we will develop some
mathematical theory, then look at the examples again.

The Lotka-Volterra model

A lagoon contains F fish and S sharks. These change according to the
equations

Ḟ = αF−βFS Ṡ = −γS + δFS ,

where α, β, γ and δ are positive constants.
αF : fish breeding; −βFS : fish being eaten;
δFS : well-fed sharks breeding; −γS : sharks starving.

The phase portrait shows how the point (F , S) moves over time:

γ/δ

α/β

Ḟ = −βF (S − α/β)

Ṡ = δS(F − γ/δ)

Motion of a pendulum

Consider a swinging pendulum, hanging at angle θ.
The angular velocity is ω = θ̇.
The angular acceleration ω̇ is proportional to the
component of the gravitational force perpendicular
to the pendulum, which is proportional to − sin(θ).

With suitable units, we can assume that

θ̇ = ω ω̇ = − sin(θ).

θ

A contour flow

This system has equations ẋ = y 3 − y and ẏ = x − x3.

I The blue lines (x-nullclines) show where y − y 3 = 0 and so ẋ = 0.

I The green lines (y-nullclines) show where x − x3 = 0 and so ẏ = 0.

I The black dots (equilibrium points) show where ẋ = ẏ = 0.



A contour map

This is a contour map. The height is h(x , y). If you stay on one of the brown
lines (contours), then you stay at the same height. That is a contour flow.

A contour map

When the contours are close together, the ground is steep.
When the contours are far apart, the ground is not steep.

A gradient flow

This system has equations ẋ = x − x3 and ẏ = y − y 3.

I The blue lines (x-nullclines) show where x − x3 = 0 and so ẋ = 0.

I The green lines (y-nullclines) show where y − y 3 = 0 and so ẏ = 0.

I The black dots (equilibrium points) show where ẋ = ẏ = 0.

Bands

This system has equations ẋ = 1 and ẏ = sin(πy).

The solutions move steadily to the right, and converge to one of the lines
where y is an odd integer.



Duffing oscillator

The Duffing oscillator has ẋ = y and ẏ = 2x − x3.

I The blue line (x-nullcline) shows where y = 0 and so ẋ = 0.

I The green lines (y-nullclines) show where 2x − x3 = 0 and so ẏ = 0.

I The black dots (equilibrium points) show where ẋ = ẏ = 0.

Damped Duffing oscillator

This system has ẋ = y and ẏ = 2x − x3 − 0.1y .

It is similar to the Duffing oscillator, but with friction or damping .

I The x-nullcline is the same as before

I But the y -nullclines have moved slightly

I The equilibrium points are unchanged.

van der Pol oscillator

This system has ẋ = y and ẏ = 2(1− x2)y − x .

I The blue line (x-nullcline) shows where y = 0 and so ẋ = 0.

I The green lines (y-nullclines) show where 2(1− x2)y − x = 0 and so ẏ = 0.

I There is only one equilibrium point, but there is also a limit cycle, shown
in blue. All non-constant solutions converge to the limit cycle.

Sketching a phase portrait

We will sketch the phase portrait for the system
ẋ = x(3− x − 2y), ẏ = y(x − 1).



A problem which we will mostly ignore

Consider the equation ẋ = x2. This gives

d

dt
x−1 = −x−2ẋ = −x−2.x2 = −1

x−1 = x−1
0 − t

x = 1/(x−1
0 − t) = x0/(1− x0t).

This is not defined for all t; the solution goes to infinity as t → x−1
0 .

A similar example in two variables: ẋ = ẏ = xy .
(There is a solution on the problem sheet.)

We mostly ignore this problem and consider only equations where x(t) and
y(t) are defined for all t ∈ R.

Linear systems

A (first order, autonomous) linear system has the form

ẋ =
dx

dt
= ax+by ẏ =

dy

dt
= cx+dy

[
ẋ
ẏ

]
=

d

dt

[
x
y

]
=

[
a b
c d

] [
x
y

]
Linear systems are the easiest kind of planar differential equations.
They will also help us to understand nonlinear systems.

Example:

Suppose b = c = 0, so
ẋ = ax
ẏ = dy

or

[
ẋ
ẏ

]
=

[
a 0
0 d

] [
x
y

]

The solution is
x = eatx0
y = edty0

or

[
x
y

]
=

[
eat 0
0 edt

] [
x0
y0

]
.

Example:

Suppose
ẋ = y
ẏ = −x or

[
ẋ
ẏ

]
=

[
0 1
−1 0

] [
x
y

]

Solution:
x = x0 cos(t) + y0 sin(t)
y = y0 cos(t)− x0 sin(t)

or

[
x
y

]
=

[
cos(t) sin(t)
− sin(t) cos(t)

] [
x0
y0

]
.

Reminder of simple harmonic motion

Proposition: Suppose that x is a function of t such that ẍ = −ω2x ; then
x(t) = A cos(ωt) + B sin(ωt) for some constants A and B.

Proof.
Put A = x(0) and B = ẋ(0)/ω and u(t) = A cos(ωt) + B sin(ωt) and
v(t) = x(t)− u(t). We want to show that x(t) = u(t), so we must show that
v(t) = 0. Note that

u̇(t) = −Aω sin(ωt) + Bω cos(ωt)

ü(t) = −Aω2 cos(ωt)− Bω2 sin(ωt) = −ω2u(t)

v̈(t) = ẍ(t)− ü(t) = −ω2x(t) + ω2u(t) = −ω2v(t)

v(0) = x(0)− A = 0

v̇(0) = ẋ(0)− Bω = 0.

Now put E(t) = ω2v(t)2 + v̇(t)2, so E(0) = ω2v(0)2 + v̇(0)2 = 0. Also:

Ė(t) = 2ω2v(t)v̇(t) + 2v̇(t)v̈(t) = 2v̇(t)(ω2v(t) + v̈(t)) = 0.

This means that E is constant, and E(0) = 0, so E(t) = 0 for all t. As
squares are always nonnegative, the only way that E(t) can be zero is if
v(t) = 0 and v̇(t) = 0. We thus have v = 0 as required.

Linear systems

A (first order, autonomous) linear system has the form

ẋ =
dx

dt
= ax+by ẏ =

dy

dt
= cx+dy

[
ẋ
ẏ

]
=

d

dt

[
x
y

]
=

[
a b
c d

] [
x
y

]

We put u =

[
x
y

]
and A =

[
a b
c d

]
so u̇ = Au.To solve the system, we first

need to find eigenvalues and eigenvectors of A. Put

τ = trace(A) = a + d δ = det(A) = ad − bc

χA(t) = characteristic polynomial = det(A− tI ) = det

[
a− t b
c d − t

]
= (a− t)(d − t)− bc = t2 − (a + d)t + (ad − bc) = t2 − τ t + δ.

The eigenvalues are the roots of χA(t), which are

λ1 = 1
2
(τ −

√
τ 2 − 4δ) λ2 = 1

2
(τ +

√
τ 2 − 4δ).

These might be real numbers or complex numbers .

λ1 + λ2 = τ λ1λ2 = δ



Linear systems with real eigenvalues

[
ẋ
ẏ

]
=

[
a b
c d

] [
x
y

]
τ = a + b
δ = ad − bc

λ1 = 1
2
(τ −

√
τ 2 − 4δ)

λ2 = 1
2
(τ +

√
τ 2 − 4δ).

Suppose for the moment that τ 2 > 4δ, so λ1 and λ2 are real, and λ1 < λ2.
We can find eigenvectors v1 and v2 such that Av1 = λ1v1 and Av2 = λ2v2.

Now suppose that u = c1e
λ1tv1 + c2e

λ2tv2 for some constants c1 and c2. Then

u̇ = c1λ1e
λ1tv1 + c2λ2e

λ2tv2 = c1e
λ1tAv1 + c2e

λ2tAv2 = Au,

so we have a solution to our system of equations.

If λ1, λ2 < 0 then u → 0 as t →∞.

If λ1 < 0 < λ2 then when t is large we can ignore c1e
λ1tv1 and u ' c2e

λ2tv2.

If 0 < λ1 < λ2 then both terms will be very large when t is large, but the term
c2e

λ2tv2 will still grow much more quickly than c1e
λ1tv1.

Linear systems with real eigenvalues — example

Consider the system

ẋ = 2y
ẏ = x + y

[
ẋ
ẏ

]
= A

[
x
y

]
, where A =

[
0 2
1 1

]

τ = trace(A) = 0 + 1 = 1 δ = det(A) = 0× 1− 2× 1 = −2

Characteristic polynomial χA(t) = det

[
−t 2
1 1− t

]
= t2 − t − 2 = t2 − τ t + δ.

Roots λ1, λ2 are 1
2
(τ ±

√
τ 2 − 4δ) = 1

2
(1±

√
9) = −1, 2 (both real).

Eigenvector v1 =

[
p
q

]
should satisfy (A− λ1I )v1 = 0, or (A + I )v1 = 0, or[

1 2
1 2

] [
p
q

]
=

[
0
0

]
, or p + 2q = 0. Obvious choice is v1 =

[
−2
1

]
.

Eigenvector v2 =

[
p
q

]
should satisfy (A− λ2I )v2 = 0, or (A− 2I )v2 = 0, or[

−2 2
1 −1

] [
p
q

]
=

[
0
0

]
, or p − q = 0. Obvious choice is v2 =

[
1
1

]
.

Linear systems with real eigenvalues — example

[
ẋ
ẏ

]
=

[
0 2
1 1

] [
x
y

]
eigenvectors

[
−2
1

]
,

[
1
1

]
with eigenvalues − 1, 2.

Solutions have the form[
x
y

]
= c1e

λ1tv1 + c2e
λ2tv2 = c1e

−t

[
−2
1

]
+ c2e

2t

[
1
1

]
=

[
−2c1e

−t + c2e
2t

c1e
−t + c2e

2t

]
.

The values at time t = 0 are[
x0
y0

]
=

[
−2c1e

0 + c2e
0

c1e
0 + c2e

0

]
=

[
−2c1 + c2
c1 + c2

]
=

[
−2 1
1 1

] [
c1
c2

]
.

Often we do not know c1 and c2, but we do know x0 and y0. Then we can
invert the above to find c1 and c2:[

c1
c2

]
=

[
−2 1
1 1

]−1 [
x0
y0

]
=

1

−3

[
1 −1
−1 −2

] [
x0
y0

]
=

[
y0/3− x0/3

2y0/3 + x0/3

]
.

Linear systems with real eigenvalues — example

[
x
y

]
=

[
−2c1e

−t + c2e
2t

c1e
−t + c2e

2t

] [
c1
c2

]
=

[
y0/3− x0/3

2y0/3 + x0/3

]
.

For example, suppose we know that when t = 0 we have x = −1 and y = 1.
Put x0 = −1 and y0 = 1 in the right hand equation to get c1 = 2/3 and
c2 = 1/3. Put these values in the left hand equation to get

u =

[
x
y

]
=

[
− 4

3
e−t + 1

3
e2t

2
3
e−t + 1

3
e2t

]
.

To check this, note that when t = 0 it gives

u =

[
−4/3 + 1/3
2/3 + 1/3

]
=

[
−1
1

]
=

[
x0
y0

]
as expected.Moreover:

u̇ =

[
4
3
e−t + 2

3
e2t

− 2
3
e−t + 2

3
e2t

]
Au =

[
0 2
1 1

] [
− 4

3
e−t + 1

3
e2t

2
3
e−t + 1

3
e2t

]
=

[
4
3
e−t + 2

3
e2t

− 2
3
e−t + 2

3
e2t

]
,

so u̇ = Au as expected.



Linear systems with real eigenvalues — reformulation

Consider again a system u̇ = Au, where A has real eigenvalues λ1 < λ2 and
corresponding eigenvectors v1, v2.

We can put v1 and v2 together to form a 2× 2 matrix V =

[
v1 v2

]
.

We also put D =

[
λ1 0
0 λ2

]
and E =

[
eλ1t 0

0 eλ2t

]
and P = VEV−1.

Proposition: We have P = I when t = 0, and Ṗ = AP.
Also, the solution to u̇ = Au with u = u0 at t = 0 is u = Pu0.

Linear systems with real eigenvalues — reformulation

V =

[
v1 v2

]
D =

[
λ1 0
0 λ2

]
E =

[
eλ1t 0

0 eλ2t

]
P = VEV−1

Proposition: the solution to u̇ = Au with u = u0 at t = 0 is u = Pu0.

First note that

AV = A

[
v1 v2

]
=

[
Av1 Av2

]
=

[
λ1v1 λ2v2

]
=

[
v1 v2

] [
λ1 0
0 λ2

]
= VD.

We can rearrange to get A = VDV−1. This is called a diagonalization of A.
Now AP = VDV−1VEV−1 = VDEV−1. Also

Ė =

[
λ1e

λ1t 0
0 λ2e

λ2t

]
=

[
λ1 0
0 λ2

] [
eλ1t 0

0 eλ2t

]
= DE , so

Ṗ = V ĖV−1 = VDEV−1 = VDV−1VEV−1 = AP.

as claimed. Also, when t = 0 we have E = I so P = VV−1 = I .
Now suppose we have a vector u0, and we put u = Pu0. When t = 0 we have
P = I so u = u0. We also have u̇ = Ṗu0 = APu0 = Au as required.

Linear systems with real eigenvalues — reformulated example

As before, take A =

[
0 2
1 1

]
λ1 = −1
λ2 = 2

v1 =

[
−2
1

]
, v2 =

[
1
1

]
.

Then

D =

[
λ1 0
0 λ2

]
=

[
−1 0
0 2

]
E =

[
eλ1t 0

0 eλ2t

]
=

[
e−t 0

0 e2t

]

V =

[
v1 v2

]
=

[
−2 1
1 1

]
V−1 =

1

−3

[
1 −1
−1 −2

]
=

[
−1/3 1/3
1/3 2/3

]
.

P = VEV−1 =

[
−2 1
1 1

] [
e−t 0

0 e2t

] [
−1/3 1/3
1/3 2/3

]
=

[
−2e−t e2t

e−t e2t

] [
−1/3 1/3
1/3 2/3

]
=

1

3

[
e2t + 2e−t 2e2t − 2e−t

e2t − e−t 2e2t + e−t

]

If u0 =

[
x0
y0

]
=

[
−1
1

]
then

u = Pu0 =
1

3

[
e2t + 2e−t 2e2t − 2e−t

e2t − e−t 2e2t + e−t

] [
−1
1

]
=

1

3

[
e2t − 4e−t

e2t + 2e−t

]
.

This is the same answer as before.

Linear systems with real eigenvalues — another example

A =

[
1 1
1 1

]
τ = 1 + 1 = 2
δ = 0

λ1 = 1
2
(τ −

√
τ 2 − 4δ) = 0

λ2 = 1
2
(τ +

√
τ 2 − 4δ) = 2.

v1 =

[
p
q

]
with (A− λ1)v1 = 0, so

[
1 1
1 1

] [
p
q

]
=

[
0
0

]
, so v1 =

[
1
−1

]
.

v2 =

[
p
q

]
with (A− λ2)v2 = 0, so

[
−1 1
1 −1

] [
p
q

]
=

[
0
0

]
, so v2 =

[
1
1

]
.

D =

[
λ1 0
0 λ2

]
=

[
0 0
0 2

]
E =

[
eλ1t 0

0 eλ2t

]
=

[
1 0
0 e2t

]
.

V =

[
v1 v2

]
=

[
1 1
−1 1

]
V−1 =

1

2

[
1 −1
1 1

]
[
x
y

]
= VEV−1u0 =

1

2

[
1 1
−1 1

] [
1 0
0 e2t

] [
1 −1
1 1

] [
x0
y0

]

=
1

2

[
1 e2t

−1 e2t

] [
x0 − y0
x0 + y0

]
=

[
(x0 − y0 + (x0 + y0)e2t)/2
(y0 − x0 + (x0 + y0)e2t)/2

]



Determinant of the fundamental solution

Proposition: det(P) = etrace(A)t .

Proof.
Recall that P = VEV−1 so

det(P) = det(V ) det(E) det(V )−1 = det(E).

Also

E =

[
eλ1t 0

0 eλ2t

]
,

so
det(P) = det(E) = eλ1teλ2t = e(λ1+λ2)t .

We have also seen that λ1 + λ2 = τ = trace(A), so det(P) = etrace(A)t .

Linear systems with real eigenvalues — phase portraits

λ1 < λ2 < 0 λ1 < λ2 = 0 λ1 < 0 < λ2

stable node semistable node saddle

A different formula for P

The solution is u = Pu0, where P = VEV−1. To find P we need V , and to find
V we need the eigenvectors. However, there is another formula which is easier.

Proposition: P = (λ2 − λ1)−1((λ2e
λ1t − λ1e

λ2t)I + (eλ2t − eλ1t)A).

Proof: First put

F = (λ2e
λ1t − λ1e

λ2t)I + (eλ2t − eλ1t)D

=

[
λ2e

λ1t − λ1e
λ2t 0

0 λ2e
λ1t − λ1e

λ2t

]
+

[
λ1(eλ2t − eλ1t) 0

0 λ2(eλ2t − eλ1t)

]
=

[
(λ2 − λ1)eλ1t 0

0 (λ2 − λ1)eλ2t

]
= (λ2 − λ1)E .

It follows that P = VEV−1 = (λ2 − λ1)−1VFV−1. However,

VFV−1 = (λ2e
λ1t − λ1e

λ2t)VIV−1 + (eλ2t − eλ1t)VDV−1

= (λ2e
λ1t − λ1e

λ2t)I + (eλ2t − eλ1t)A.

After multiplying by (λ2 − λ1)−1 we get the claimed formula for P.

A different formula for P — example

P = (λ2 − λ1)−1((λ2e
λ1t − λ1e

λ2t)I + (eλ2t − eλ1t)A).

Consider again A =

[
0 2
1 1

]
, so λ1 = −1 and λ2 = 2. Then

P =
1

3
((2e−t + e2t)I + (e2t − e−t)A)

=
1

3

([
2e−t + e2t 0

0 2e−t + e2t

]
+

[
0 2e2t − 2e−t

e2t − e−t e2t − e−t

])
=

1

3

[
2e−t + e2t 2e2t − 2e−t

e2t − e−t e−t + 2e2t

]
This is the same answer as we found previously.



A different formula for P — another example

P = (λ2 − λ1)−1((λ2e
λ1t − λ1e

λ2t)I + (eλ2t − eλ1t)A).

Consider again A =

[
1 1
1 1

]
, so λ1 = 0 and λ2 = 2. Then

P =
1

2
((2e0t − 0e2t)I + (e2t − e0t)A) =

1

2
(2I + (e2t − 1)A)

=
1

2

([
2 0
0 2

]
+

[
e2t − 1 e2t − 1
e2t − 1 e2t − 1

])
=

1

2

[
e2t + 1 e2t − 1
e2t − 1 e2t + 1

]
.

Complex eigenvalues

If A =

[
a b
c d

]
then λ1, λ2 = 1

2
(τ ∓

√
τ 2 − 4δ), where

τ = a + d
δ = ad − bc

.

Now suppose that τ 2 − 4δ < 0, so λ1 and λ2 are complex numbers. Put

λ = τ/2 ω =
√

4δ − τ 2/2 so λ1, λ2 = λ∓ iω.

We can use the same method as before, remembering that

e(λ∓iω)t = eλte∓iωt = eλt(cos(ωt)∓ i sin(ωt))

and
cos(ωt) = (e iωt + e−iωt)/2 sin(ωt) = (e iωt − e−iωt)/(2i).

Some complex numbers appear, but in the end the imaginary parts cancel.

Proposition: The solution to u̇ = Au with u = u0 at t = 0 is u = Pu0, where

P = eλt(cos(ωt)I + ω−1 sin(ωt)(A− λI ))

Complex eigenvalues — formula for P

λ1 = λ− iω λ2 = λ+ iω Solution: u = Pu0

Proposition: P = eλt(cos(ωt)I + ω−1 sin(ωt)(A− λI ))

Proof: We saw before that

P = (λ2 − λ1)−1((λ2e
λ1t − λ1e

λ2t)I + (eλ2t − eλ1t)A)

Now

λ2 − λ1 = 2iω

eλ2t − eλ1t = eλte iωt − eλte−iωt = 2ieλt sin(ωt)

λ2e
λ1t − λ1e

λ2t = (λ+ iω)eλte−iωt − (λ− iω)eλte iωt

= eλt
(
iω(e iωt + e−iωt)− λ(e iωt − e−iωt)

)
= eλt(2iω cos(ωt)− 2iλ sin(ωt))

P = (2iω)−1eλt (2iω cos(ωt)I − 2iλ sin(ωt)I + 2i sin(ωt)A)

= eλt(cos(ωt)I + ω−1 sin(ωt)(A− λI ))

Complex eigenvalues — example

Suppose that
ẋ = αx + βy
ẏ = −βx + αy

or

[
ẋ
ẏ

]
=

[
α β
−β α

] [
x
y

]
.

Then

τ = 2α δ = α2 + β2 λ =
τ

2
= α ω =

√
4δ − α2

2
= β

P = eλt(cos(ωt)I + ω−1 sin(ωt)(A− λI ))

= eαt(cos(βt)I + β−1 sin(βt)(A− αI ))

= eαt
([

cos(βt) 0
0 cos(βt)

]
+

sin(βt)

β

[
0 β
−β 0

])
= eαt

[
cos(βt) sin(βt)
− sin(βt) cos(βt)

]
.

Thus, the solution is

x = eαt(cos(βt)x0 + sin(βt)y0)

y = eαt(− sin(βt)x0 + cos(βt)y0).



Clockwise or anticlockwise?

Proposition: Suppose that the matrix A =

[
a b
c d

]
has complex eigenvalues.

Then bc < 0 (so b and c are nonzero and have opposite sign).

We will need this when we discuss whether the flow lines for A go clockwise or
anticlockwise.

Proof.
Note that

τ 2 − 4δ = (a + d)2 − 4ad + 4bc = a2 + 2ad + d2 − 4ad + 4bc

= a2 − 2ad + d2 + 4bc = (a− d)2 + 4bc.

Thus,

bc =
1

4

(
(τ 2 − 4δ)− (a− d)2

)
.

As A has complex eigenvalues, we must have τ 2 − 4δ < 0.We also have
(a− d)2 ≥ 0, so bc < 0 as claimed.

Complex eigenvalues — phase portraits

A =

[
a b
c d

]
λ =

τ

2
=

a + d

2
ω =

√
4δ − τ 2

2
=

√
2ad − a2 − d2 − 4bc

2

λ < 0, b < 0 < c λ = 0, b < 0 < c λ > 0, b < 0 < c
anticlockwise anticlockwise anticlockwise
stable focus centre unstable focus

Map of the (τ, δ) plane

δ τ 2 − 4δ = 0

τ

τ>0, τ2−4δ<0

unstable focus

τ<0, τ2−4δ<0

stable focus

τ>0, δ>0, τ2−4δ>0

unstable node

τ<0, δ>0, τ2−4δ>0

stable node

δ<0

saddle

λ1, λ2 =
1

2
(τ ∓

√
τ 2 − 4δ) τ = λ1 + λ2 δ = λ1λ2.

Repeated eigenvalues

Proposition: If A has only one eigenvalue, say λ then the matrix
P = eλt(I + t(A− λI )) satisfies Ṗ = AP, and P = I when t = 0.

Proof: Put A =

[
a b
c d

]
, so τ = a + d and δ = ad − bc.

The eigenvalues (τ ±
√
τ 2 − 4δ)/2 are the same, so we must have τ 2 = 4δ,

and the eigenvalue is λ = τ/2 = a/2 + d/2. Note that

τ 2− 4δ = (a+ d)2− 4ad + 4bc = a2 + 2ad + d2− 4ad + 4bc = (a− d)2 + 4bc,

So we see that (a− d)2 + 4bc = 0, or (a/2− d/2)2 + bc = 0.
Now consider the matrix B = A− λI = A− 1

2
(a + d)I , so P = eλt(I + tB). In

the simplest case, B would be zero. It is not always zero, but at least B2 = 0:

B2 =

[
a/2− d/2 b

c d/2− a/2

] [
a/2− d/2 b

c d/2− a/2

]
=

[
(a/2− d/2)2 + bc (a/2− d/2)b + b(d/2− a/2)

c(a/2− d/2) + (d/2− a/2)c cb + (d/2− a/2)2

]
=

[
(a/2− d/2)2 + bc 0

0 (a/2− d/2)2 + bc

]
=

[
0 0
0 0

]
.



Repeated eigenvalues

Proposition: If A has only one eigenvalue, say λ then the matrix
P = eλt(I + t(A− λI )) satisfies Ṗ = AP, and P = I when t = 0.

The matrix B = A− λI satisfies B2 = 0.

Next, we defined P to be eλt(I + tB). This satisfies

Ṗ = λeλt(I + tB) + eλtB = eλt(λI + tλB + B)

AP = (λI + B)P = eλt(λI + B)(I + tB)

= eλt(λI + tλB + B + tB2) = eλt(λI + tλB + B) = Ṗ

as claimed. Also, at t = 0 we have P = e0(I + 0B) = I .

Equilibrium points and stability

Consider a differential equation ẋ = f (x , y), ẏ = g(x , y).

An equilibrium point is a point (a, b) where f (a, b) = 0 and g(a, b) = 0. If
(a, b) is an equilibrium point then we have a constant solution (x , y) = (a, b)
to the equation.

What happens if we start at a point (x0, y0) that is very close to (a, b)? Then
f (x0, y0) and g(x0, y0) will be small, so the point will move slowly at first. If we
wait longer, different things might happen.

(a) The point might move closer and closer to (a, b), and slow down even
more, with (x , y)→ (a, b) and (ẋ , ẏ)→ (0, 0) as t →∞.

(b) The point might circle around (a, b), never moving very far away, but not
slowing down.

(c) The point might eventually move far away from (a, b).

If (a) always happens, the equilibrium point is asymptotically stable .
If (b) can also happen (but not (c)), the equilibrium point is stable .
If (c) can happen then the equilibrium point is unstable .

Stability — precise definitions

More formal definitions are as follows.

I For any point u ∈ R2 and any t ∈ R we write φ(t, u) for the value at time
t of the solution that passes through u at t = 0. Thus φ(0, u) = u and
d
dt
φ(t, u) = f (φ(t, u)).

I Example: for the system ẋ = 2x , ẏ = 3y we have

φ(t, (x0, y0)) = (e2tx0, e
3ty0).

I Example: for the system ẋ = y , ẏ = −x we have

φ(t, (x0, y0)) = (cos(t)x0 + sin(t)y0, − sin(t)x0 + cos(t)y0).

I The equilibrium point a is stable if for all ε > 0 there exists δ > 0 such
that whenever ‖u − a‖ < δ we have ‖φ(t, u)− a‖ < ε for all t ≥ 0.

I The equilibrium point a is asymptotically stable if it is stable, and there
exists δ > 0 such that whenever ‖u− a‖ < δ we have ‖φ(t, u)− a‖ → 0 as
t →∞.

I If a is not stable, we say it is unstable.

Equilibrium points for linear systems

Consider a linear system

[
ẋ
ẏ

]
=

[
a b
c d

] [
x
y

]
, with τ = a + d and δ = ad − bc.

Then (0, 0) is an equilibrium point (and is the only one, unless ad − bc = 0).

(a) If τ < 0 and δ > 0 then the system is a stable node or stable focus and
the equilibrium point is asymptotically stable.

(b) If τ = 0 and δ > 0 then the system is a centre and the equilibrium point
stable but not asymptotically stable.

(c) If τ > 0 or δ ≤ 0 then the system is (usually) an unstable node or unstable
focus or saddle, and the equilibrium point is unstable.

δ

τ

stable focus

stable node

unstable focus

unstable node

saddle (unstable)



Equilibrium points for linear systems — eigenvalues

Another way to think about stability for linear systems is to use eigenvalues.

(a) Suppose that there are two real eigenvalues λ1, λ2. Then τ = λ1 + λ2 and
δ = λ1λ2. The solutions involve eλ1t and eλ2t , so they will converge to
zero if λ1, λ2 < 0, but will blow up to ∞ if λ1 > 0 or λ2 > 0.
If λ1λ2 = δ < 0 then λ1 > 0 or λ2 > 0, so (0, 0) is unstable.
If λ1λ2 = δ > 0 then λ1 and λ2 must both have the same sign.
If also λ1 + λ2 = τ > 0 then λ1, λ2 > 0 so (0, 0) is unstable.
If λ1 + λ2 = τ < 0 then λ1, λ2 < 0 so (0, 0) is asymptotically stable.

(b) Suppose that there are two complex eigenvalues, λ± iω, so
τ = 2λ and δ = (λ+ iω)(λ− iω) = λ2 + ω2. The solutions involve
eλt sin(ωt) and eλt cos(ωt), so the overall size is like eλt .
If τ = 2λ > 0 then (0, 0) is unstable.
If τ = 0 then (0, 0) is stable but not asymptotically stable.
If τ = 2λ < 0 then (0, 0) is asymptotically stable.

stable

stable

unstable

unstable

unstable

Linearisation (线性化)

Consider a system ẋ = f (x , y), ẏ = g(x , y).
Suppose that (a, b) is an equilibrium point, so f (a, b) = g(a, b) = 0.
We will study the behaviour of solutions (x , y) that are close to (a, b),
so (x , y) = (a + α, b + β) with α and β small.
We write fx = ∂f /∂x and fy = ∂f /∂y , so

f (x , y) = f (a+α, b+β) ' f (a, b)+fx(a, b)α+fy (a, b)β = fx(a, b)α+fy (a, b)β.

Also, as x = a + α and a is constant, we have α̇ = ẋ = f (x , y).
We can do the same for β̇, so we get

α̇ = fx(a, b)α + fy (a, b)β

β̇ = gx(a, b)α + gy (a, b)β.

This is a linear system with matrix

J =

[
fx(a, b) fy (a, b)
gx(a, b) gy (a, b)

]
,

called the Jacobian. We can classify it as before, using the trace and
determinant, or the eigenvalues.
Usually the flow lines for the original nonlinear system will be similar to those
for the linearised system, at least if we look close to (a, b).

Linearisation example

Consider the system ẋ = 9y 2 − 1, ẏ = 9x2 − 1. There is an equilibrium point at
(1/3, 1/3). There we have

J =

[
∂f /∂x ∂f /∂y
∂g/∂x ∂g/∂y

]
=

[
0 18y

18x 0

]
=

[
0 6
6 0

]
.

It is easy to see that the vectors v1 =

[
1
1

]
and v2 =

[
1
−1

]
are eigenvectors,

with eigenvalues λ1 = 6 and λ2 = −6. Solutions to the linear system[
α̇

β̇

]
= J

[
α
β

]
are of the form

[
α
β

]
= a1e

6tv1 + a2e
−6tv2 =

[
a1e

6t + a2e
−6t

a1e
6t − a2e

−6t

]
.

As x = 1/3 + α and y = 1/3 + β, the corresponding approximate solutions for
the original system are[

x
y

]
=

[
1/3
1/3

]
+ a1e

6tv1 + a2e
−6tv2 =

[
1/3 + a1e

6t + a2e
−6t

1/3 + a1e
6t − a2e

−6t

]
.

Linearisation example

ẋ = 9y 2 − 1 ẏ = 9x2 − 1[
x
y

]
'
[

1/3
1/3

]
+ a1e

6tv1 + a2e
−6tv2 =

[
1/3 + a1e

6t + a2e
−6t

1/3 + a1e
6t − a2e

−6t

]
.

These are solutions for the original system.



The eigenvectors, more slowly

We had J =

[
0 6
6 0

]
. This has τ = 0 and δ = −36 so τ 2 − 4δ = 144.

This gives eigenvalues (0±
√

144)/2, so λ1 = −6 and λ2 = 6.

The eigenvector v1 =

[
p
q

]
must satisfy (J − λ1I )v1 = 0, or

[
6 6
6 6

] [
p
q

]
=

[
0
0

]
,

which means that p + q = 0. We can therefore take v1 =

[
1
−1

]
.

The vector v2 =

[
r
s

]
must satisfy (J − λ2I )v2 = 0, or

[
−6 6
6 −6

] [
p
q

]
=

[
0
0

]
,

which means that p − q = 0. We can therefore take v2 =

[
1
1

]
.

Linearisation example

Consider again the system ẋ = 9y 2 − 1, ẏ = 9x2 − 1.
There is another equilibrium point at (−1/3, 1/3).
There we have

J =

[
∂f /∂x ∂f /∂y
∂g/∂x ∂g/∂y

]
=

[
0 18y

18x 0

]
=

[
0 6
−6 0

]
,

giving equations α̇ = 6β and β̇ = −6α.
Some solutions are

x = −1/3 + α = −1/3 + R cos(6t) y = 1/3 + β = 1/3− R sin(6t)

(with R constant).

This means that the solution curves are circles centred at (−1/3, 1/3).

Linearisation example

ẋ = 9y 2 − 1 ẏ = 9x2 − 1[
x
y

]
'
[
−1/3 + R cos(6t)

1/3− R sin(6t)

]

These are solutions for the original system.

The damped Duffing oscillator

The damped Duffing oscillator is given by ẋ = y and ẏ = 2x − x3 − 0.1y .
There is an equilibrium point at (

√
2, 0). There we have

J =

[
∂f /∂x ∂f /∂y
∂g/∂x ∂g/∂y

]
=

[
0 1

2− 3x2 −0.1

]
=

[
0 1
−4 −0.1

]
.

This has τ = −0.1 < 0 and δ = 4 > 0 and τ 2 − 4δ ' −16. This gives a stable
focus with growth rate λ = τ/2 = −0.05 and angular frequency
ω =
√

4δ − τ 2/2 '
√

16/2 = 2. Solutions of the linearised equations can be
found as usual using the matrix

P = eλt(cos(ωt)I + ω−1 sin(ωt)(J − λI ))

' e−0.05t

(
cos(2t)

[
1 0
0 1

]
+ 0.5 sin(2t)

[
0.05 1
−4 −0.05

])

In particular, the solution with

[√
2 + α0

0

]
at time t = 0 is given by

[
x
y

]
=

[√
2

0

]
+ e−0.05tα0

[
cos(2t) + 0.025 sin(2t)

−2 sin(2t)

]
.



The damped Duffing oscillator

ẋ = y
ẏ = 2x − x3 − 0.1y

[
x
y

]
'
[√

2
0

]
+e−0.05tα0

[
cos(2t) + 0.025 sin(2t)

−2 sin(2t)

]
.

These are solutions for the original system.

Misleading linearisation

The flow lines for a nonlinear system do not always look like the flow lines for
the linearisation. For example, consider the system[

ẋ
ẏ

]
=

[
y
−x

]
+ (x2 + y 2)

[
−x
−y

]
around the circle
towards the origin

There is an equilibrium point at (0, 0). There we have

J =

[
∂f /∂x ∂f /∂y
∂g/∂x ∂g/∂y

]
=

[
−3x2 − y 2 1− 2xy
−1− 2xy −x2 − 3y 2

]
=

[
0 1
−1 0

]
.

Linear system is ẋ = y , ẏ = −x ; solutions are circles (r cos(t), r sin(t)).
However, the solution curves for the original system are not circles.
They spiral inwards, but very slowly.

The Hartman-Grobman Theorem

In the last example:

I J was

[
0 1
−1 0

]
, with eigenvalues λ1, λ2 = ±i , so Re(λ1) = Re(λ2) = 0.

I The phase portrait for the linearisation had different properties from the
phase portrait for the original system.

Theorem: Suppose that e = (a, b) is an equilibrium point for a system
ẋ = f (x , y), ẏ = g(x , y), and that the eigenvalues for the Jacobian matrix J
satisfy Re(λ1) 6= 0 and Re(λ2) 6= 0. Then the original system is locally
topologically conjugate to the linearised system.

δ

τ

complex eigenvalues

real part < 0

complex eigenvalues

real part > 0

real eigenvalues, one < 0, one > 0

The theorem applies unless δ = 0, or (τ = 0 and δ ≥ 0).

The Hartman-Grobman Theorem

Theorem: Suppose that e = (a, b) is an equilibrium point for a system
ẋ = f (x , y), ẏ = g(x , y), and that the eigenvalues for the Jacobian matrix J
satisfy Re(λ1) 6= 0 and Re(λ2) 6= 0. Then the original system is locally
topologically conjugate to the linearised system.

Explanation:
I Recall: there is a matrix P(t) such that the solutions to u̇(t) = Ju(t) are

u(t) = P(t)u0.

I In the linearised system we have x = e + u and x0 = e + u0, so the
solutions are x(t) = e + P(t)(x0 − e).

I In other words, if we put ϕ0(x) = x − e, then the solutions to the
linearised system are x(t) = ϕ−1

0 (P(t)ϕ0(x0)).

Local topological conjugacy means that there is a function ϕ such that

I ϕ(x) is defined and continuous for x sufficiently close to e, with ϕ(e) = 0.

I ϕ−1(u) is defined and continuous for u close to 0, with ϕ−1(0) = e.

I The solutions for the original system are x(t) = ϕ−1(P(t)ϕ(x0)).

I Thus, if we apply ϕ−1 to the phase portrait for the linear system, we get
(part of) the phase portrait for the original system.

We will not prove this theorem.



Hartman-Grobman example

Here is an (unusual) example where we can find the map ϕ.
Consider the system ẋ = −x + y + 3y 2, ẏ = y .
The origin is an equilibrium, and the linearisation is ẋ = −x + y , ẏ = y , with
solution [

x
y

]
=

[
(x0 + 1

2
y0)et − 1

2
y0e
−t

y0e
t

]
.

Suppose that x and y obey the linear equations, and we put
(X ,Y ) = (x + y 2, y). Then Ẏ = Y and

Ẋ = ẋ + 2y ẏ = −x + y + 2y 2 = −x − y 2 + y + 3y 2 = −X + Y + 3Y 2,

so X and Y obey the original nonlinear equations. This means that we can
take ϕ(x , y) = (x + y 2, y) in the Hartman-Grobman Theorem.

Hartman-Grobman example

This is the phase portrait for the original system ẋ = −x + y + 3y 2, ẏ = y .

Hartman-Grobman example — zoomed in

This is the same as the previous slide, but zoomed in by a factor of 10.

This is the phase portrait for the original system ẋ = −x + y + 3y 2, ẏ = y .

Conserved quantities

Consider a system ẋ = f (x , y), ẏ = g(x , y)
A conserved quantity is a differentiable function U(x , y) such that U̇ = 0.
This means that U is constant on each flow line.

For any function U(x , y) we have

U̇(x , y) = Ux(x , y)ẋ + Uy (x , y)ẏ = Ux(x , y)f (x , y) + Uy (x , y)g(x , y)

(where Ux and Uy are the partial derivatives of U).
Thus U is conserved if Ux f + Uyg = 0.



Conserved quantities — example

Suppose ẋ = 3y and ẏ = −2x , and put U = 2x2 + 3y 2. Then

U̇ = 2× 2xẋ + 3× 2y ẏ = 4x × 3y + 6y × (−2x) = 0,

so U is a conserved quantity.

U=3.0

U=2.5

U=2.0

More generally, suppose

[
ẋ
ẏ

]
=

[
a b
−c −a

] [
x
y

]
and put U = cx2 + 2axy + by 2.

Then

U̇ = Ux ẋ + Uy ẏ = (2cx + 2ay)(ax + by) + (2ax + 2by)(−cx − ay) = 0.

Conserved quantities — example

Suppose ẋ = nx and ẏ = −my (where n and m are integers). Put U = xmyn.
Then

U̇ = mxm−1ẋyn + nyn−1ẏ xm = nmxmyn − nmxmyn = 0.

The picture shows the case n = 4, m = 3.

U=10−1

U=10−2

U=10−1

U=10−2

U=−10−1

U=−10−2

U=−10−1

U=−10−2

Conserved quantity for the Lotka-Volterra model

Recall the Lotka-Volterra model for populations of fish and sharks:
Ḟ = (α− βS)F , Ṡ = (δF − γ)S . Put

U = α ln(S) + γ ln(F )− βS − δF .

Then

U̇ = αS−1Ṡ + γF−1Ḟ − βṠ − δḞ
= α(δF − γ) + γ(α− βS)− β(δF − γ)S − δ(α− βS)F

= αδF−αγ + αγ−βγS−βδSF+βγS−αδF+βδSF

= 0,

so U is a conserved quantity.

The pendulum conserves energy

Recall the pendulum equations: θ̇ = ω, ω̇ = − sin(θ). Put

U = 1
2
ω2 − cos(θ).

Then

U̇ = 1
2
× 2ωω̇ + sin(θ)θ̇

= ω × (− sin(θ)) + sin(θ)ω = 0.

In this case, there is a clear physical interpretation: 1
2
ω2 is the rotational

kinetic energy , − cos(θ) is the gravitational potential energy , and U is the
total energy .



Conserved quantity means no nodes or foci

Proposition: If there is a conserved quantity U, there are no nodes or foci.
(Unless there is a nonempty open region where U is constant.)

Proof.

I Suppose that (a, b) is a stable node or focus.

I Consider a point (x0, y0) near (a, b).

I Then there is a solution (x(t), y(t)) with (x(0), y(0)) = (x0, y0) and
(x(t), y(t))→ (a, b) as t →∞.

I This means that U(x(t), y(t))→ U(a, b).

I However, U(x(t), y(t)) is constant because U is conserved.

I The only way this can happen is if U(x(t), y(t)) = U(a, b) for all t.

I In particular, we can take t = 0 to get U(x0, y0) = U(a, b).

I This means that for all points (x0, y0) close to (a, b) we have
U(x0, y0) = U(a, b), so U is constant on an open region.

I If there is an unstable node or focus, consider t → −∞ instead.

Saddles and centres are possible

ẋ = x , ẏ = −y
U = xy is conserved

The origin is a saddle

ẋ = −y , ẏ = x

U = x2 + y 2 is conserved
The origin is a centre

Conserved quantity with arctan

Consider the linear system where ẋ = −x − y and ẏ = x − y .

I The matrix is
[−1 −1

1 −1

]
, with τ = −2, δ = 2, τ 2 − 4δ = −4 < 0.

Eigenvalues are λ± iω with λ = −1 and ω = 1,
so we have a stable focus.

I The fundamental solution is

P = eλt
(

cos(ωt)I + ω−1 sin(ωt)(A− λI )
)

= e−t (cos(t) [ 1 0
0 1 ] + sin(t)

[
0 −1
1 0

])
= e−t

[
cos(t) − sin(t)
sin(t) cos(t)

]
I Solution starting at [ r

0 ] is [ xy ] = P [ r
0 ] =

[
re−t cos(t)

re−t sin(t)

]
.

I Put V = arctan(y/x) and W = 1
2

ln(x2 + y 2) and U = V + W . Claim: U
is conserved.

Conserved quantity with arctan

ẋ = −x − y ẏ = x − y

U = V + W V = arctan(y/x) W = 1
2

ln(x2 + y 2)

Recall that arctan′(z) = 1/(1 + z2). Using this, we get

V̇ = arctan′(y/x)
d

dt
(y/x) =

1

1 + y 2/x2

ẏ x − y ẋ

x2

=
(x − y)x − y(−x − y)

x2 + y 2
=

x2 + y 2

x2 + y 2
= 1

Ẇ =
1

2

1

x2 + y 2

d

dt
(x2 + y 2) =

2xẋ + 2y ẏ

2(x2 + y 2)

=
x(−x − y) + y(x − y)

x2 + y 2
=
−x2 − y 2

x2 + y 2
= −1

U̇ = V̇ + Ẇ = 1− 1 = 0.



Conserved quantity with arctan

ẋ = −x − y ẏ = x − y

U = V + W V = arctan(y/x) W = 1
2

ln(x2 + y 2)

We saw that the solution starting at (r , 0) is
x = re−t cos(t) and y = re−t sin(t). For this we have

y/x =
re−t sin(t)

re−t cos(t)
=

sin(t)

cos(t)
= tan(t)

arctan(y/x) = arctan(tan(t)) = t

x2 + y 2 = r 2e−2t(cos2(t) + sin2(t)) = r 2e−2t

1
2

ln(x2 + y 2) = ln(r)− t

U = arctan(y/x) + 1
2

ln(x2 + y 2) = t + (ln(r)− t) = ln(r).

As expected, this does not depend on t.

Conserved quantity with arctan

I We said that if there is a continuous, well-defined conserved quantity, then
there can only be saddles and centres, not nodes or foci.

I In this example we have a conserved quantity and a stable focus. So what
is wrong?

I The point is that U is not really well-defined (because you can add
multiples of π to the arctan term). We can make try to make it
well-defined by always taking the value of arctan that lies in (−π/2, π/2].
However, with this convention, U is discontinuous when y = 0. Also, U
will always be discontinuous at the point (0, 0), whatever convention we
make. The theorem only covers the case where U is well-defined and
continuous, so there is no contradiction.

Lyapunov functions

Definition: Consider a differentiable function V (x , y), defined on some open
region R containing a point (a, b).
I If V (x , y) ≥ 0 for all (x , y), we say that V is positive semi-definite.
I If V (a, b) = 0 but V (x , y) > 0 for all (x , y) 6= (a, b), we say that V is

positive definite around (a, b).
I If V (x , y) ≤ 0 for all (x , y), we say that V is negative semi-definite.
I If V (a, b) = 0 but V (x , y) < 0 for all (x , y) 6= (a, b), we say that V is

negative definite around (a, b).

Now suppose that x and y change following the equations ẋ = f (x , y) and
ẏ = g(x , y), so for any function V (x , y) we have V̇ = Vx f + Vyg . Suppose
also that f (0, 0) = g(0, 0) = 0, so (0, 0) is an equilibrium point.
I If V is positive definite and V̇ is negative semidefinite, we say that V is a

weak Lyapunov function.
I If V is positive definite and V̇ is negative definite, we say that V is a

strong Lyapunov function.
I If there is a strong Lyapunov function, then the origin is an asymptotically

stable equilibrium point.
I If there is a weak Lyapunov function, then the origin is an stable

equilibrium point, but may not be asymptotically stable.
I Note: any positive definite conserved quantity is a weak Lyapunov

function.

Contours of a Lyapunov function

V=1

V=2

V=3

V=4

The blue lines are the contours for a function V (x , y).

These red lines show a flow that cuts across the contours going downwards, so
V decreases as we move along this flow. The function V could be a Lyapunov
function for this flow. These red lines show a flow that cuts across the
contours going upwards, so V increases as we move along this flow. The
function V could not be a Lyapunov function for this flow. These red lines
show a flow that cuts across the contours sometimes going upwards and
sometimes going downwards. As we move along the flow, V sometimes
increases and sometimes decreases. The function V could not be a Lyapunov
function for this flow. These red lines show a flow that cuts across the
contours at a shallow angle. As we move along the flow, the function V
decreases, but only slowly.



Definiteness for quadratic functions

Consider a quadratic function Q = ax2 + 2bxy + cy 2.

(a) If ac − b2 > 0 then a and c are nonzero and have the same sign.

(b) If ac − b2 > 0 and a, c > 0 then Q is positive definite.

(c) If ac − b2 > 0 and a, c < 0 then Q is negative definite.

(d) If ac − b2 ≤ 0 then Q is neither positive definite nor negative definite.

Proof:

(a) If a = 0 or c = 0 or a, c have opposite sign then ac ≤ 0 so ac − b2 ≤ 0.
Thus, if ac − b2 > 0 then a and c must be nonzero with the same sign.

(b) Suppose that ac − b2 > 0 with a, c > 0. We then find that

a−1((ax + by)2 + (ac − b2)y 2) = a−1(a2x2 + 2abxy + b2y 2 + acy 2 − b2y 2)

= ax2 + 2bxy + cy 2 = Q.

This representation makes it clear that Q ≥ 0. Moreover Q can only be
equal to 0 if ax + by = 0 and y = 0, which means that x = y = 0.
Thus, Q is positive definite.

(c) Suppose instead that ac − b2 > 0 with a, c < 0.
We can then use (b) to show that −Q is positive definite,
and this means that Q is negative definite.

Definiteness for quadratic functions

Consider a quadratic function Q = ax2 + 2bxy + cy 2.

(a) If ac − b2 > 0 then a and c are nonzero and have the same sign.

(b) If ac − b2 > 0 and a, c > 0 then Q is positive definite.

(c) If ac − b2 > 0 and a, c < 0 then Q is negative definite.

(d) If ac − b2 ≤ 0 then Q is neither positive definite nor negative definite.

Proof continued:

(d) Now suppose that ac − b2 ≤ 0. We need to show that Q is indefinite, so
we need to find a point (x , y) 6= (0, 0) where Q = 0. If a 6= 0 we note that
x = (−b +

√
b2 − ac)/a is a root of ax2 + 2bx + c = 0, so Q = 0 at

(x , 1). Similarly, if c 6= 0 then y = (−b +
√
b2 − ac)/c is a root of

a + 2by + cy 2 = 0, so Q = 0 at (1, y). This just leaves the case where
a = c = 0 and Q = 2bxy , so Q = 0 at (1, 0) or (0, 1).

Lyapunov function for the slow spiral

Remember this system[
ẋ
ẏ

]
=

[
y
−x

]
+ (x2 + y 2)

[
−x
−y

]
around the circle
towards the origin

The linearisation is (ẋ , ẏ) = (y ,−x), which has a centre, so it is not
asymptotically stable. But the original system is asymptotically stable. We can
prove this with a Lyapunov function.

Lyapunov function for the slow spiral

[
ẋ
ẏ

]
=

[
y
−x

]
+ (x2 + y 2)

[
−x
−y

]
around the circle
towards the origin

Put V = x2 + y 2.
Then V > 0 except V = 0 at (0, 0), so V is positive definite.

V̇ = Vx ẋ + Vy ẏ

= 2x(y − (x2 + y 2)x) + 2y(−x − (x2 + y 2)y)

= 2xy − 2x2(x2 + y 2)− 2xy − 2y 2(x2 + y 2)

= −2(x2 + y 2)2, which is negative definite.

So V is a strong Lyapunov function around (0, 0), so (0, 0) is an asymptotically
stable equilibrium point.
In fact V̇ = −V 2 gives d

dt
(V−1) = −V−2V̇ = 1

so V−1 = V−1
0 + t so V = (V−1

0 + t)−1 = V0/(1 + V0t).



Lyapunov function for the pendulum

Recall the pendulum equations: θ̇ = ω, ω̇ = − sin(θ).
The energy U = 1

2
ω2 − cos(θ) is conserved.

Note that U = −1 when (ω, θ) = (0, 0). However, we always have
1− cos(θ) ≥ 0, so the function V = U + 1 = 1

2
ω2 + 1− cos(θ) is positive

semi-definite. We only have V = 0 when (θ, ω) = (2nπ, 0) for some integer n.
If we consider only the region

R = {(θ, ω) | − 2π < θ < 2π}

then V is positive definite. It also has V̇ = 0, so it is a weak Lyapunov function.
Flow lines near the origin do not converge to the origin, so the origin is not
asymptotically stable, so there is no strong Lyapunov function.

Lyapunov function for a gradient flow

Consider the system ẋ = x − x3, ẏ = y − y 3, and the function

V = (x2 − 1)2 + (y 2 − 1)2 = x4 − 2x2 + y 4 − 2y 2 − 2.

This has V ≥ 0 everywhere, and V is only equal to 0 at the points (±1,±1).
It also satisfies

V̇ = Vx f +Vyg = (4x3−4x)(x−x3)+(4y 3−4y)(y−y 3) = −4((x−x3)2+(y−y 3)2).

This means that V̇ ≤ 0 everywhere, and V̇ is only equal to 0 if x − x3 = 0 and
y − y 3 = 0, which means that x , y ∈ {0, 1,−1}.
Now consider only the region R = {(x , y) | x > 0 and y > 0}. In R we have
V > 0 except at (1, 1), and V̇ < 0 except at (1, 1). Thus, V is a strong
Lyapunov function for the equilibrium point (1, 1).

Lyapunov function for the damped Duffing oscillator

The (damped) oscillator has ẋ = y and ẏ = 2x − x3 − εy for some ε ≥ 0.
Previously we considered ε = 0 (undamped) and ε = 0.1 (damped).
Now consider the function

V = 2y 2 + x4 − 4x2 + 4 = 2y 2 + (x2 − 2)2.

This always has V ≥ 0, with V = 0 only at (±
√

2, 0).
Region R = {(x , y) | x > 0}: the function V is positive definite for (

√
2, 0).

We also have

V̇ = 4y ẏ + 4x3ẋ − 8xẋ = 4y(2x − x3 − εy) + 4x3y − 8xy = −4εy 2.

This means that V̇ ≤ 0 everywhere, with V̇ = 0 only when y = 0. In
particular, V is negative semidefinite on R, so it is a weak Lyapunov function.
We deduce that (

√
2, 0) is a stable equilibrium point. In fact, we can use more

complicated properties of V to show that (
√

2, 0) is even asymptotically stable.
Note also that when ε = 0 we have V̇ = 0, so V is a conserved quantity for the
undamped Duffing oscillator.

Lyapunov function for the damped Duffing oscillator

ẋ = y ẏ = 2x − x3 − εy V = 2y 2 + (x2 − 2)2 V̇ = −4εy 2

In this example, V̇ is quite small, so the flow lines cross the lines of constant V
at a shallow angle, so it is hard to draw a clear picture.



Damped Duffing is asymptotically stable

x

y

t

V

x

y

Recall that V̇ = −4εy 2, and this is the slope of the green graph of V against t.
The blue graph shows y against t.
When y 6= 0, we have V̇ < 0 and the green graph slopes downwards.
When y = 0 we have V̇ = 0 and the green graph is flat.
This only happens for an instant before y becomes nonzero again and the
green graph continues to decrease.

Damped Duffing is asymptotically stable

Here is the same picture for a longer time:

This shows that the flow line converges to the equilibrium point (
√

2, 0) where
V = 0.

Another Lyapunov example

Suppose that ẋ = x2 − y 2 − 1
4
, ẏ = 2xy , so there are equilibria at (± 1

2
, 0).

Put V = (x + 1
2
)2 + y 2, which is positive definite around (− 1

2
, 0).

Then

V̇ = 2(x + 1
2
)ẋ + 2y ẏ = 2(x + 1

2
)(x2 − y 2 − 1

4
) + 4xy 2

= 2(x + 1
2
)(x2 − 1

4
) + (4x − 2(x + 1

2
))y 2 = 2(x + 1

2
)2(x − 1

2
) + (2x − 1)y 2

= (2x − 1)((x + 1
2
)2 + y 2).

This is negative definite on the region R = {(x , y) | x < 1
2
}.

It follows that (− 1
2
, 0) is asymptotically stable.

Finding a Lyapunov function

I Consider the system ẋ = 80(y 15 − x9), ẏ = −77(x13 + y 11).

I There is an equilibrium point at the origin.

I How can we find a Lyapunov function? Guess the general form, and then
adjust the coefficients.

I Try V = αx2n + βy 2m with α, β, n,m > 0, where n and m are integers.
This is always positive definite, and we want to choose α, β, n,m to make
sure that V̇ is negative definite.

V̇ = Vx ẋ + Vy ẏ

= 2nαx2n−1.80(y 15 − x9)− 2mβy 2m−1.77(x13 + y 11)

= −160nαx2n+8 − 154βy 2m+10 + 160nαx2n−1y 15 − 154βx13y 2m−1

The first two terms give a negative definite function. The other two terms can
be positive or negative depending on the signs of x and y . To make the whole
thing negative definite, we need the last two terms to cancel.



Finding a Lyapunov function

ẋ = 80(y 15 − x9) ẏ = −77(x13 + y 11) V = αx2n + βy 2m

V̇ = −160nαx2n+8 − 154βy 2m+10 + 160nαx2n−1y 15 − 154βx13y 2m−1

The last two terms should cancel, so we want

160nα = 154mβ 2n − 1 = 13 15 = 2m − 1

so n = 7 and m = 8.
Putting this in 160nα = 154mβ gives α = 154×8

160×7
β = 11

10
β so we can choose

α = 11 and β = 10.
We conclude that the function V = 11x14 + 10y 16 is a strong Lyapunov
function.

Lyapunov method for instability

So far we have used Lyapunov functions to prove that points are stable.

We now give a similar method to prove that points are unstable.

Theorem: Let V be a differentiable function defined on some open region R
containing an equilibrium point (a, b). Suppose that V̇ is positive definite, and
that for all ε > 0 there is a point (x , y) with ‖(x , y)− (a, b)‖ ≤ ε and
V (x , y) > 0. Then (a, b) is unstable.

In particular:
If both V and V̇ are positive definite around (a, b), then (a, b) is unstable.

Instability for a linear saddle

If V̇ is positive definite, and for all ε > 0 there is a point where
‖(x , y)− (a, b)‖ ≤ ε and V > 0, then (a, b) is unstable.

Consider the system ẋ = x , ẏ = −y , which has a saddle at (0, 0).
Put V = x2 − y 2. Then

V̇ = 2xẋ − 2y ẏ = 2x2 + 2y 2,

which is positive definite. Also, for any ε > 0 there is a point (0, ε) with
‖(ε, 0)− (0, 0)‖ = ε and V = ε2 > 0. Thus, (0, 0) is unstable.

V<0

V<0

V>0 V>0

Instability for a gradient flow

Consider the system ẋ = x − x3, ẏ = y − y 3, and the function V = x2 + y 2.
This is positive definite around (0, 0). We also have

V̇ = 2xẋ + 2y ẏ = 2x(x − x3) + 2y(y − y 3) = 2x2(1− x2) + 2y 2(1− y 2).

This is positive definite on the region

R = {(x , y) | − 1 < x , y < 1},

so the origin is an unstable equilibrium.



van der Pol instability

Consider the van der Pol oscillator, with ẋ = y and ẏ = 2(1− x2)y − x . Put

V = x2 − xy + y 2 = 3
4
(x − y)2 + 1

4
(x + y)2,

so V is positive definite. We also have

V̇ = (2x − y)ẋ + (2y − x)ẏ = (2x − y)y + (2y − x)(2y − 2x2y − x)

= 2xy − y 2 + 4y 2 − 4x2y 2 − 2xy − 2xy + 2x3y + x2

= x2 − 2xy + 3y 2 + 2x3y − 4x2y 2 = (x − y)2 + 2y 2 + (2x3y − 4x2y 2).

Now let R be a small square around (0, 0), say R = {(x , y) | |x |, |y | < 10−2}.
If (x , y) ∈ R and (x , y) 6= (0, 0) then (x − y)2 + 2y 2 will be strictly positive.
The other term 2x3y − 4x2y 2 might be negative, but it is smaller by a factor of
about 10−4, so it cannot cancel out the first term and we see that V̇ > 0. This
shows that V and V̇ are both positive definite on R, so (0, 0) is an unstable
equilibrium.

van der Pol instability

ẋ = y , ẏ = 2(1−x2)y−x V = x2−xy+y 2 V̇ = x2−2xy+3y 2+2x3y−4x2y 2.

For a more careful argument, we can check by expanding everything out that

V̇ = (3− 4x2)−1
(

((3− 4x2)y + (x3 − x))2 + x2(3− (1 + x2)2)
)
.

Suppose that |x | <
√√

3− 1 ' 0.855.

Then 3− 4x2 > 3− 4(
√

3− 1) ' 0.072 > 0,
and 1 + x2 <

√
3 so 3− (1 + x2)2 > 0.

Moreover, squares are always nonnegative, so ((3− 4x2)y + (x − x3))2 ≥ 0.

Putting this together, we see that V̇ ≥ 0. After examining the above equation
more closely, we also see that V̇ can only be zero if (x , y) = (0, 0), so V̇ (as

well as V ) is positive definite on the region R ′ = {(x , y) | |x | <
√√

3− 1}.
We again see that the origin is an unstable equilibrium.

van der Pol instability — phase portrait

Second order linear differential equations



Second order linear equations

We will consider differential equations of the form

Ay ′′ + By ′ + Cy = 0,

where A, B, C and y are functions of x , and y ′ means dy/dx . Examples:

I If A, B and C are constant then the solutions are like y = Peλx + Qeµx or
y = eλx(P cos(ωx) + Q sin(ωx)).

I Bessel’s equation x2y ′′ + xy ′ + (x2 − n2)y = 0 (where n is constant).
(This is relevant for many problems with circular symmetry, such as
vibrations of a drum, or signals in an optic fibre.)

I The Legendre equation (1− x2)y ′′ − 2xy ′ + n(n + 1)y = 0.

I The Airy equation y ′′ − (x − λ)y = 0, which is related to the optics of
rainbows.

I The Hermite equation y ′′ − 2xy ′ + 2ny = 0, which is related to the
normal distribution in statistics.

We will use

I Power series methods.

I Sturm-Liouville theory: eigenvalues of self-adjoint differential operators.

Reminder of the constant coefficient case

Consider the equation y ′′ + Py ′ + Qy = 0, where P and Q are constant.
We look for solutions of the form y = eλx . Then y ′ = λeλx and y ′′ = λ2eλx so

y ′′ + Py ′ + Qy = λ2eλx + Pλeλx + Qeλx = p(λ)eλx ,

where p(t) = t2 + Pt + Q is the auxiliary polynomial.

(a) If P2 − 4Q > 0 then there are two distinct real roots, say λ and µ. We
then have solutions y = Aeλx + Beµx , where A and B can be any
constants.

(b) If P2 − 4Q < 0 then there are two distinct complex roots, say λ+ iω and
λ− iω. This gives solutions u = e(λ+iω)x and v = e(λ−iω)x . However, it is
more convenient to use the combinations

(u + v)/2 = eλx cos(ωx) (u − v)/(2i) = eλx sin(ωx).

Any solution can be written as y = eλx(A cos(ωx) + B sin(ωx)) for some
constants A and B.

Reminder of the constant coefficient case

Consider the equation y ′′ + Py ′ + Qy = 0, where P and Q are constant.
We look for solutions of the form y = eλx . Then y ′ = λeλx and y ′′ = λ2eλx so

y ′′ + Py ′ + Qy = λ2eλx + Pλeλx + Qeλx = p(λ)eλx ,

where p(t) = t2 + Pt + Q is the auxiliary polynomial.

(c) If P2 − 4Q = 0 then there is only one root λ = −P/2,
and the differential equation is y ′′ − 2λy ′ + λ2y = 0.
To understand this equation, put y = eλxz . We then have

y ′ = λeλxz + eλxz ′ = eλx(z ′ + λz)

y ′′ = λeλx(z ′ + λz) + eλx(z ′′ + λz ′) = eλx(z ′′ + 2λz ′ + λ2z),

so
y ′′ + Py ′ + Qy = eλx(z ′′ + (2λ+ P)z ′ + (λ2 + Pλ+ Q)z).

However, 2λ+ P = 0 and λ2 + Pλ+ Q = 0 so y ′′ + Py ′ + Qy = eλxz ′′,
so the differential equation is equivalent to z ′′ = 0. This means that
z = Ax + B and y = eλx(Ax + B) for some constants A and B.

Power series for constant coefficient case

Consider again y ′′ + Py ′ + Qy = 0, and suppose that the auxiliary polynomial
p(t) = t2 + Pt + Q has two distinct roots λ and µ.
Any solution has the form y = Aeλx + Beµx .
Using ex =

∑
k x

k/k!, this becomes

y =
∑
k

(
A
λkxk

k!
+ B

µkxk

k!

)
=
∑
k

Aλk + Bµk

k!
xk .

We can also find similar formulae for the case when p(t) has two complex
roots, or one repeated root. Later we will explain how to find power series
solutions even when P is not constant.



Questions: standard power series

1 + x + x2 + x3 + · · · =

1/(1− x)

1 + 10x +
100x2

2
+

1000x3

6
+ · · · =

e10x

x − x3

3!
+

x5

5!
− x7

7!
+ · · · =

sin(x)

x − x2

2
+

x3

3
− x4

4
+ · · · =

ln(1 + x)

1− π2x2

2!
+
π4x4

4!
− π6x6

6!
+ · · · =

cos(πx)

1− πx + π2x2 − π3x3 + π4x4 + · · · =

1/(1 + πx)

1 + 2x + 3x2 + 4x3 + 5x4 + · · · =

1/(1− x)2

1

10
+

x

100
+

x2

1000
+

x3

10000
+ · · · =

1/(10− x)

Bessel’s equation

Consider x2y ′′ + xy ′ + (x2 − n2)y = 0 where n is a natural number.
We will see that there are two basic solutions, Jn(x) and Yn(x).

J4(x) J4(x),Y4(x)

. .

J4(x) ' 1
384

x4 − 1
7680

x6 + 1
368640

x8 − · · ·

'
√

2

πx
cos
(
x − 9

π

4

)
Every solution has the form y = AJn(x) + BYn(x) for constants A and B.

Drum

Modes of vibration of a drum of radius 1 are given by

z = A sin(t) cos(nθ)Jn(ank r),

where (r , θ) are polar coordinates and ank is the k’th root of Jn(x).

The movie shows the case where n = 2 and k = 3, so
z = A sin(t) cos(3θ)J3(a32r).

Legendre’s equation

Consider (1− x2)y ′′ − 2xy ′ + n(n + 1)y = 0 where n is a natural number.
We will see that there are two basic solutions, Pn(x) and Qn(x).

P4(x)

. . . .

P4(x) = 35
8
x4 − 15

4
x2 + 3

8
Q4(x) =

(
35
16
x4 − 15

8
x2 + 3

16

)
ln

(
x + 1

x − 1

)
− 35

8
x3 + 55

24
x



Legendre polynomials — orthogonality

Whenever n and m are different we have

∫ 1

−1

Pn(x)Pm(x) dx = 0.

Example:

P2(x) P4(x) P2(x)P4(x)

This is similar to the fact that

∫ 2π

0

sin(nx) sin(mx) dx = 0 for n 6= m,

which is the basis of Fourier theory.

We will show that solutions of many other linear second order differential
equations have similar orthogonality properties.

Alternating roots

The roots of Pk(x) alternate with the roots of Pk+1(x).

P1(x)

P2(x)

P3(x)

P4(x) P5(x)

This is not just a special property of Legendre functions; it is a fairly general
feature of linear second order differential equations.

Rotation

As x runs from −1 to 1, the point (P5(x), (1− x2)P ′5(x)) rotates around the
origin through an angle of 5π.

x

P5(x)

(1−x2)P′5(x)

P5(x)

(1−x2)P′5(x)

P5(x) =
1

8

(
15x − 70x3 + 63x5

)
(1 − x2)P′5(x) =

1

8

(
15 − 225x2 + 525x4 − 315x6

)

Rotation around the origin

As x runs from −1 to 1, the point (Pk(x), (1− x2)P ′k(x)) rotates around the
origin through an angle of kπ.

(P5(x), (1− x2)P ′5(x)) rotates through an angle of 5π.

This is not just a special property of Legendre functions; it is a fairly general
feature of linear second order differential equations.



The Hermite equation

Consider y ′′ − 2xy ′ + 2ny = 0 where n is a natural number.
We will see that there is a polynomial solution Hn(x).

The function e−x2/2Hn(x) is also important.

H3(x) e−x2/2H3(x)

H0(x) = 1 H1(x) = 2x

H2(x) = 4x2 − 2 H3(x) = 8x3 − 12x

Hermite polynomials — orthogonality

Whenever n and m are different we have

∫ ∞
−∞

e−x2Hn(x)Hm(x) dx = 0.

Example:

e−x2/2H1(x) e−x2/2H3(x) e−x2H1(x)H3(x)

This is similar to the fact that

∫ 2π

0

sin(nx) sin(mx) dx = 0 for n 6= m,

which is the basis of Fourier theory.

We will show that solutions of many other linear second order differential
equations have similar orthogonality properties.

Power series solutions — first few terms

Consider an equation y ′′ + Py ′ + Qy = 0.
Suppose that y , P and Q are given by convergent power series:

y = a0+a1x+a2x
2+· · · P = p0+p1x+p2x

2+· · · Q = q0+q1x+q2x
2+· · ·

Then

y ′′ = 2a2 + 6a3x + · · ·

Py ′ = (p0 + p1x + p2x
2)(a1 + 2a2x) + · · · = p0a1 + (p1a1 + 2p0a2)x + · · ·

Qy = (q0 + q1x + q2x
2)(a0 + a1x + a2x

2) + · · · = q0a0 + (q0a1 + q1a0)x + · · ·

y ′′+Py ′+Qy = (2a2 + p0a1 + q0a0)+(6a3 + p1a1 + 2p0a2 + q0a1 + q1a0)x+· · · .

Thus, for the differential equation to hold we must have

2a2 + p0a1 + q0a0 = 0

6a3 + p1a1 + 2p0a2 + q0a1 + q1a0 = 0 or

a2 = − 1
2
(p0a1 + q0a0)

a3 = − 1
6
(p1a1 + 2p0a2 + q0a1 + q1a0).

Here a0 and a1 are arbitrary, and they determine a2, a3 and so on.

Multiplication of power series

Q = q0 + q1x + q2x
2 + q3x

3 + q4x
4 + · · ·

y = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + · · ·

Qy =

q0a0 +q0a1x +q0a2x
2 +q0a3x

3 +q0a4x
4

+q1a0x +q1a1x
2 +q1a2x

3 +q1a3x
4 +q1a4x

5

+q2a0x
2 +q2a1x

3 +q2a2x
4 +q2a3x

5 +q2a4x
6

+q3a0x
3 +q3a1x

4 +q3a2x
5 +q3a3x

6 +q3a4x
7

+q4a0x
4 +q4a1x

5 +q4a2x
6 +q4a3x

7 +q4a4x
8

+ · · ·

= q0a0+(q0a1 + q1a0)x+(q0a2 + q1a1 + q2a0)x2+(q0a3 + q1a2 + q2a1 + q3a0)x3+· · ·

=
∞∑
n=0

(
n∑

i=0

qian−i

)
xn.



Power series solutions — all terms

Consider an equation y ′′ + Py ′ + Qy = 0.
Suppose that y , P and Q are given by convergent power series:

y =
∞∑
k=0

akx
k P =

∞∑
k=0

pkx
k Q =

∞∑
k=0

qkx
k .

Then we have convergent power series for all terms in the differential equation:

y ′ =
∞∑
k=0

k ak x
k−1 =

∞∑
j=0

(j + 1) aj+1 x
j (reindexing with j = k − 1)

y ′′ =
∞∑
k=0

(k − 1)k ak x
k−2 =

∞∑
j=0

(j + 1)(j + 2) aj+2 x
j

Qy =
∞∑

n,m=0

qnamx
n+m =

∞∑
j=0

(
j∑

n=0

qnaj−n

)
x j

Py ′ =
∞∑

n,m=0

pn(m + 1)am+1x
n+m =

∞∑
j=0

(
j∑

n=0

(j − n + 1)pnaj−n+1

)
x j .

Power series solutions — all terms

y ′′ =
∑∞

j=0(j + 1)(j + 2) aj+2 x
j

Py ′ =
∑∞

j=0

(∑j
n=0(j − n + 1)pnaj−n+1

)
x j

Qy =
∑∞

j=0

(∑j
n=0 qnaj−n

)
x j .

Consider the coefficient of x j in y ′′ + Py ′ + Qy = 0:

(j + 1)(j + 2)aj+2 +

(
j∑

n=0

(j − n + 1)pnaj−n+1

)
+

(
j∑

n=0

qnaj−n

)
= 0

so

aj+2 =
−1

(j + 1)(j + 2)

(
j∑

n=0

(j − n + 1)pnaj−n+1 +

j∑
n=0

qnaj−n

)
Note that only a0, . . . , aj+1 appear on the right hand side.

Thus a0 and a1 are arbitrary,
but a2, a3, a4, . . . are determined inductively by the above formula.

A note on indexing

Suppose we have a series like

f (x) =
∞∑
k=0

akx
k = a0 + a1x + a2x

2 + · · · .

We usually define ak = 0 for k < 0, so

a−1 = a−2 = a−3 = · · · = 0.

With this convention, we have

f (x) =
∞∑
k=0

akx
k =

∞∑
k=−∞

akx
k = · · ·+a−2x

−2 +a−1x
−1 +a0 +a1x +a2x

2 + · · · .

(When k < 0 the terms akx
k are zero, so it does not matter whether we

include them or not.)

This will simplify various formulae, because we do not need to remember where
the series starts.

Power series solutions — simple example

Consider the equation y ′′ + y = 0 with y = 1, y ′ = 0 at x = 0.

y =
∑
i

aix
i = a0 + a1x + a2x

2 + a3x
3 + a4x

4 + · · ·

y ′ =
∑
i

i aix
i−1 = a1 + 2a2x + 3a3x

2 + 4a4x
3 + · · ·

y ′′ =
∑
i

(i − 1)i aix
i−2 = 2a2 + 6a3x + 12a4x

2 + · · ·

=
∑
j

(j + 1)(j + 2)aj+2x
j (reindexing with j = i − 2)

y ′′ + y =
∑
j

(aj + (j + 1)(j + 2)aj+2)x j .

At x = 0 we have y = a0 and y ′ = a1, so a0 = 1 and a1 = 0.

For the differential equation y ′′ + y = 0 to hold, we must have
aj + (j + 1)(j + 2)aj+2 = 0, so

aj+2 =
−1

(j + 1)(j + 2)
aj .



Power series solutions — simple example

y ′′ + y = 0, y =
∑
i

aix
i , a0 = 1, a1 = 0, aj+2 =

−aj
(j + 1)(j + 2)

.

a0 = 1 a1 = 0

a2 =
−a0

1× 2
= −1

2
=
−1

2!
a3 =

−a1
2× 3

= 0

a4 =
−a2

3× 4
= +

1

24
=

+1

4!
a5 =

−a3
4× 5

= 0

a6 =
−a4

5× 6
= − 1

720
=
−1

6!
a7 =

−a5
6× 7

= 0

a2p =
(−1)p

(2p)!
a2p+1 = 0

So

y = 1− 1

2
x2 +

1

24
x4 − 1

720
x6 + · · · =

∞∑
p=0

(−1)p

(2p)!
x2p = cos(x).

Power series solution — another example

Consider (x − 1)y ′′ + 2y ′ = 0, with y = y ′ = 1 when x = 0.
Rewrite as y ′′ − 2y ′/(1− x) = 0.

y =
∑
i

aix
i = a0 + a1x + a2x

2 + a3x
3 + · · ·

y ′ =
∑
i

i aix
i−1 = a1 + 2a2x + 3a3x

2 + · · · =
∑
j

(j + 1)aj+1x
j

y ′′ =
∑
i

i(i − 1) aix
i−2 = 2a2 + 6a3x + · · · =

∑
n

(n + 1)(n + 2)an+2x
n

1/(1− x) =
∑
i

x i (geometric progression )

2y ′/(1− x) = 2
∑
i

x i
∑
j

(j + 1) aj+1x
j = 2

∑
i,j

(j + 1) aj+1x
i+j

=
∑
n

xn
n∑

j=0

2(j + 1) aj+1.

For the equation y ′′ − y ′/(1− x) to hold, we must have

(n + 1)(n + 2)an+2 =
n∑

j=0

2(j + 1) aj+1.

Power series solution — another example

Consider (x − 1)y ′′ + 2y ′ = 0, with y = y ′ = 1 when x = 0.
y =

∑
i aix

i with (n + 1)(n + 2)an+2 =
∑n

j=0 2(j + 1) aj+1.

At x = 0 we have y = a0 and y ′ = a1, but also y = y ′ = 1, so a0 = a1 = 1.
Take n = 0 in (n + 1)(n + 2)an+2 =

∑n
j=0 2(j + 1) aj+1 to get

2a2 =
0∑

j=0

2(j + 1)aj+1 = 2a1 = 2 a2 = 1

6a3 =
1∑

j=0

2(j + 1)aj+1 = 2a1 + 4a2 = 6 a3 = 1

12a4 =
2∑

j=0

2(j + 1)aj+1 = 2a1 + 4a2 + 6a3 = 12 a4 = 1

20a5 =
3∑

j=0

2(j + 1)aj+1 = 2a1 + 4a2 + 6a3 + 8a4 = 20 a5 = 1.

It looks like ak = 1 for all k.

Power series solution — another example

(x − 1)y ′′ + 2y ′ = 0, y =
∑

i aix
i with a0 = a1 = 1 and

(n + 1)(n + 2)an+2 =
∑n

j=0 2(j + 1) aj+1.

Claim: ak = 1 for all k.

Proof by induction : We are given that a0 = a1 = 1.
Suppose we already know that a0 = · · · = an+1 = 1. Then

(n + 1)(n + 2)an+2 =
n∑

j=0

2(j + 1)aj+1 =
n∑

j=0

2(j + 1).

This is an arithmetic progression .
There are n + 1 terms, from 2 to 2(n + 1).
The average is 1

2
(2 + 2(n + 1)) = n + 2, so the total is (n + 1)(n + 2).

We therefore have (n + 1)(n + 2)an+2 = (n + 1)(n + 2), so an+2 = 1.

This gives y =
∑

k akx
k =

∑
k x

k = 1/(1− x).

Check: y ′ = 1/(1− x)2, y ′′ = 2/(1− x)3,

(x − 1)y ′′ + 2y ′ = (x − 1)
2

(1− x)3
+

2

(1− x)2
=

−2

(1− x)2
+

2

(1− x)2
= 0.



Radius of convergence

Consider a series f (x) =
∑∞

k=0 ckx
k .

I There is a number R with 0 ≤ R ≤ ∞, called the radius of convergence.

I If |x | < R then the series
∑∞

k=0 ckx
k converges.

I If |x | > R then the series
∑∞

k=0 ckx
k does not converge.

I If |x | = R then the series
∑∞

k=0 ckx
k may or may not converge.

I The derivative is f ′(x) =
∑∞

k=0(k + 1) ck+1x
k , and this has the same

radius of convergence as f (x).

Most common ways to find R:

(a) If the sequence |ak |/|ak+1| has a limit, then that limit is R.
(only meaningful if ak 6= 0 for all k > k0).

(b) If a2k+1 = 0 and |a2k |/|a2k+2| has a limit, then that limit is R2.

(c) If a2k = 0 and |a2k+1|/|a2k+3| has a limit, then that limit is R2.

Examples:

(a) ex =
∑

k
xk

k!
, ak = 1

k!
, |ak |
|ak+1|

= (k+1)!
k!

= k + 1→∞, so R =∞.

(b) 1
1+2x2

=
∑

k(−2x2)k , a2k = (−2)k , a2k+1 = 0, |a2k |
|a2k+2|

= 1
2
, so R = 1√

2
.

(c) ln
(

1+x
1−x

)
=
∑

k
2

2k+1
x2k+1, a2k = 0, a2k+1 = 2

2k+1
,

|a2k+1|
|a2k+3|

= 2k+3
2k+1

= 1 + 2
2k+1

→ 1, so R = 1.

Airy’s equation

Airy’s equation is y ′′ − xy = 0.

This is George Biddell Airy. He was the British Astronomer Royal from 1835 to
1881. Among his many achievements, he measured the mass of Jupiter, and
found small corrections to the orbit of Venus, and to the theory of the rainbow.
He established the Prime Meridian (zero degrees of latitude) through the Royal
Greenwich Observatory in London. This crater on Mars is named after him.

Airy’s equation

Airy’s equation is y ′′ − xy = 0.

y =
∑
i

aix
i = a0 + a1x + a2x

2 + a3x
3 + · · ·

xy =
∑
i

aix
i+1 = a0x + a1x

2 + a2x
3 + a3x

4 + · · · =
∑
n

an−1x
n

y ′′ =
∑
i

i(i − 1) aix
i−2 = 2a2 + 6a3x + · · · =

∑
n

(n + 1)(n + 2)an+2x
n.

For the equation y ′′− xy = 0 to hold, we must have (n+ 1)(n+ 2)an+2 = an−1,
or equivalently (m + 2)(m + 3)am+3 = am, or am+3 = am/((m + 2)(m + 3)).
(Special case: the constant term in y ′′ − xy = 0 gives a2 = 0.)

a3 =
a0
2.3

a4 =
a1
3.4

a5 =
a2
4.5

= 0

a6 =
a3
5.6

=
a0

2.3.5.6
a7 =

a4
6.7

=
a1

3.4.6.7
a8 =

a5
7.8

= 0

a9 =
a6
8.9

=
a0

2.3.5.6.8.9
a10 =

a7
9.10

=
a1

3.4.6.7.9.10
a11 =

a8
10.11

= 0

Airy’s equation

Airy’s equation is y ′′ − xy = 0, where y =
∑

k akx
k .

a3=
a0
2.3

a4=
a1

1.3.4
a5= 0

a6=
a0

2.3.5.6
a7=

a1
1.3.4.6.7

a8= 0

a9=
a0

2.3.5.6.8.9
a10=

a1
1.3.4.6.7.9.10

a11= 0

a0
9!

=
a0

1.2.3.4.5.6.7.8.9

a1
10!

=
a0

1.2.3.4.5.6.7.8.9.10

I a3k is like a0/(3k)!, except that terms like 3i + 1 are missing from the
factorial.

I a3k+1 is like a1/(3k + 1)!, except that terms like 3i + 2 are missing.

I The radius of convergence is infinite.



Four solutions for Airy’s equation

I y = 1 + O(x2) and z = x + O(x2)

I It is more traditional to use Ai(x) and Bi(x).

I These are Ai(x) = αy + βz and Bi(x) = γy + δz
for some (complicated) constants α, β, γ, δ.

The Airy integral

Another method (relevant for the rainbow): consider the function

A(x) =

∫ ∞
t=0

cos(t3/3 + xt) dt (which only converges because of cancellation.)

t

cos(t3/3+xt)

t

∫
cos(t3/3+xt) dt

The pictures show x = 2; we see that A(2) ' 0.1818604914.

The Airy integral

Consider the function

A(x) =

∫ ∞
t=0

cos(t3/3 + xt) dt

A′(x) =

∫ ∞
t=0

d

dx
cos(t3/3 + xt) dt = −

∫ ∞
t=0

t sin(t3/3 + xt) dt

A′′(x) = −
∫ ∞
t=0

d

dx

(
t sin(t3/3 + xt)

)
dt = −

∫ ∞
t=0

t2 cos(t3/3 + xt) dt

A′′(x)− x A(x) = −
∫ ∞
t=0

(t2 + x) cos(t3/3 + xt) dt.

We can integrate this by substituting u = t3/3 + xt, so (t2 + x) dt = du.
Moreover, we have u = 0 when t = 0, and u =∞ when t =∞. This gives

A′′(x)− x A(x) =

∫ ∞
u=0

cos(u) du.

This integral does not really converge, but it is natural to think that the value
should be zero, because the graph of cos(u) is symmetrical about the u-axis.
However, some difficult arguments are needed to justify this. Anyway, the
conclusion is that A′′(x)− x A(x) = 0, so A(x) is a solution for the Airy
equation.

Singular points

Consider the equation 4x2y ′′ + y = 0, or y ′′ + 1
4
x−2y = 0.

The function 1
4
x−2 is not a power series, so our previous method does not work.

Maybe we need to let y have negative powers of x as well? Still does not work.

If the first term in y is axn, then
the first term in y ′′ is n(n − 1)axn−2, and the first term in 1

4
x−2y is 1

4
axn−2.

If y ′′ + 1
4
x−2y = 0 then these must cancel, so n(n − 1) + 1

4
= 0.

There are no integers n with this property.
However, there is a fractional solution, namely n = 1/2.

If y = x1/2 then y ′ = 1
2
x−1/2 and y ′′ = − 1

4
x−3/2 so 4x2y ′′ + y = 0.

If y = ln(x)x1/2 then

y ′ = x−1x1/2 + ln(x). 1
2
x−1/2 = (1 + 1

2
ln(x))x−1/2

y ′′ = 1
2
x−1x−1/2 + (1 + 1

2
ln(x)).(− 1

2
)x−3/2 = − 1

4
ln(x)x−3/2

so again 4x2y ′′ + y = 0.

We will see that many equations of the form y ′′ + Py ′ + Qy = 0 have similar
properties.



Regular singular points

Consider an equation y ′′ + Py ′ + Qy = 0.

I If P =
∑∞

k=0 pkx
k and Q =

∑∞
k=0 qkx

k (ordinary power series), we say
that x = 0 is an ordinary point. We studied this case already.

I Suppose instead that

P = p0x
−1 + p1 + p2x + p3x

2 + · · · = x−1
∞∑
k=0

pkx
k

Q = q0x
−2 + q1x

−1 + q2 + q3x + q4x
2 + · · · = x−2

∞∑
k=0

qkx
k ,

where p0, q0 and q1 are not all zero. Then we say that x = 0 is a regular
singular point. In this case, the indicial polynomial is defined to be

χ(α) = α(α− 1) + p0α + q0.

I In any other case, we say that x = 0 is an irregular singular point.

Regular singular point — simplest case

Consider an equation y ′′ + Py ′ + Qy = 0, where P = p0x
−1 and Q = q0x

−2 for
some constants p0 and q0. We look for solutions of the form y = xα. We have

y ′′ = α(α− 1)xα−2

Py ′ = p0x
−1.αxα−1 = p0αx

α−2

Qy = q0x
−2.xα = q0x

α−2

y ′′ + Py ′ + Qy = (α(α− 1) + p0α + q0)xα−2 = χ(α)xα−2.

Thus y = xα is a solution if and only if χ(α) = 0; in other words, α should be
a root of the indicial polynomial.

Series solution at a regular singular point

Consider an equation y ′′ + Py ′ + Qy with a regular singular point at x = 0.
Let χ(t) be the indicial polynomial, with roots α and β where Re(α) ≥ Re(β).

Theorem: Suppose that α− β is not an integer. Then there is a unique
solution of the form y =

∑∞
k=0 akx

α+k with a0 = 1, and there is a unique
solution of the form z =

∑∞
k=0 bkx

β+k with b0 = 1.

Theorem: Suppose that α− β is a nonzero integer. Then there is a unique
solution of the form y =

∑∞
k=0 akx

α+k with a0 = 1, and there is another
solution of the form z = cy ln(x) +

∑∞
k=0 bkx

β+k with b0 = 1.
(Sometimes c = 0, so the end result is the same as the first theorem.)

Theorem: Suppose that α = β. Then there is a unique solution of the form
y =

∑∞
k=0 akx

α+k with a0 = 1, and there is a unique solution of the form
z = y ln(x) +

∑∞
k=0 bkx

α+k with b0 = 1.

In all three cases, every solution is Ay + Bz for some constants A and B.

Series solution at a regular singular point

I If the indicial polynomial is (t − 1/2)(t − 1/3) then there are solutions
y = x1/2(1 + O(x)) and z = x1/3(1 + O(x)).

I If the indicial polynomial is (t − 8)(t − 9) then there are solutions
y = x9(1 + O(x)) and z = x8(1 + O(x)) + cy ln(x).
Here c might be zero, in which case z = x8(1 + O(x)).

I If the indicial polynomial is (t − 1/2)2 then there are solutions
y =
√
x(1 + O(x)) and z =

√
x(1 + O(x)) + y ln(x).



Series solution at a regular singular point

We have not stated these theorems very precisely.

I There are various problems about convergence of series and domains of
solutions.

I It is hard to interpret xα+k if x < 0 or if α is complex.

We will discuss some of these problems later.
We will prove the first theorem but not the other two.

Series solution at a regular singular point

Consider again an equation y ′′ + Py ′ + Qy = 0, where

y =
∞∑
k=0

akx
α+k P =

∞∑
k=0

pkx
k−1 Q =

∞∑
k=0

qkx
k−2.

y ′′ =
∞∑
n=0

(α + n − 1)(α + n) an x
α+n−2

Py ′ =
∞∑
j=0

∞∑
k=0

pj(α + k)akx
α+j+k−2

Qy =
∞∑
j=0

∞∑
k=0

qjakx
α+j+k−2

(α + n − 1)(α + n)an +
n∑

j=0

pj(α + n − j)an−j +
n∑

j=0

qjan−j = 0

χ(α + n)an = ((α + n − 1)(α + n) + p0(α + n) + q0) an

= −
n∑

j=1

pj(α + n − j)an−j −
n∑

j=1

qjan−j

Series solution at a regular singular point

y =
∞∑
k=0

akx
α+k P =

∞∑
k=0

pkx
k−1 Q =

∞∑
k=0

qkx
k−2 χ(t) = t(t−1)+p0t+q0.

χ(α + n)an = −
∑n

j=1 pj(α + n − j)an−j −
∑n

j=1 qjan−j .

I For n = 0 we have χ(α)a0 = 0; so for a solution with a0 = 1, we must
have χ(α) = 0.

I If χ(α + n) 6= 0 for all n > 0 then we can define an recursively by

an = −χ(n + α)−1

(
n∑

j=1

pj(α + n − j)an−j +
n∑

j=1

qjan−j

)
,

and this will give a solution y =
∑

k akx
α+k .

I Usually χ(t) will have two different roots α and β such that α− β is not
an integer, so χ(α + n) and χ(β + n) are nonzero for all n > 0. We then
have one solution y =

∑
k akx

α+k and another solution y =
∑

bkx
β+k .

I If χ(t) has a repeated root, or two roots separated by an integer, then the
situation is more complicated.

Regular singular point example — non-integer gap

Consider the equation
2x2y ′′ + xy ′ − (x + 1)y = 0 or y ′′ + 1

2
x−1y ′ + (− 1

2
x−1 − 1

2
x−2)y = 0.

There is a regular singular point at x = 0, with p0 = 1
2

and q0 = − 1
2
,

so the indicial polynomial is α(α− 1) + 1
2
α− 1

2
= 0 or α2 − 1

2
α− 1

2
= 0.

The roots are − 1
2

and 1; the difference is not an integer.



Regular singular point example — non-integer gap

Consider the equation 2x2y ′′ + xy ′ − (x + 1)y = 0; indicial roots α = − 1
2
, 1.

There is a solution y =
∑∞

k=0 akx
1+k with a0 = 1.

2x2y ′′ =
∞∑
k=0

2(1 + k)kakx
1+k

xy ′ =
∞∑
k=0

(1 + k)akx
1+k

− (x + 1)y =
∞∑
k=0

(−ak − ak−1)x1+k ,

so we need 2(1 + k)kak + (1 + k)ak − ak − ak−1 = 0.
This gives (2k2 + 3k)ak = ak−1, so ak = ak−1/(2k2 + 3k).
The first few terms are

a0 = 1 a1 =
1

5
a2 =

1

5× 14
=

1

70
a3 =

1

70× 27
=

1

1890

so

y = x +
1

5
x2 +

1

70
x3 +

1

1890
x4 + · · ·

Regular singular point example — non-integer gap

Consider the equation 2x2y ′′ + xy ′ − (x + 1)y = 0; indicial roots α = − 1
2
, 1.

There is another solution z =
∑∞

k=0 bkx
− 1

2
+k with b0 = 1.

2x2z ′′ =
∞∑
k=0

2(− 1
2

+ k)(− 3
2

+ k)bkx
− 1

2
+k

xz ′ =
∞∑
k=0

(− 1
2

+ k)bkx
− 1

2
+k

− (x + 1)z =
∞∑
k=0

(−bk − bk−1)x−
1
2
+k ,

so we need 2(− 1
2

+ k)(− 3
2

+ k)bk + (− 1
2

+ k)bk − bk − bk−1 = 0.
This gives (2k2 − 3k)bk = bk−1, so bk = bk−1/(2k2 − 3k).
The first few terms are

b0 = 1 b1 = −1 b2 = −1

2
b3 = − 1

2× 9
= − 1

18

so

z = x−1/2 − x1/2 − 1

2
x3/2 − 1

18
x5/2 + · · ·

Regular singular point example — non-integer gap

Consider the equation 2x2y ′′ + xy ′ − (x + 1)y = 0; indicial roots α = − 1
2
, 1.

y=
∑

k ak x
1+k

z=
∑

k bk x
−1/2+k

In fact, in this case it is possible to find exact solutions:

u = e
√
2x (1− 1/

√
2x) v = e−

√
2x (1 + 1/

√
2x)

y =
3

4
(u + v) z =

1
√
2
(v − u)

=
3

2

(
cosh(

√
2x)−

sinh(
√
2x)

√
2x

)
=
√
2

(
cosh(

√
2x)

√
2x

− sinh(
√
2x)

)

Regular singular point example — repeated root

Now consider instead the equation y ′′ + (x−1 + 1)y ′ + 2x−1y = 0.
This has a regular singular point at x = 0, with p0 = 1 and q0 = 0.
The indicial polynomial is

α(α− 1) + p0α + q0 = α2 − α + α = α2,

so there is a repeated root α = 0.
Thus, there is a unique solution y =

∑∞
k=0 akx

k with a0 = 1,
and there is a unique solution z = ln(x)y +

∑∞
k=0 bkx

k with b0 = 1.

y ′′ =
∑
k

k(k − 1)akx
k−2 =

∑
j

(j + 2)(j + 1)aj+2x
j

(x−1 + 1)y ′ =
∑
k

kakx
k−2 +

∑
k

kakx
k−1 =

∑
j

((j + 2)aj+2 + (j + 1)aj+1)x j

2x−1y =
∑
k

2akx
k−1 =

∑
j

2aj+1x
j

We need (j + 2)(j + 1)aj+2 + (j + 2)aj+2 + (j + 1)aj+1 + 2aj+1 = 0,
which simplifies to (j + 2)2aj+2 + (j + 3)aj+1 = 0.
Put m = j + 2 to get am = −(m + 1)m−2am−1 for m > 0.



Regular singular point example — repeated root

y ′′+ (x−1 + 1)y ′+ 2x−1y = 0 y =
∞∑
k=0

akx
k ak = −(k + 1)k−2ak−1

a0 = 1 a1 = − 2

12
a2 = +

2.3

1222

a3 = − 2.3.4

122232
a4 = +

2.3.4.5

12223242
a5 = − 2.3.4.5.6

1222324252

= − 4

1.2.3
= − 4

3!
= +

5

1.2.3.4
= +

5

4!
= − 6

1.2.3.4.5
= − 6

5!

In general, ak = (−1)k k+1
k!

= (−1)k( 1
k!

+ k
k!

) = (−1)k( 1
k!

+ 1
(k−1)!

). Thus

y =
∑
k

(−x)k

k!
+
∑
k

(−x)k

(k − 1)!
= e−x−x

∑
k

(−x)k−1

(k − 1)!
= e−x−xe−x = (1−x)e−x .

Regular singular point example — repeated root

y ′′+(x−1+1)y ′+2x−1y = 0 first solution: y = (1−x)e−x =
∑ k + 1

k!
(−x)k

Second solution: z = y ln(x) + u, where u =
∑

k bkx
k with b0 = 1.

z = y ln(x) + u

z ′ = y ′ ln(x) + yx−1 + u′

z ′′ = y ′′ ln(x) + y ′x−1 + y ′x−1 − yx−2 + u′′

= y ′′ ln(x) + 2y ′x−1 − yx−2 + u′′

z ′′ + (x−1 + 1)z ′ + 2x−1z = (y ′′ + (x−1 + 1)y ′ + 2x−1y) ln(x) +

u′′ + (x−1 + 1)u′ + 2x−1u +

2y ′x−1 − yx−2 + (x−1 + 1)yx−1

= u′′ + (x−1 + 1)u′ + 2x−1u + x−1(2y ′ + y).

We need to find u such that this last expression is zero.

Regular singular point example — repeated root

y ′′+ (x−1 + 1)y ′+ 2x−1y = 0 solutions: y = (1− x)e−x , z = y ln(x) + u

u′′ + (x−1 + 1)u′ + 2x−1u + x−1(2y ′ + y) = 0

u =
∞∑
k=0

bkx
k , b0 = 1

u′′ + (x−1 + 1)u′ + 2x−1u =
∑
k

((k + 2)2bk+2 + (k + 3)bk+1)xk

y ′ = −e−x + (1− x)(−e−x) = (x − 2)e−x

x−1(2y ′ + y) = x−1(2(x − 2) + (1− x))e−x = (1− 3x−1)e−x

=
∑
k

(−1)k

k!
xk −

∑
k

3
(−1)k

k!
xk−1

(warning: limits) =
∑
k

(−1)k
(

1

k!
+ 3

1

(k + 1)!

)
xk =

∑
k

(−1)k
k + 4

(k + 1)!
xk

We therefore need (k + 2)2bk+2 + (k + 3)bk+1 + (−1)k(k + 4)/(k + 1)! = 0.

Regular singular point example — repeated root

y ′′+ (x−1 + 1)y ′+ 2x−1y = 0 solutions: y = (1− x)e−x , z = y ln(x) + u

u =
∑
k

bkx
k (k + 2)2bk+2 + (k + 3)bk+1 + (−1)k(k + 4)/(k + 1)! = 0

The above equation for bk+1 and bk+2 is valid when k ≥ 0. It gives

bm = − 1

m2

(
(m + 1)bm−1 + (−1)m

m + 2

(m − 1)!

)
for m ≥ 2.

If we look more carefully at the first few terms, we get

u′′ + (x−1 + 1)u′ + 2x−1u = (b1 + 2)x−1 + terms in x0 and above

x−1(2y ′ + y) = −3x−1 + terms in x0 and above.

As u′′ + (x−1 + 1)u′ + 2x−1u + x−1(2y ′ + y) = 0, we must have
(b1 + 2) + (−3) = 0, or in other words b1 = 1. The recurrence relation now
gives

b0 = 1 b1 = 1 b2 = −7

4

b3 =
19

18
b4 = −113

288
b5 =

127

1200



Regular singular point example — repeated root

Solutions for y ′′ + (x−1 + 1)y ′ + 2x−1y = 0 are

y = (1− x)e−x

z = ln(x)(1− x)e−x + 1 + x − 7

4
x2 +

19

18
x3 − 113

288
x4 +

127

1200
x5 + · · ·

y

z

y

z

Reduction of order

There is a more general method similar to the method used in the last example.
Suppose we have already found a function y satisfying y ′′ + Py ′ + Qy = 0, and
we want to find another linearly independent solution z .

Proposition: If we put v =
∫
P dx (so v ′ = P) and u =

∫
y−2e−v dx

and z = uy , then z ′′ + Pz ′ + Qz = 0.

Proof: z ′ = u′y + uy ′

z ′′ = u′′y + 2u′y ′ + uy ′′

z ′′ + Pz ′ + Qz = u′′y + 2u′y + uy ′′ + Pu′y + Puy ′ + Quy

= u(y ′′ + Py ′ + Qy) + (u′′y + 2u′y ′ + Pu′y)

= yu′′ + (2y ′ + Py)u′

u′ = y−2e−v

u′′ = −2y−3y ′e−v − y−2e−vv ′ = e−v (−2y−3y ′ − y−2P)

yu′′ + (2y ′ + Py)u′ = e−v (−2y−2y ′ − y−1P) + (2y ′ + Py)y−2e−v

= 0.

This method is called reduction of order.

Reduction of order example

Consider the equation y ′′ − 2(1 + x−1)y ′ + (1 + 2x−1)y = 0.
One solution is y = ex (because then y ′′ = y ′ = y and everything cancels).
We use reduction of order to find another solution.

P = −2(1 + x−1)

v =

∫
P dx = −2(x + ln(x))

y−2e−v = e−2xe2x+2 ln(x) = e2 ln(x) = (e ln(x))2 = x2

u =

∫
y−2e−v dx =

∫
x2 dx =

1

3
x3

z = uy =
1

3
x3ex .

Check: z ′ = (x2 + 1
3
x3)ex

z ′′ = (2x + x2)ex + (x2 + 1
3
x3)ex = (2x + 2x2 + 1

3
x3)ex

− 2(1 + x−1)z ′ = (−2x − 8
3
x2 − 2

3
x3)ex

(1 + 2x−1)z = ( 2
3
x2 + 1

3
x3)ex

So z ′′ − 2(1 + x−1)z ′ + (1 + 2x−1)z = 0.

Another reduction of order example

Consider the operator Ly = sin2(x)y ′′ − 3 sin(x) cos(x)y ′ + (3− 2 sin2(x))y .
Claim: one solution for Ly = 0 is y = sin(x).
To check, write s = sin(x) and c = cos(x), so y = s and y ′ = c and y ′′ = −s:

Ly = s2.(−s)− 3sc.c + (3− 2s2)s = −s3 − 3sc2 + 3s − 2s3

= −s3 − 3s(1− s2) + 3s − 2s3 = 0.

We use reduction of order to find another solution.

P = −3 cos(x)/ sin(x)

v =

∫
P dx = −3 ln(sin(x))

y−2e−v = y−2 sin3(x) = sin(x)

u =

∫
y−2e−v dx =

∫
sin(x) dx = − cos(x)

z = uy = − sin(x) cos(x) = − 1
2

sin(2x)



Series solutions for the Bessel equation

The Bessel equation is x2y ′′ + xy ′ + (x2 − n2)y = 0.
Here we will assume n is real and nonnegative but not necessarily an integer.
The equation is equivalent to y ′′ + x−1y ′ + (1− n2x−2)y = 0,
so there is a regular singular point at x = 0 with p0 = 1 and q0 = −n2.
The indicial polynomial is

α(α− 1) + p0α + q0 = α2 − n2 = (α− n)(α + n),

so the roots are ±n. There is a solution y = jn(x) =
∑∞

k=0 akx
n+k with

a0 = 1.

x2y ′′ =
∑
k

(n + k)(n + k − 1)akx
n+k

xy ′ =
∑
k

(n + k)akx
n+k

(x2 − n2)x =
∑
k

(ak−2 − n2ak)xn+k

so we need (n + k)(n + k − 1)ak + (n + k)ak − n2ak + ak−2 = 0.
This gives ak−2 = (n2 − (n + k)2)ak = −k(2n + k)ak .

Series solutions for the Bessel equation

x2y ′′+xy ′+(x2−n2)y = 0 y =
∞∑
k=0

akx
n+k a0 = 1 ak−2 = −k(2n+k)ak

Here n ≥ 0, so for k > 0 we have k(2n + k) 6= 0 and ak = −ak−2/(k(2n + k)).

For odd k: a−1 = 0, so a1 = 0, so a3 = 0 and so on; so ak = 0 when k is odd.

For even k:

a0 = 1 a2 =
−1

2(2n + 2)
a4 =

1

2.4.(2n + 2)(2n + 4)
a6 =

−1

2.4.6.(2n + 2)(2n + 4)(2n + 6)

and so on. It is convenient to write this using the Pochhammer symbol:

(a)p = a(a + 1)(a + 2) · · · (a + p − 1).

With this notation we have

a2p =
(−1)p

2pp!2p(n + 1)p
=

(−1)p

4pp!(n + 1)p
,

so

y = jn(x) =
∞∑
p=0

a2px
2p+n =

∞∑
p=0

(−1/4)p

p!(n + 1)p
xn+2p.

Series solutions for the Bessel equation

x2y ′′+xy ′+(x2−n2)y = 0 One solution: y = jn(x) =
∞∑
p=0

(−1/4)p

p!(n + 1)p
xn+2p.

You will more often see a different function Jn(x), called the Bessel function,
which is a certain constant Cn times jn(x). We will not give a formula for Cn

here.

If n is not an integer then there is another solution

z = j−n(x) =
∞∑
p=0

(−1/4)p

p!(−n + 1)p
x−n+2p.

However, if n is a positive integer then the n’th term involves division by
(−n + 1)n which is zero; so j−n(x) cannot be defined. Instead, the second
solution is c ln(x)jn(x) + u(x) with u(x) =

∑
k bkx

−n+k say. We will not give
the formula for bk here.

Bessel functions of order zero

The case n = 0 of the Bessel equation is x2y ′′ + xy ′ + x2y = 0. One solution is
j0(x). The formula for jn(x) involves (n + 1)p but (1)p = p! so the formula is

y = j0(x) =
∞∑
p=0

(−1/4)p

p!2
x2p.

Here we will give the formula for the other solution, but we will not check it.
We first need the function

φ(p) = 1 +
1

2
+ · · ·+ 1

p
=

p∑
k=1

1

k
.

The second solution is

z =
∞∑
p=0

(−1/4)p

p!2
x2p(log(x)− φ(p)).



Sturm-Liouville form

If p, q, r are smooth functions of x , we can define

L(y) = ((py ′)′ + qy)/r .

A Sturm-Liouville operator is an operator L of the above form.

Proposition: Consider an operator L(y) = Ay ′′ + By ′ + Cy ,
where A, B and C are functions of x , with A > 0 at all points of interest.
Then L can be rewritten in Sturm-Liouville form: L(y) = ((py ′)′+ qy)/r , where

p = exp(

∫
B/Adx) q = pC/A r = p/A

Proof: Put v =
∫
B/Adx , so v ′ = B/A. Then p = ev , so

p′ = v ′ev = (B/A)ev = pB/A. Now

((py ′)′ + qy)/r = (py ′′ + p′y ′ + qy)/r =
p

r
y ′′ +

p′

r
y ′ +

q

r
y

=
p

p/A
y ′′ +

pB/A

p/A
y ′ +

pC/A

p/A
y = Ay ′′ + By ′ + Cy .

The Bessel equation in Sturm-Liouville form

Ay ′′ + By ′ + Cy = ((py ′)′ + qy)/r , where

p = exp(

∫
B/Adx) q = pC/A r = p/A.

Recall the Bessel equation

x2y ′′ + xy ′ + (x2 − n2)y = 0.

We can write this as Ly = n2y , where Ly = x2y ′′ + xy ′ + x2y .
Here A = x2 and B = x and C = x2. Thus
B/A = x−1, so

∫
B/Adx = ln(x), so p = exp(

∫
B/Adx) = exp(ln(x)) = x .

This gives q = pC/A = x .x2/x2 = x and r = p/A = x/x2 = x−1.

In conclusion:

L(y) = ((xy ′)′ + xy)/x−1 = ((xy ′)′ + xy)x .

The Legendre equation in Sturm-Liouville form

Ay ′′ + By ′ + Cy = ((py ′)′ + qy)/r , where

p = exp(

∫
B/Adx) q = pC/A r = p/A.

Recall the Legendre equation

(1− x2)y ′′ − 2xy ′ + n(n + 1)y = 0.

We can write this as Ly = −n(n + 1)y , where Ly = (1− x2)y ′′ − 2xy ′.
Here A = 1− x2 and B = −2x and C = 0. This gives

B

A
=
−2x

1− x2
=

(1− x)− (1 + x)

(1− x)(1 + x)
=

1

1 + x
− 1

1− x
,

so ∫
B/Adx = ln(1 + x) + ln(1− x) = ln((1 + x)(1− x)) = ln(1− x2),

so p = exp(
∫
B/Adx) = 1− x2.

This in turn gives q = pC/A = 0 and r = p/A = 1. In conclusion:

L(y) = ((1− x2)y ′)′.

The Hermite equation in Sturm-Liouville form

Ay ′′ + By ′ + Cy = ((py ′)′ + qy)/r , where

p = exp(

∫
B/Adx) q = pC/A r = p/A.

Recall the Hermite equation

y ′′ − 2xy ′ + 2ny = 0.

We can write this as Ly = −2ny , where Ly = y ′′ − 2xy ′.
Here A = 1 and B = −2x and C = 0.
This gives p = exp(

∫
B/Adx) = e−x2 , so q = pC/A = 0 and r = p/A = e−x2 .

In conclusion:
L(y) = ex

2

(e−x2y ′)′.



Reminder about matrices and eigenvectors

I Let A be an n × n matrix, and let u and v be vectors in Rn or Cn.

I The transpose AT has entries (AT )ij = Aji .

I We say that A is symmetric if AT = A.

I The inner product 〈u, v〉 is
∑n

i=1 uivi .

I The transpose and inner product are related by 〈Au, v〉 = 〈u,AT v〉.
I A number λ ∈ C is an eigenvalue of A if there is a nonzero vector u ∈ Cn

with Au = λu. Any such vector is called an eigenvector.

I If A is symmetric, then all eigenvalues are real. Moreover, if u and v are
eigenvectors with different eigenvalues, then 〈u, v〉 = 0.

Now let L be a differential operator, like LBessel(y) = x2y ′′ + xy ′ + x2y .
A number λ ∈ C is an eigenvalue if there is a nonzero function y with
L(y) = λy . Any such function is called an eigenfunction.
eg: LBessel(Jn) = n2Jn, so Jn is an eigenfunction of LBessel with eigenvalue n2.

We will see that Sturm-Liouville operators behave like symmetric matrices:
all eigenvalues are real, and eigenfunctions with distinct eigenvalues have an
orthogonality property.

The Wronskian identity

Let L be a Sturm-Liouville operator, say L(y) = ((py ′)′ + qy)/r .
For any two functions f and g , we put

W (f , g) = pfg ′ − pf ′g .

This is called the modified Wronskian.

Proposition: r .(f L(g)− L(f ) g) = W (f , g)′.

Proof:

rL(g) = (pg ′)′ + qg = pg ′′ + p′g ′ + qg

rfL(g) = pfg ′′ + p′fg ′ + qfg

r .(fL(g)− L(f )g) = pfg ′′ + p′fg ′ + qfg − pf ′′g − p′f ′g − qfg

= p.(fg ′′ − f ′′g) + p′.(fg ′ − f ′g)

W (f , g)′ = (pfg ′ − pf ′g)′ = p′fg ′ + pf ′g ′ + pfg ′′ − p′f ′g − pf ′′g − pf ′g ′

= p.(fg ′′ − f ′′g) + p′.(fg ′ − f ′g).

Boundary conditions

In applications, we often want to solve differential equations with boundary
conditions. For example, consider again the vibration of a drum of radius R.
The height y is a function of the distance r from the centre. The edge of the
drum cannot move, so y = 0 when r = R; this is a boundary condition.

Consider a Sturm-Liouville operator Ly = ((py ′)′ + qy)/r ,
where p, q, r and y are all defined on some interval [a, b].
We might need to use boundary conditions of the following kinds:

I Dirichlet conditions: y = 0 when x = a or x = b.

I Neumann conditions: y ′ = 0 when x = a or x = b.

I Periodic conditions: y(a) = y(b) and y ′(a) = y ′(b).

We will only discuss Dirichlet conditions. Other cases are similar.

Eigenfunction example

We consider the the operator L(y) = y ′′ on the interval [0, 1].
Suppose we have a function f with f ′′ = L(f ) = λf ,
and that f also satisfies Dirichlet conditions f (0) = f (1) = 0.

I Suppose that λ > 0, so λ = µ2 for some µ > 0. We have seen before that
every solution of f ′′ = µ2f has the form f = Aeµx + Be−µx for some
constants A and B. The boundary condition f (0) = 0 gives A + B = 0,
and the condition f (1) = 0 gives Aeµ + Be−µ = 0. As µ > 0 we have
eµ 6= e−µ and it follows easily that A = B = 0, so f = 0. Thus, there are
no eigenfunctions with λ < 0.

I Suppose instead that λ = 0, so the equation L(f ) = λf just gives f ′′ = 0.
It is easy to see that the only solutions are f = Ax + B with A and B
constant. The conditions f (0) = f (1) = 0 give B = A + B = 0, so
A = B = 0, so again f = 0. Thus, there are no eigenfunctions with λ = 0.

I Suppose that λ < 0, so λ = −ω2 for some ω > 0. The equation Lf = λf
says f ′′ + ω2f = 0, which has solutions f = A sin(ωx) + B cos(ωx). The
condition f (0) = 0 gives B = 0. The condition f (1) = 0 becomes
A sin(ω) = 0, which gives A = 0 unless ω = nπ for some integer n > 0.

Conclusion:
the only real eigenvalues are λ = −n2π2; eigenfunctions are sin(nπx).



Self-adjointness under Dirichlet conditions

Consider a Sturm-Liouville operator Ly = ((py ′)′ + qy)/r ,
where p, q, r and y are all defined on some interval [a, b].
Suppose also that r(x) > 0 for all x ∈ [a, b].
For smooth functions f and g on [a, b] we define

〈f , g〉 =

∫ b

a

r(x)f (x)g(x) dx .

Proposition: If f (a) = g(a) = 0 and f (b) = g(b) = 0 then 〈Lf , g〉 = 〈f , Lg〉.

Proof:

〈f , Lg〉 − 〈Lf , g〉 =

∫ b

a

r .(f L(g)− L(f ) g) dx (definition of 〈, 〉)

=

∫ b

a

W (f , g)′(x) dx (Wronskian identity)

= W (f , g)(b)−W (f , g)(a).

Here W (f , g) = p.(f ′g − fg ′) but f = g = 0 at x = a so W (f , g)(a) = 0.
Similarly W (f , g)(b) = 0, so 〈f , Lg〉 − 〈Lf , g〉 = 0.

Self-adjointness under Dirichlet conditions

Corollary: If Lf = λf and Lg = µg with λ 6= µ, and
f (a) = g(a) = f (b) = g(b) = 0, then 〈f , g〉 = 0.

Proof: By the proposition, 〈Lf , g〉 = 〈f , Lg〉. As Lf = λf , the left hand side
is λ〈f , g〉. As Lg = µg , the right hand side is µ〈f , g〉. As both sides are the
same, (λ− µ)〈f , g〉 = 0, but λ− µ 6= 0 so 〈f , g〉 = 0.

Corollary: All eigenvalues of L (subject to Dirichlet conditions) are real.

Proof: Suppose we have a complex eigenfunction f = g + ih 6= 0, with a
complex eigenvalue λ = µ+ iν. Now

Lg + iLh = Lf = λf = (µ+ iν)(g + ih) = (µg − νh) + i(µh + νg),

so Lg = µg − νh and Lh = µh + νg . We assume that f is 0 at a and b, so g
and h are also 0 at a and b, so the Proposition gives 〈Lg , h〉 − 〈g , Lh〉 = 0.
This gives

0 = 〈µg − νh, h〉 − 〈g , µh + νg〉 = −ν(〈g , g〉+ 〈h, h〉) = −ν
∫ b

a

r(g 2 + h2) dx .

Now r > 0 everywhere and f = g + ih is not the zero function so∫ b

a
r(g 2 + h2) dx > 0. This means that ν = 0, so λ is real.

We also see that Lg = λg and Lh = λh, so g and h are real eigenfunctions.

Discreteness of eigenvalues

Consider again a Sturm-Liouville operator Ly = ((py ′)′ + qy)/r ,
where p, q, r and y are all defined on some interval [a, b],
and p and r are everywhere positive.
Consider eigenvalues and eigenfunctions subject to Dirichlet conditions.

Theorem: The eigenvalues can be listed as λ0, λ1, λ2, . . . with |λk | ≤ |λk+1|
and |λk | → ∞. Moreover, for any given k, the space of eigenfunctions of
eigenvalue λk has dimension one or two.

We will not prove this theorem.

Normal form

Sometimes it is easier to work with equations like y ′′ + Ry = 0, where there is
no term involving y ′. This is called normal form.

For any equation y ′′ + Py ′ + Qy = 0, there is an equivalent equation in normal
form.
In more detail: put v =

∫
P dx and m = e−v/2. Then put R = Q − 1

2
P ′ − 1

4
P2.

Proposition: If z satisfies z ′′ + Rz = 0, then the function y = zm satisfies
the original equation y ′′ + Py ′ + Qy = 0.

Proof: First note that m′ = − 1
2
Pm. We can differentiate this again to get

m′′ = − 1
2
P ′m − 1

2
Pm′ = − 1

2
P ′m − 1

2
P(− 1

2
Pm) = − 1

2
P ′m + 1

4
P2m.

y ′′ = z ′′m + 2z ′m′ + zm′′ = z ′′m − Pz ′m − 1
2
P ′zm + 1

4
P2zm

Py ′ = Pz ′m + Pzm′ = Pz ′m − 1
2
P2zm

Qy = Qzm

y ′′ + Py ′ + Qy = z ′′m − 1
2
P ′zm − 1

4
P2zm + Qzm = (z ′′ + Rz)m.

Thus, if z ′′ + Rz = 0 then y ′′ + Pz ′ + Qz = 0.



Normal form — constant coefficients

y ′′ + Py ′ + Qy = 0 m = exp(− 1
2

∫
P dx) R = Q − 1

2
P ′ − 1

4
P2

y = mz z ′′ + Rz = 0

Suppose P and Q are constant. The auxiliary polynomial is t2 + Pt + Q; the
roots are (−P ±

√
D)/2 where D = P2 − 4Q. The solutions are

y = Ae(−P+
√

D)x/2 + Be(−P−
√

D)x/2 = e−Px/2(Ae
√

Dx/2 + Be−
√

Dx/2).

(If D < 0: use e iθ = cos(θ) + i sin(θ) to rewrite this in terms of sin and cos.)

Normal form:
∫
P dx = Px so m = ePx/2.

Also P ′ = 0 so R = Q − 1
4
P2 = −D/4.

Equation for z is z ′′ − 1
4
Dz = 0, with solutions z = Ae

√
Dx/2 + Be−

√
Dx/2.

This gives

y = mz = e−Px/2(Ae
√

Dx/2 + Be−
√
Dx/2),

which is the same as before.

Normal form example

y ′′ + Py ′ + Qy = 0 m = exp(− 1
2

∫
P dx) R = Q − 1

2
P ′ − 1

4
P2

y = mz z ′′ + Rz = 0

Consider the equation x2y ′′ − 2µxy ′ + (µ(µ+ 1) + x2)y = 0.
We can divide by x2 to get y ′′ − 2µx−1y ′ + (µ(µ+ 1)x−2 + 1)y = 0.
This is y ′′ + Py ′ + Qy = 0, where P = −2µx−1 and Q = µ(µ+ 1)x−2 + 1.
We now have

m = exp(− 1
2

∫
P dx) = exp(µ ln(x)) = xµ

R = Q − 1
2
P ′ − 1

4
P2 = µ(µ+ 1)x−2 + 1− 1

2
× (2µx−2)− 1

4
× 4µ2x−2 = 1.

We thus have y = xµz with z ′′ + z = 0, which means that
z = A cos(x) + B sin(x) for some constants A and B.

Conclusion: the solution for x2y ′′ − 2µxy ′ + (µ(µ+ 1) + x2)y = 0 is

y = (A cos(x) + B sin(x))xµ.

Normal form for the Bessel equation

y ′′ + Py ′ + Qy = 0 m = exp(− 1
2

∫
P dx) R = Q − 1

2
P ′ − 1

4
P2

y = mz z ′′ + Rz = 0

Consider again the Bessel equation x2y ′′ + xy ′ + (x2 − n2)y = 0.
We can divide by x2 to get y ′′ + x−1y ′ + (1− n2x−2)y = 0.
This is y ′′ + Py ′ + Qy = 0, where P = x−1 and Q = 1− n2x−2.
We now have

m = exp(− 1
2

∫
P dx) = exp(− 1

2
ln(x)) = x−1/2

R = Q − 1
2
P ′ − 1

4
P2 = 1− n2x−2 + 1

2
x−2 − 1

4
x−2 = 1 +

1− 4n2

4x2

Conclusion: the solutions for x2y ′′ + xy ′ + (x2 − n2)y = 0 have the form

y = x−1/2z , where z ′′ +
(

1 + 1−4n2

4x2

)
z = 0.

For large x , this is approximately z ′′ + z = 0, so z is like A cos(x + φ), so y is
like Ax−1/2 cos(x + φ).

Normal form for the Bessel equation

For large x , this is approximately z ′′ + z = 0, so z is like A cos(x + φ), so y is
like Ax−1/2 cos(x + φ)



Prüfer angles for the Legendre equation

I Suppose u solves the Legendre equation ((1− x2)u′)′ + n(n + 1)u = 0.

I Put v = (1− x2)u′, so v ′ = −n(n + 1)u.

I We explained before that the point (u, v) rotates through nπ about the
origin as x goes from −1 to 1.

I (A similar thing works for other Sturm-Liouville equations as well.)

I To understand this, put

θ = angle from the y -axis to (u, v) = arctan(u/v)

ρ = distance from (0, 0) to (u, v) =
√

u2 + v 2

so u = ρ sin(θ) and v = ρ cos(θ).

I We will show that

θ′ = n(n + 1) sin2(θ) + cos2(θ)/(1− x2)

ρ′ = 1
2
ρ sin(2θ)(1/(1− x2)− n(n + 1))

ρ = exp

(
1
2

∫
sin(2θ)(1/(1− x2)− n(n + 1)) dx

)
.

I Note that this is a first order nonlinear equation for θ, not involving ρ.

Prüfer angles for the Legendre equation

v = (1− x2)u′ v ′ = −n(n + 1)u u = ρ sin(θ) v = ρ cos(θ).

(a) v = (1− x2)u′ and v ′ = −n(n + 1)u gives[
u′

v ′

]
=

[
v/(1− x2)
−n(n + 1)u

]
=

[
ρ cos(θ)/(1− x2)
−n(n + 1)ρ sin(θ)

]

(b)

[
u
v

]
=

[
ρ sin(θ)
ρ cos(θ)

]
gives

[
u′

v ′

]
=

[
ρ′ sin(θ) + ρ cos(θ)θ′

ρ′ cos(θ)− ρ sin(θ)θ′

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
ρθ′

ρ′

]
.

(c) Using

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]−1

=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
and (a) and (b) we get

[
ρθ′

ρ′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
ρ cos(θ)/(1− x2)
−n(n + 1)ρ sin(θ)

]

Prüfer angles for the Legendre equation

[
ρθ′

ρ′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
ρ cos(θ)/(1− x2)
−n(n + 1)ρ sin(θ)

]

Expand and divide by ρ to get

θ′ = cos2(θ)/(1− x2) + n(n + 1) sin2(θ) ≥ 0

ρ′/ρ = sin(θ) cos(θ)/(1− x2)− n(n + 1) sin(θ) cos(θ)

= 1
2

sin(2θ)(1/(1− x2)− n(n + 1)).

Note that ρ′/ρ = ln(ρ)′, so

ln(ρ) =

∫
1
2

sin(2θ)(1/(1− x2)− n(n + 1)) dx

ρ = exp

(∫
1
2

sin(2θ)(1/(1− x2)− n(n + 1)) dx

)
.

When x = ±1 we have v = (1− x2)u′ = 0, so (u, v) starts and ends on the
(positive or negative) x-axis. It must therefore rotate through an angle mπ for
some integer m ≥ 0. This means that there must be m times where (u, v)
passes through the y -axis, ie m roots of u. (In fact m = n, but this is harder.)

Transformations

Suppose that x = et , and write u′ = du/dx and u̇ = du/dt.
Claim: the Bessel equation x2y ′′ + xy ′ + (x2 − n2)y = 0
is equivalent to ÿ + (e2t − n2)y = 0.
Proof:

ẋ =
dx

dt
=

d

dt
et = et = x

ẏ =
dy

dt
=

dx

dt

dy

dx
= xy ′

d

dx
(ẏ) =

d

dx
(xy ′) = y ′ + xy ′′

ÿ =
d

dt
(ẏ) =

dx

dt

d

dx
(ẏ) = x(y ′ + xy ′′) = x2y ′′ + xy ′

so
ÿ + (e2t − n2)y = x2y ′′ + xy ′ + (x2 − n2)y

so solutions to ÿ + (e2t − n2)y = 0 are y = AJn(et) + BYn(et).



Transformations

Suppose that x = t2 and z = y/x3.
Claim: Legendre equation (1− x2)y ′′ − 2xy ′ + 12y = 0
is equivalent to (t6 − t2)z̈ + (15t5 − 11t)ż − 24z = 0.
Proof:

z ′ = x−3y ′ − 3x−4y = t−6y ′ − 3t−8y

z ′′ = x−3y ′′ − 6x−4y ′ + 12x−5y = t−6y ′′ − 6t−8y ′ + 12t−10y

ż =
dz

dt
=

dx

dt

dz

dx
= 2tz ′ = 2t−5y ′ − 6t−7y

z̈ = 2z ′ + 2t
d

dt
(z ′) = 2z ′ + 2t

dx

dt

d

dx
(z ′)

= 2z ′ + 2t.2tz ′′ = 2z ′ + 4t2z ′′

= 2(t−6y ′ − 3t−8y) + 4t2(t−6y ′′ − 6t−8y ′ + 12t−10y)

= 4t−4y ′′ − 22t−6y ′ + 42t−8y

Transformations

x = t2 z = y/x3 = y/t6

ż = 2t−5y ′ − 6t−7y z̈ = 4t−4y ′′ − 22t−6y ′ + 42t−8y

(t6 − t2)z̈ + (15t5 − 11)ż − 24z

= (t6 − t2)(4t−4y ′′ − 22t−6y ′ + 42t−8y) +

(15t5 − 11t)(2t−5y ′ − 6t−7y)− 24t−6y

= 4(t2 − t−2)y ′′ + (−22 + 22t−4 + 30− 22t−4)y ′ +

(42t−2 − 42t−6 − 90t−2 + 66t−6 − 24t−6)y

= 4(t2 − t−2)y ′′ + 8y ′ − 48t−2y

=− 4t−2((1− t4)y ′′ − 2t2y ′ + 12y) =−4x−1((1− x2)y ′′ − 2xy ′ + 12y)

So (1− x2)y ′′ − 2xy ′ + 12y = 0 is equivalent to
(t6 − t2)z̈ + (15t5 − 11)ż − 24z = 0. So solutions to
(t6 − t2)z̈ + (15t5 − 11)ż − 24z = 0 are (APn(t2) + BQn(t2))/t6.


