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Introduction

The first half of this course is about planar differential equations, like this
example:
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_ 22 ~ _ 2 — _ g _ -
“a - a0f T10Y a0 Y= ~8° TV "0

There is no formula for the solution. The aim is to learn how to understand the
equations even without a formula for the solution. We can draw a picture:

We will start by looking quickly at some examples. Later we will develop some
mathematical theory, then look at the examples again.
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The Lotka-Volterra model

A lagoon contains F fish and S sharks. These change according to the
equations

F = aF—BFS S =45+ 6FS,

where «, [, 7v and ¢ are positive constants.
aF: fish breeding; —BFS: fish being eaten;
0FS: well-fed sharks breeding; —~S: sharks starving.

The phase portrait shows how the point (F, S) moves over time:

L
F=—BF(S—a/B)

S = 6S(F —~/5)
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Motion of a pendulum
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Motion of a pendulum

Consider a swinging pendulum, hanging at angle 6.
The angular velocity is w = 6.

The angular acceleration w is proportional to the
component of the gravitational force perpendicular
to the pendulum, which is proportional to — sin(0).

With suitable units, we can assume that

0=w w = —sin(0).
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A contour flow

This system has equations x = y* — y and y = x — x°.
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A contour flow

This system has equations x = y* — y and y = x — x°.

el
il

> The blue lines (x-nullclines) show where y — y*> = 0 and so x = 0.
> The green lines (y-nullclines) show where x — x* = 0 and so y = 0.

» The black dots (equilibrium points) show where x = y = 0.



A contour map
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This is a contour map. The height is h(x, y). If you stay on one of the brown
lines (contours), then you stay at the same height. That is a contour flow.



When the contours are close together, the ground is steep.
When the contours are far apart, the ground is not steep.
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A gradient flow

This system has equations x = x — x> and y = y — y°.
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A gradient flow

This system has equations x = x — x> and y = y — y°.

N
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> The blue lines (x-nullclines) show where x — x* = 0 and so x = 0.

» The green lines (y-nullclines) show

where y — y* =0 and so y = 0.

» The black dots (equilibrium points) show where x = y = 0.



Question: which is the y-nullcline?

Which of the curves below is the y-nullcline?

D B




Question: which is the y-nullcline?

Which of the curves below is the y-nullcline?

D B

Curve B is the y-nulicline; the flow lines cross it horizontally, with y = 0.



Question: how many equilibria?

How many equilibrium points are there in this phase portrait?
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Question: how many equilibria?

How many equilibrium points are there in this phase portrait?

There are two equilibrium points, as shown.



This system has equations x = 1 and y = sin(7y).

The solutions move steadily to the right, and converge to one of the lines
where y is an odd integer.



Duffing oscillator

The Duffing oscillator has x = y and y = 2x — x°.
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Damped Duffing oscillator

This system has x = y and y = 2x — x> — 0.1y.

It is similar to the Duffing oscillator, but with friction or damping .
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Damped Duffing oscillator

This system has x = y and y = 2x — x> — 0.1y.

It is similar to the Duffing oscillator, but with friction or damping .
» The x-nullcline is the same as before
» But the y-nullclines have moved slightly

» The equilibrium points are unchanged.
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Which of the curves below is the y-nullcline?
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Question: which is the y-nullcline?

Which of the curves below is the y-nullcline?

A B

B C A

Curve E is the y-nullcline; the flow lines cross it horizontally, with y = 0.
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van der Pol oscillator

This system has x = y and y = 2(1 — x?)y — x.

L

Y

» The blue line (x-nullcline) shows where y = 0 and so x = 0.

> The green lines (y-nullclines) show where 2(1 —x?)y —x = 0 and so y = 0.



van der Pol oscillator

This system has x = y and y = 2(1 — x?)y — x.

» The blue line (x-nullcline) shows where y = 0 and so x = 0.
> The green lines (y-nullclines) show where 2(1 —x?)y —x =0 and so y = 0.

» There is only one equilibrium point, but there is also a limit cycle, shown
in blue. All non-constant solutions converge to the limit cycle.
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work out where x is positive or negative.
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Sketching a phase portrait

We will sketch the phase portrait for the system
x=x(3—x-2y), y=y(x—1).

y<o0 y>0

y>0 y<0

The y-nullcline is given by y =0, so y =0 or x = 1. It is easy to work out
where y is positive or negative.
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We now draw both nullclines.



Sketching a phase portrait

We will sketch the phase portrait for the system
x=x(3—x-2y), y=y(x—1).

y<o0 y>0

.

y>0 y<0

We now draw both nullclines. The equilibrium points appear where the
x-nullcline meets the y-nullcline.
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The nullclines divide the plane into ten regions. In each region, we can
determine the signs of x and y.
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We will sketch the phase portrait for the system
x=x(3—x-2y), y=y(x—1).

x>0
y<0 x<0 y>0

y<0

\ x<0

x<0
g x>0
y<0 X B
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The nullclines divide the plane into ten regions. In each region, we can
determine the signs of x and y.



Sketching a phase portrait

We will sketch the phase portrait for the system
x=x(3—x-2y), y=y(x—1).

e N \
/

It is more convenient to display the signs of x and y by drawing arrows.



Sketching a phase portrait

We will sketch the phase portrait for the system
x=x(3=x=2y), y=y(x-1).

The flow lines cross the x-nullcline vertically.



Sketching a phase portrait

We will sketch the phase portrait for the system
x=x(3=x=2y), y=y(x-1).

The flow lines cross the y-nullcline horizontally.



Sketching a phase portrait

We will sketch the phase portrait for the system
x=x(3—x-2y), y=y(x—1).

The actual flow lines are as shown above.
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A problem which we will mostly ignore

Consider the equation x = x*. This gives

d 1 2. -2 2
—Xx =—Xx ‘x=-x “x" =-1
dt

1 -1

X =X

x=1/(x "' —t) = x0/(1 — xot).

t

This is not defined for all t; the solution goes to infinity as t — xo_l.

A similar example in two variables: x =y = xy.
(There is a solution on the problem sheet.)

We mostly ignore this problem and consider only equations where x(t) and
y(t) are defined for all t € R.
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A (first order, autonomous) linear system has the form
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Linear systems

A (first order, autonomous) linear system has the form

X %*aerb '*dy*chrd Xl -4 |x a bx
B Y=g T Y v Tdtly] T le d|ly

Linear systems are the easiest kind of planar differential equations.

They will also help us to understand nonlinear systems.

Example:
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Linear systems

A (first order, autonomous) linear system has the form

)%*%*aerb '*Q*chrd x| _d[x] _[a b][x
B Y=g T Y v Tdtly] T le d|ly

Linear systems are the easiest kind of planar differential equations.
They will also help us to understand nonlinear systems.

Example:
X =ax X a 0] |x
S b=c=0, . i
uppose b = ¢ 0y —dy or M [0 d} [Y]
Lo x =ex X e” 0] [x
The solution is y = edtyz or [y] = {0 edt} {yﬂ ‘
Example:
x =y x| [0 1] (x
Suppose v = —x or |:y:| - [—1 0] M

Solution: < T cos(t) + yosin(t) [X] _ { cos(t) sin(t)] |:X0:| '
y

= yo cos(t) — xo sin(t) or —sin(t) cos(t)| |vo
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x(t) = Acos(wt) + Bsin(wt) for some constants A and B.

Proof.

Put A= x(0) and B = x(0)/w and u(t) = Acos(wt) + Bsin(wt) and

v(t) = x(t) — u(t). We want to show that x(t) = u(t), so we must show that
v(t) = 0. Note that

u(t) = —Awsin(wt) + Bw cos(wt)

ii(t) = —Aw® cos(wt) — Bw? sin(wt) = —w’u(t)
v(t) = x(t) — i(t) = —w’x(t) + W’u(t) = —w’v(t)
v(0)=x(0)—A=0

v(0) = x(0) — Bw = 0.



Reminder of simple harmonic motion

Proposition: Suppose that x is a function of t such that X = —w?x; then
x(t) = Acos(wt) + Bsin(wt) for some constants A and B.

Proof.
Put A= x(0) and B = x(0)/w and u(t) = Acos(wt) + Bsin(wt) and
v(t) = x(t) — u(t). We want to show that x(t) = u(t), so we must show that
v(t) = 0. Note that
u(t) = —Awsin(wt) + Bw cos(wt)
ii(t) = —Aw® cos(wt) — Bw? sin(wt) = —w’u(t)
v(t) = x(t) — i(t) = —w’x(t) + W’u(t) = —w’v(t)
v(0)=x(0)—A=0
v(0) = %(0) — Bw = 0.

Now put E(t) = w?v(t)? + v(t)?



Reminder of simple harmonic motion

Proposition: Suppose that x is a function of t such that X = —w?x; then
x(t) = Acos(wt) + Bsin(wt) for some constants A and B.

Proof.
Put A= x(0) and B = x(0)/w and u(t) = Acos(wt) + Bsin(wt) and
v(t) = x(t) — u(t). We want to show that x(t) = u(t), so we must show that
v(t) = 0. Note that
u(t) = —Awsin(wt) + Bw cos(wt)
ii(t) = —Aw® cos(wt) — Bw? sin(wt) = —w’u(t)
v(t) = x(t) — i(t) = —w’x(t) + W’u(t) = —w’v(t)
v(0)=x(0)—A=0
v(0) = %(0) — Bw = 0.

Now put E(t) = w?v(t)* + v(t)?, so E(0) = w’v(0)* + v(0)* = 0.



Reminder of simple harmonic motion

Proposition: Suppose that x is a function of t such that X = —w?x; then
x(t) = Acos(wt) + Bsin(wt) for some constants A and B.

Proof.
Put A= x(0) and B = x(0)/w and u(t) = Acos(wt) + Bsin(wt) and
v(t) = x(t) — u(t). We want to show that x(t) = u(t), so we must show that
v(t) = 0. Note that
u(t) = —Awsin(wt) + Bw cos(wt)
ii(t) = —Aw® cos(wt) — Bw? sin(wt) = —w’u(t)
v(t) = x(t) — i(t) = —w’x(t) + W’u(t) = —w’v(t)
v(0)=x(0)—A=0
v(0) = x(0) — Bw = 0.
Now put E(t) = w?v(t)? 4 v(t)?, so E(0) = w?v(0)? + v(0)? = 0. Also:

E(t) = 2w v(t)v(t) + 20(t)i(t)



Reminder of simple harmonic motion

Proposition: Suppose that x is a function of t such that X = —w?x; then
x(t) = Acos(wt) + Bsin(wt) for some constants A and B.

Proof.
Put A= x(0) and B = x(0)/w and u(t) = Acos(wt) + Bsin(wt) and
v(t) = x(t) — u(t). We want to show that x(t) = u(t), so we must show that
v(t) = 0. Note that
u(t) = —Awsin(wt) + Bw cos(wt)
ii(t) = —Aw® cos(wt) — Bw? sin(wt) = —w’u(t)
v(t) = x(t) — i(t) = —w’x(t) + W’u(t) = —w’v(t)
v(0)=x(0)—A=0
v(0) = x(0) — Bw = 0.
Now put E(t) = w?v(t)? 4 v(t)?, so E(0) = w?v(0)? + v(0)? = 0. Also:

E(t) = 202v(t)(t) + 20(t)i(t) = 2v(t)(wv(t) + U(t))



Reminder of simple harmonic motion

Proposition: Suppose that x is a function of t such that X = —w?x; then
x(t) = Acos(wt) + Bsin(wt) for some constants A and B.

Proof.
Put A= x(0) and B = x(0)/w and u(t) = Acos(wt) + Bsin(wt) and
v(t) = x(t) — u(t). We want to show that x(t) = u(t), so we must show that
v(t) = 0. Note that
u(t) = —Awsin(wt) + Bw cos(wt)
ii(t) = —Aw® cos(wt) — Bw? sin(wt) = —w’u(t)
v(t) = x(t) — i(t) = —w’x(t) + W’u(t) = —w’v(t)
v(0)=x(0)—A=0
v(0) = x(0) — Bw = 0.
Now put E(t) = w?v(t)? 4 v(t)?, so E(0) = w?v(0)? + v(0)? = 0. Also:

E(t) = 2w v(t)v(t) + 2v(t)v(t) = 2v(t)(w’v(t) + v(t)) = 0.



Reminder of simple harmonic motion

Proposition: Suppose that x is a function of t such that X = —w?x; then
x(t) = Acos(wt) + Bsin(wt) for some constants A and B.

Proof.
Put A= x(0) and B = x(0)/w and u(t) = Acos(wt) + Bsin(wt) and
v(t) = x(t) — u(t). We want to show that x(t) = u(t), so we must show that
v(t) = 0. Note that
u(t) = —Awsin(wt) + Bw cos(wt)
ii(t) = —Aw® cos(wt) — Bw? sin(wt) = —w’u(t)
v(t) = x(t) — i(t) = —w’x(t) + W’u(t) = —w’v(t)
v(0)=x(0)—A=0
v(0) = x(0) — Bw = 0.
Now put E(t) = w?v(t)? 4 v(t)?, so E(0) = w?v(0)? + v(0)? = 0. Also:
E(t) = 2w v(t)v(t) + 2v(t)v(t) = 2v(t)(w’v(t) + v(t)) = 0.

This means that E is constant



Reminder of simple harmonic motion

Proposition: Suppose that x is a function of t such that X = —w?x; then
x(t) = Acos(wt) + Bsin(wt) for some constants A and B.

Proof.
Put A= x(0) and B = x(0)/w and u(t) = Acos(wt) + Bsin(wt) and
v(t) = x(t) — u(t). We want to show that x(t) = u(t), so we must show that
v(t) = 0. Note that
u(t) = —Awsin(wt) + Bw cos(wt)
ii(t) = —Aw® cos(wt) — Bw? sin(wt) = —w’u(t)
v(t) = x(t) — i(t) = —w’x(t) + W’u(t) = —w’v(t)
v(0)=x(0)—A=0
v(0) = x(0) — Bw = 0.
Now put E(t) = w?v(t)? 4 v(t)?, so E(0) = w?v(0)? + v(0)? = 0. Also:
E(t) = 2w v(t)v(t) + 2v(t)v(t) = 2v(t)(w’v(t) + v(t)) = 0.

This means that E is constant, and E(0) = 0, so E(t) = 0 for all t.



Reminder of simple harmonic motion

Proposition: Suppose that x is a function of t such that X = —w?x; then
x(t) = Acos(wt) + Bsin(wt) for some constants A and B.

Proof.
Put A= x(0) and B = x(0)/w and u(t) = Acos(wt) + Bsin(wt) and
v(t) = x(t) — u(t). We want to show that x(t) = u(t), so we must show that
v(t) = 0. Note that
u(t) = —Awsin(wt) + Bw cos(wt)
ii(t) = —Aw® cos(wt) — Bw? sin(wt) = —w’u(t)
v(t) = x(t) — i(t) = —w’x(t) + W’u(t) = —w’v(t)
v(0)=x(0)—A=0
v(0) = %(0) — Bw = 0.

Now put E(t) = w?v(t)? 4 v(t)?, so E(0) = w?v(0)? + v(0)? = 0. Also:
E(t) = 2w v(t)v(t) + 2v(t)v(t) = 2v(t)(w’v(t) + v(t)) = 0.

This means that E is constant, and E(0) =0, so E(t) =0 for all t. As
squares are always nonnegative, the only way that E(t) can be zero is if
v(t) =0 and v(t) =0. O



Reminder of simple harmonic motion

Proposition: Suppose that x is a function of t such that X = —w?x; then
x(t) = Acos(wt) + Bsin(wt) for some constants A and B.

Proof.
Put A= x(0) and B = x(0)/w and u(t) = Acos(wt) + Bsin(wt) and
v(t) = x(t) — u(t). We want to show that x(t) = u(t), so we must show that
v(t) = 0. Note that
u(t) = —Awsin(wt) + Bw cos(wt)
ii(t) = —Aw® cos(wt) — Bw? sin(wt) = —w’u(t)
v(t) = x(t) — i(t) = —w’x(t) + W’u(t) = —w’v(t)
v(0)=x(0)—A=0
v(0) = %(0) — Bw = 0.

Now put E(t) = w?v(t)? 4 v(t)?, so E(0) = w?v(0)? + v(0)? = 0. Also:
E(t) = 2w v(t)v(t) + 2v(t)v(t) = 2v(t)(w’v(t) + v(t)) = 0.

This means that E is constant, and E(0) =0, so E(t) =0 for all t. As
squares are always nonnegative, the only way that E(t) can be zero is if
v(t) = 0 and v(t) = 0. We thus have v = 0 as required. O



A (first order, autonomous) linear system has the form

. dx . dy X d [x a bl [x
= = b =2 d == =

e S S AN (IR R

Which of the following is a first order, autonomous linear system?
(a) x=3x+t, y=4y—t

(b) x=3x—y, y=x+9y

(c) x=2x—1,y=2+5y

(d) x=y, y=x.




A (first order, autonomous) linear system has the form

)%*%*aerb '*Q*chrd x| _d[x] _[a b][x
B Y=g T Y v Tdtly] T le d|ly

Which of the following is a first order, autonomous linear system?
(a) x=3x+t, y=4y—t

(b) x=3x—y, y=x+9y

(c) x=2x—1,y=2+5y

(d) x=y,y=x.

Only (b) is a first order, autonomous linear system.



A (first order, autonomous) linear system has the form

)%*%*aerb '*Q*chrd x| _d[x] _[a b][x
B Y=g T Y v Tdtly] T le d|ly

Which of the following is a first order, autonomous linear system?
(a) x=3x+t, y=4y—t

(b) x=3x—y, y=x+9y

(c) x=2x—-1,y=2+5y

(d) x=y, y=x.

Only (b) is a first order, autonomous linear system.

(a) is of first order but not autonomous or linear



A (first order, autonomous) linear system has the form

)%*%*aerb '*Q*chrd x| _d[x] _[a b][x
B Y=g T Y v Tdtly] T le d|ly

Which of the following is a first order, autonomous linear system?
(a) x=3x+t, y=4y—t

(b) x=3x—y, y=x+9y

(c) x=2x—1,y=2+5y

(d) x=y, y=x.

Only (b) is a first order, autonomous linear system.

(a) is of first order but not autonomous or linear

(c) is of first order and autonomous but not linear



A (first order, autonomous) linear system has the form

)%*%*aerb '*Q*chrd x| _d[x] _[a b][x
B Y=g T Y v Tdtly] T le d|ly

Which of the following is a first order, autonomous linear system?
(a) x=3x+t, y=4y—t

(b) x=3x—y, y=x+9y

(c) x=2x—1,y=2+5y

(d) x=y, y=x.

Only (b) is a first order, autonomous linear system.

(a) is of first order but not autonomous or linear

(c) is of first order and autonomous but not linear

(d) is of second order, autonomous and linear.



What is the solution to x =y and y = —x with x =0 and y =5 when t = 07



What is the solution to x =y and y = —x with x =0 and y =5 when t = 07

The general solution is

X = xo cos(t) + yo sin(t) y = yocos(t) — xosin(t).



What is the solution to x =y and y = —x with x =0 and y =5 when t = 07

The general solution is
X = xo cos(t) + yo sin(t) y = yocos(t) — xosin(t).
Here xo = 0 and yo = 5, so we just get

x = 5sin(t) y = 5cos(t).



Linear systems

A (first order, autonomous) linear system has the form

d
k:%:aerby y:d—}t/:chrdy



Linear systems

A (first order, autonomous) linear system has the form

X*%*aerb '*Q*chrd X[ _dix] _ja bix
B Y=g T Y v Tdtly] T le d|ly



Linear systems

A (first order, autonomous) linear system has the form

. dx . dy X d [x a bl [x
= = b =2 d == =

e S S AN (IR R

We put u = {X} and A= [a
3% c

b .
d} so u = Au.



Linear systems

A (first order, autonomous) linear system has the form

. dx . dy X d [x a bl [x
= = b =2 d == =

e S S AN (IR R

We put u = {ﬂ and A= [i Z} so U = Au.To solve the system, we first

need to find eigenvalues and eigenvectors of A.



Linear systems

A (first order, autonomous) linear system has the form

. dx . dy X d [x a bl [x
= = b =2 d == =

e S S AN (IR R

We put u = {ﬂ and A= [i Z} so U = Au.To solve the system, we first

need to find eigenvalues and eigenvectors of A. Put

T =trace(A) = a+d 0 = det(A) = ad — bc



Linear systems

A (first order, autonomous) linear system has the form

. dx . dy X d [x a bl [x
= = b =2 d == =

e S S AN (IR R

We put u = X and A= [a
3% c

Z so U = Au.To solve the system, we first
need to find eigenvalues and eigenvectors of A. Put
T =trace(A) = a+d 0 = det(A) = ad — bc

Xxa(t) = characteristic polynomial = det(A — t/) = det {a; t d i t]

=(a—t)(d—t)—bc=t"—(a+d)t+(ad — bc)=t>—7t+0.



Linear systems

A (first order, autonomous) linear system has the form

. dx . dy X d [x a bl [x
= = b =2 d == =

e S S AN (IR R

We put u = X and A= [a
3% c

Z so U = Au.To solve the system, we first
need to find eigenvalues and eigenvectors of A. Put
T =trace(A) = a+d 0 = det(A) = ad — bc
Xxa(t) = characteristic polynomial = det(A — t/) = det {a; t d i t]
=(a—t)(d—t)—bc=1t"—(a+d)t+ (ad — bc) = t* — 7t + 0.

The eigenvalues are the roots of xa(t), which are

)\1:%(77 72 — 46) /\2:%(T+ T2 — 46).



Linear systems

A (first order, autonomous) linear system has the form

. dx . dy X d [x a bl [x
= = b =2 d == =

e S S AN (IR R

We put u = {ﬂ and A= [i Z} so U = Au.To solve the system, we first

need to find eigenvalues and eigenvectors of A. Put
T =trace(A) = a+d 0 = det(A) = ad — bc
- . a—t b
Xxa(t) = characteristic polynomial = det(A — t/) = det c d_t
=(a—t)(d—t)—bc=1t"—(a+d)t+ (ad — bc) = t* — 7t + 0.
The eigenvalues are the roots of xa(t), which are
A= 3(1— V72— 46) X2 = 3(1+ /72— 46).

These might be real numbers or complex numbers .



Linear systems

A (first order, autonomous) linear system has the form

. dx . dy X d [x a bl [x
= = b =2 d == =

e S S AN (IR R

We put u = {ﬂ and A= [i Z} so U = Au.To solve the system, we first

need to find eigenvalues and eigenvectors of A. Put
T =trace(A) = a+d 0 = det(A) = ad — bc
- . a—t b
Xxa(t) = characteristic polynomial = det(A — t/) = det c d_t
=(a—t)(d—t)—bc=1t"—(a+d)t+ (ad — bc) = t* — 7t + 0.
The eigenvalues are the roots of xa(t), which are
A= 3(1— V72— 46) X2 = 3(1+ /72— 46).

These might be real numbers or complex numbers .

M+A=T A2 =0



{X}_[a b] [x] T =a+b A o= 3(r— V12— 45)
y| — |c d| |y § =ad— bc X = 3(m+ V12— 40).
Which of the following has real eigenvalues?

(2) A= :—02 (1J

0 A=|; 7]

@a=l 7

wa-f 3




{X}_[a b] [x] T =a+b A o= 3(r— V12— 45)
y| — |c d| |y § =ad— bc X = 3(m+ V12— 40).
Which of the following has real eigenvalues?

(2) A= :—02 (1J

0 A=|; 7]

@a=l 7

wa-f 3

Eigenvalues are real if 72 — 46 > 0.



{X}_[a b] [x] T =a+b A o= 3(r— V12— 45)
y| — |c d| |y § =ad— bc X = 3(m+ V12— 40).
Which of the following has real eigenvalues?

(a)A::_O2 (1):;7':0,5:2

(b)A:} _11:,72275:2

(c)A::; 62:,7:7,5:14

(d)Az:g g ;T=6,6=0

Eigenvalues are real if 72 — 46 > 0.



x| _|a b||x T —a+b M= (r— V12— 49)
y| — |c d| |y 6 =ad— bc Ao :%(7—+\/72745).
Which of the following has real eigenvalues?
(a) A= 0 1;7':0,5:2;7'2745:78<0
__2 O_
1 —1] )
(b) A= 1 1 i T=2,0=2;7T"—-4=-4<0
(c) A= ; 702;7:7,5:14;72745:77<0
3 3 2
(d) A= 3 3 ;T=6,0=0;7"—46=36>0.

Eigenvalues are real if 72 — 46 > 0.



x| _|a b||x T —a+b M= (r— V12— 49)
y| — |c d| |y 6 =ad— bc Ao :%(7—+\/72745).
Which of the following has real eigenvalues?

(a) A= _02 3;7:0,5:2;72745:78<0

1 —1] )

(b) A= 1 1 i T=2,0=2;7T"—-4=-4<0

(c)A:; 702;7:7,5:14;72745:77<0

(d)Azg g ;7T=6,0=0;7"—45=36>0.

Eigenvalues are real if 72 — 48 > 0. Only (d) has real eigenvalues.
g



Linear systems with real eigenvalues

x| _|a b||x T =a+b M= (r— V12— 49)
y| — |c d| |y 6 =ad— bc A2 :%(T+M).

Suppose for the moment that 72 > 46, so A; and )z are real, and \; < Xa.



Linear systems with real eigenvalues

x| _|a b||x T =a+b M= (r— V12— 49)
y| — |c d| |y 6 =ad— bc A2 :%(T+M).

Suppose for the moment that 72 > 46, so A; and )z are real, and \; < Xa.
We can find eigenvectors vi and v, such that Avi = A1vi and Ava = \ave.



Linear systems with real eigenvalues

x| _|a b||x T =a+b M= (r— V12— 49)
y| — |c d| |y 6 =ad— bc A2 :%(T+M).

Suppose for the moment that 72 > 46, so A; and )z are real, and \; < Xa.
We can find eigenvectors vi and v, such that Avi = A1vi and Ava = \ave.

Now suppose that u = cie*tv; + ce™2fv, for some constants ¢; and c,.



Linear systems with real eigenvalues

x| _|a b||x T =a+b M= (r— V12— 49)
y| — |c d| |y 6 =ad— bc A2 :%(T+M).

Suppose for the moment that 72 > 46, so A; and )z are real, and \; < Xa.
We can find eigenvectors vi and v, such that Avi = A1vi and Ava = \ave.

Now suppose that u = cie*tv; + ce™2fv, for some constants ¢; and ¢,. Then

Aot

. At
U=ahe'vi+ ale™wn



Linear systems with real eigenvalues

x| _|a b||x T =a+b M= (r— V12— 49)
y| — |c d| |y 6 =ad— bc A2 :%(T+M).

Suppose for the moment that 72 > 46, so A; and )z are real, and \; < Xa.
We can find eigenvectors vi and v, such that Avi = A1vi and Ava = \ave.

Now suppose that u = cie*tv; + ce™2fv, for some constants ¢; and ¢,. Then

. Ait Aot Art Aot
U=a et'vi+oe v =ce'Av + e ?" An



Linear systems with real eigenvalues

x| _|a b||x T =a+b M= (r— V12— 49)
y| — |c d| |y 6 =ad— bc A2 :%(T+M).

Suppose for the moment that 72 > 46, so A; and )z are real, and \; < Xa.
We can find eigenvectors vi and v, such that Avi = A1vi and Ava = \ave.

Now suppose that u = cie*tv; + ce™2fv, for some constants ¢; and ¢,. Then

. Ait Aot Art Aot
0=cahet'vi+alewv=caeAn + e " Av, = Au,



Linear systems with real eigenvalues

x| _|a b||x T =a+b M= (r— V12— 49)
y| — |c d| |y 6 =ad— bc A2 :%(T+M).

Suppose for the moment that 72 > 46, so A; and )z are real, and \; < Xa.
We can find eigenvectors vi and v, such that Avi = A1vi and Ava = \ave.

Now suppose that u = cie*tv; + ce™2fv, for some constants ¢; and ¢,. Then
. A A A A
0= cahe'vi + ale™?va = cre™Avy + e 2 Ay, = Au,

so we have a solution to our system of equations.



Linear systems with real eigenvalues
x| _|a b||x T —a+b M= L(r— VT2 —49)
y| e d| |y § =ad-bc X =

(r + V72— 40).
Suppose for the moment that 72 > 46, so A; and )z are real, and \; < Xa.
We can find eigenvectors vi and v, such that Avi = A1vi and Ava = \ave.

NN =

Mty + ce™2ty, for some constants ¢; and c;. Then

Now suppose that u = cie
. A A A A
0= cahe'vi + ale™?va = cre™Avy + e 2 Ay, = Au,
so we have a solution to our system of equations.

If A1, \2 <0 then v — 0ast— oo.



Linear systems with real eigenvalues
x| _|a b||x T —a+b M= L(r— VT2 —49)
y| e d| |y § =ad-bc X =

(r + V72— 40).
Suppose for the moment that 72 > 46, so A; and )z are real, and \; < Xa.
We can find eigenvectors vi and v, such that Avi = A1vi and Ava = \ave.

NN =

Mty + ce™2ty, for some constants ¢; and c;. Then

Now suppose that u = cie
0= cl)qehtvl + C2)\2e)‘2tvz = cle)‘ltAvl + CQG)\ZtAVQ = Au,

so we have a solution to our system of equations.

If A1, \2 <0 then v — 0ast— oo.

If A\1 < 0 < X2 then when t is large we can ignore cie*tv; and u >~ ce*?tvy.



Linear systems with real eigenvalues

x| _|a b||x T =a+b M= (r— V12— 49)
y c d| |y 60 =ad— bc Ao :%(T+M).

Suppose for the moment that 72 > 46, so A; and )z are real, and \; < Xa.
We can find eigenvectors vi and v, such that Avi = A1vi and Ava = \ave.

Now suppose that u = cie*tv; + ce™2fv, for some constants ¢; and ¢,. Then

0= cl)qehtvl + C2)\2e)‘2tvz = cle)‘ltAvl + CQG)\ZtAVQ = Au,
so we have a solution to our system of equations.
If A1, \2 <0 then v — 0ast— oo.
If A\1 < 0 < X2 then when t is large we can ignore cie*tv; and u >~ ce*?tvy.

If 0 < A1 < A2 then both terms will be very large when t is large, but the term
ety will still grow much more quickly than cie*tv;.
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X 0 2| |x . =2 (1] ... .
v =11 1 y eigenvectors 11011 with eigenvalues — 1,2.
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Linear systems with real eigenvalues — example

x| [-2cie™ + ce*t al [ w/3—x/3
y| 7| ae Tt + ce*t o|  [2w/3+x/3]| "
For example, suppose we know that when t =0 we have x = —1 and y = 1.

Put xo = —1 and yo = 1 in the right hand equation to get ¢c; = 2/3 and
¢ = 1/3. Put these values in the left hand equation to get

e —femt+ 1
=yl = %e—t n %th .
To check this, note that when t = 0 it gives

- —4/3+1/3 I Y N B )
u= [ 2/3+1/3 ] = { 1 ] = L’J as expected.Moreover:

so u = Au as expected.



Question: what are the eigenvalues?

What are the eigenvalues of the matrix

A— 10 100 ?
1000 10000



Question: what are the eigenvalues?

What are the eigenvalues of the matrix

A— 10 100 ?
1000 10000

The trace is 7 = 10 4+ 10000 = 10010.



Question: what are the eigenvalues?

What are the eigenvalues of the matrix

A— 10 100 ?
1000 10000

The trace is 7 = 10 4+ 10000 = 10010.

The determinant is 6 = 10 x 10000 — 100 x 1000 = 0.



Question: what are the eigenvalues?

What are the eigenvalues of the matrix

A— 10 100 ?
1000 10000

The trace is 7 = 10 4+ 10000 = 10010.
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This means V72 — 45 = /72 =1



Question: what are the eigenvalues?

What are the eigenvalues of the matrix

A— 10 100 ?
1000 10000

The trace is 7 = 10 4+ 10000 = 10010.

The determinant is § = 10 x 10000 — 100 x 1000 = 0.
This means 72 — 46 = V72 =7, 50 Ai, Mo = (T £ 7)/2



Question: what are the eigenvalues?

What are the eigenvalues of the matrix

A— 10 100 ?
1000 10000

The trace is 7 = 10 4+ 10000 = 10010.

The determinant is § = 10 x 10000 — 100 x 1000 = 0.
This means 72 — 45 = V12 = 7,50 A\, o = (T £7)/2 = 0,7



Question: what are the eigenvalues?

What are the eigenvalues of the matrix

A— 10 100 ?
1000 10000

The trace is 7 = 10 4+ 10000 = 10010.

The determinant is § = 10 x 10000 — 100 x 1000 = 0.
This means v/72 — 40 = V72 = 7, 50 Ai, Ao = (7 +7)/2 = 0,7 = 0,10010.
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Consider again a system & = Au, where A has real eigenvalues A\; < X2 and
corresponding eigenvectors vi, vo.

eMt 0
] and E = { em} and P = VEV~1.

We can put v; and v» together to form a 2 x 2 matrix V = {w

A0

0 X

We also put D = [ 0
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We can put v; and v» together to form a 2 x 2 matrix V = {w
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Also, the solution to t = Au with u = up at t =0 is u = Puyp.



Linear systems with real eigenvalues — reformulation

A1t
w} D:[Al 0] E:{e 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.




Linear systems with real eigenvalues — reformulation

At
w} D:[Al 0] E:{el 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

g

First note that

AV:A|:V1




Linear systems with real eigenvalues — reformulation

At
w} D:[)‘l 0] E:{el 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

] - [AV1

First note that

AV:A|:V1

AV2:|



Linear systems with real eigenvalues — reformulation

At
w} D:[)‘l 0] E:{el 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

] - [AV1

First note that

AV:A|:V1

AV2:| = |:)\1V1

)\2V2:|



Linear systems with real eigenvalues — reformulation

At
w} D:[)‘l 0] E:{el 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

o) <o) = o ] [ ] 8

First note that

AV:A|:V1

AV2:| = |:)\1V1




Linear systems with real eigenvalues — reformulation

At
w} D:[)‘l 0] E:{el 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

] - [Avl )\] - [

First note that

AV:A|:V1

AV2:| = |:)\1V1




Linear systems with real eigenvalues — reformulation

A1t
w} D:[)‘l 0] E:{e 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

] - [Avl )\] - [

We can rearrange to get A= VDV 1.

First note that

AV:A|:V1

AV2:| = |:)\1V1

A 0]
Vz} {0 )\J_VD.



Linear systems with real eigenvalues — reformulation

A1t
w} D:[)‘l 0] E:{e 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

] - [Avl )\] - [

We can rearrange to get A= VDV ™!, This is called a diagonalization of A.

First note that

AV:A|:V1

AV2:| = |:)\1V1

A 0]
Vz} {0 )\J_VD.



Linear systems with real eigenvalues — reformulation

A1t
w} D:[)‘l 0] E:{e 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

] - [Avl )\] - [

We can rearrange to get A= VDV ™!, This is called a diagonalization of A.
Now AP = VDV~ 'VEV ™! = VDEV .

First note that

AV:A|:V1

AV2:| = |:)\1V1

A 0]
Vz} {0 )\J_VD.



Linear systems with real eigenvalues — reformulation

A1t
w} D:[)‘l 0] E:{e 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

] - [Avl )\] - [

We can rearrange to get A= VDV ™!, This is called a diagonalization of A.
Now AP = VDV~ 'VEV ™' = VDEV~'. Also

- [aeMt 0
E_|: 0 )\2&'3)\2t

First note that

AV:A|:V1

AV2:| = |:)\1V1

A 0]
Vz} {0 )\J_VD.



Linear systems with real eigenvalues — reformulation

A1t
w} D:[)‘l 0] E:{e 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

] - [Avl )\] - [

We can rearrange to get A= VDV ™!, This is called a diagonalization of A.
Now AP = VDV~ 'VEV ™' = VDEV~'. Also

E_ Aett 0 _ a0 eMt 0
0 Aoet2t 0 Xf| 0 &M

First note that

AV:A|:V1

AV2:| = |:)\1V1

A 0]
Vz} {0 )\J_VD.



Linear systems with real eigenvalues — reformulation

A1t
w} D:[)‘l 0] E:{e 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

] - [Avl )\] - [

We can rearrange to get A= VDV ™!, This is called a diagonalization of A.
Now AP = VDV~ 'VEV ™' = VDEV~'. Also

- [aeMt 0 1 [a o]feMt 0]
E‘{ 0 e Tlo a0 e TPE

First note that

AV:A|:V1

AV2:| = |:)\1V1

A 0]
Vz} {0 )\J_VD.



Linear systems with real eigenvalues — reformulation

A1t
w} D:[)‘l 0] E:{e 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

] - [Avl )\] - [

We can rearrange to get A= VDV ™!, This is called a diagonalization of A.
Now AP = VDV~ 'VEV ™' = VDEV~'. Also

- [aeMt 0 1 [a o]feMt 0]
E‘{ 0 ae| Tl0 x| 0 e TPE

First note that

AV:A|:V1

AV2:| = |:)\1V1

A 0]
Vz} {0 )\J_VD.

p=VEV!



Linear systems with real eigenvalues — reformulation

A1t
w} D:[)‘l 0] E:{e 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

] - [Avl )\] - [

We can rearrange to get A= VDV ™!, This is called a diagonalization of A.
Now AP = VDV~ 'VEV ™' = VDEV~'. Also

- [aeMt 0 1 [a o]feMt 0]
E‘{ 0 ae| Tl0 x| 0 e TPE

First note that

AV:A|:V1

AV2:| = |:)\1V1

A 0]
Vz} {0 )\J_VD.

P=VEV!'=VDEV!



Linear systems with real eigenvalues — reformulation

A1t
w} D:[)‘l 0] E:{e 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

] - [Avl )\] - [

We can rearrange to get A= VDV ™!, This is called a diagonalization of A.
Now AP = VDV~ 'VEV ™' = VDEV~'. Also

- [aeMt 0 1 [a o]feMt 0]
E‘{ 0 ae| Tl0 x| 0 e TPE

First note that

AV:A|:V1

AV2:| = |:)\1V1

A 0]
Vz} {0 )\J_VD.

P=VEV'=VDEV!=VDVlvEV! = AP.

as claimed.



Linear systems with real eigenvalues — reformulation

A1t
w} D:[)‘l 0] E:{e 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

] - [Avl )\] - [

We can rearrange to get A= VDV ™!, This is called a diagonalization of A.
Now AP = VDV~ 'VEV ™' = VDEV~'. Also

- [aeMt 0 1 [a o]feMt 0]
E‘{ 0 ae| Tl0 x| 0 e TPE

First note that

AV:A|:V1

AV2:| = |:)\1V1

A 0]
Vz} {0 )\J_VD.

P=VEV'=VDEV!=VDVlvEV! = AP.

as claimed. Also, when t =0 we have E =/so P= VW1 =1,



Linear systems with real eigenvalues — reformulation

A1t
w} D:[)‘l 0] E:{e 0] P=VEV!

V:[‘“ 0 X 0 e

Proposition: the solution to t = Au with u = up at t = 0 is v = Pup.

] - [Avl )\] - [

We can rearrange to get A= VDV ™!, This is called a diagonalization of A.
Now AP = VDV~ 'VEV ™' = VDEV~'. Also

- [aeMt 0 1 [a o]feMt 0]
E‘{ 0 ae| Tl0 x| 0 e TPE

First note that

AV:A|:V1

AV2:| = |:)\1V1

A 0]
Vz} {0 )\J_VD.

P=VEV'=VDEV!=VDVlvEV! = AP.

as claimed. Also, when t =0 we have E =/so P= VW1 =1,
Now suppose we have a vector g, and we put u = Puy.



Linear systems with real eigenvalues — reformulation

A1t
w} D:[)‘l 0] E:{e 0] P=VEV!

V:[‘“ 0 X 0 e
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Now AP = VDV~ 'VEV ™' = VDEV~'. Also

- [aeMt 0 1 [a o]feMt 0]
E‘{ 0 ae| Tl0 x| 0 e TPE

First note that
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as claimed. Also, when t =0 we have E =/so P= VW1 =1,
Now suppose we have a vector o, and we put u = Pup. When t = 0 we have
P =1 so u= up. We also have t = Puy = APup = Au as required.
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This is the same answer as before.
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Determinant of the fundamental solution

Proposition: det(P) = etrc()t,

Proof.
Recall that P = VEV~! so

det(P) = det(V) det(E) det(V) ™' = det(E).

At
e 0
E= [ 0 e)\zt:| ’

det(P) = det(E) = eMfet?t = gMit2)t,

We have also seen that A1 + \> = 7 = trace(A), so det(P) = e
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The system u = Au has solution u =
Y [ gQelllt _ ollt

What are the eigenvalues of A?

111t

The exponentials e''f and e appear, so the eigenvalues must be 11 and 111.

Which of the following can be the solution for a first order autonomous linear
system?

e2t+e3t+e4t L et+e—t+1 o eTrt L et(1+t)
e2tie3t+e4t - et_’_eft_l - - et(l_t)

> u is impossible: it contains three different exponentials (e, €' and e*).
> v also contains three different exponentials (ef, e™* and " = 1).
» w is a solution for x = wx, y = 27y.

> zis a solution for x = (3x + y)/2, y = (y — x)/2
(which has A =1 as a repeated eigenvalue).
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The solution is u = Puy, where P = VEV 1. To find P we need V, and to find
V' we need the eigenvectors. However, there is another formula which is easier.

Proposition: P = (A2 — A1) ((hee™’ = Ae) + (e — eM11)A).
Proof: First put
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It follows that P = VEV ™' = (X2 — A1) "' VFV 1. However,

VFV ™! = (Aae™t — e VIV 4 (e — et VDY !
= ()\2eA1t — /\1eA2t)l + (eAQt - e)‘lt)A.

After multiplying by (A2 — A1) ™" we get the claimed formula for P.
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This is the same answer as we found previously.
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T =a+d

a b
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Complex eigenvalues

T =a+d

a b
lfA:{c }thenA17A2:%(T¢M),where 5 —ad—be

d

Now suppose that 72 — 4§ < 0, so A; and X2 are complex numbers. Put

A=7/2 w=+40 —72/2 SO A1, A2 = A Fiw.

We can use the same method as before, remembering that
eWTFit — ATt — oAt (cog(wt) F isin(wt))

and . . . .
cos(wt) = (e'F + e %) /2 sin(wt) = (e'“F — e~ ") /(20).

Some complex numbers appear, but in the end the imaginary parts cancel.
Proposition: The solution to 17 = Au with u = ug at t = 0 is u = Pug, where

P = e (cos(wt)l +w " sin(wt)(A— Al))



Complex eigenvalues — formula for P

A=A —iw A=A+ iw Solution: u = Pug
Proposition: P = e**(cos(wt)! + w™ ' sin(wt)(A — AI))




Complex eigenvalues — formula for P

A=A —iw A=A+ iw Solution: u = Pug
Proposition: P = e**(cos(wt)! + w™ ' sin(wt)(A — AI))

Proof: We saw before that

P = (X — M) H((Mae™t — Ae™) 4 (727 — &™) A)



Complex eigenvalues — formula for P

A=A —iw A=A+ iw Solution: u = Pug
Proposition: P = e**(cos(wt)! + w™ ' sin(wt)(A — AI))

Proof: We saw before that
P = (X — M) H((Mae™t — Ae™) 4 (727 — &™) A)
Now

A2 — A1 = 2iw



Complex eigenvalues — formula for P

A=A —iw A=A+ iw Solution: u = Pug
Proposition: P = e**(cos(wt)! + w™ ' sin(wt)(A — AI))

Proof: We saw before that
P =\ — M) (D™ = Ae™)] + (e — eMN)A)

Now

At At iwt At —iwt
e e —€e e



Complex eigenvalues — formula for P

A=A —iw A=A+ iw Solution: u = Pug
Proposition: P = e**(cos(wt)! + w™ ' sin(wt)(A — AI))

Proof: We saw before that
P =\ — M) (D™ = Ae™)] + (e — eMN)A)

Now

At At _iwt At —iwt . At -
—ett =M —eMe ' =2/ sin(wt)



Complex eigenvalues — formula for P

A=A —iw A=A+ iw Solution: u = Pug
Proposition: P = e**(cos(wt)! + w™ ' sin(wt)(A — AI))

Proof: We saw before that
P =\ — M) (D™ = Ae™)] + (e — eMN)A)
Now
A2 — A1 =2iw
et oMt = Mt M = Dje? sin(wt)

)\Qeklt _ )\1€>\2t _ ()\ + iw)e)\te—iwt _ ()\ _ l-w)ekteiwt



Complex eigenvalues — formula for P

A=A —iw A=A+ iw Solution: u = Pug
Proposition: P = e**(cos(wt)! + w™ ' sin(wt)(A — AI))

Proof: We saw before that
P =\ — M) (D™ = Ae™)] + (e — eMN)A)
Now
A2 — A1 =2iw
et oMt = Mt M = Dje? sin(wt)
et — At = (A +iw)eMe W — (A — iw)eMe™!

_ eM (iw(eiwt + 67IWt) _ )\(eiwt _ efiwt)>



Complex eigenvalues — formula for P

A=A —iw A=A+ iw Solution: u = Pug
Proposition: P = e**(cos(wt)! + w™ ' sin(wt)(A — AI))

Proof: We saw before that
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Now
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Complex eigenvalues — formula for P

A=A —iw A=A+ iw Solution: u = Pug
Proposition: P = e**(cos(wt)! + w™ ' sin(wt)(A — AI))

Proof: We saw before that
P = (X — M) H((Mae™t — Ae™) 4 (727 — &™) A)
Now
A2 — A1 =2iw
et oMt = Mt M = Dje? sin(wt)
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Complex eigenvalues — formula for P

A=A —iw A=A+ iw Solution: u = Pug
Proposition: P = e**(cos(wt)! + w™ ' sin(wt)(A — AI))

Proof: We saw before that
P = (X — 1) H((2e™M — M)+ (7 — eM)A)
Now
A2 — A1 =2iw
et oMt = Mt M = Dje? sin(wt)
et — At = (A +iw)eMe W — (A — iw)eMe™!
— Mt (iw(eim + e—iwt) _ )\(eiwt . e—iwt)>
= e™(2iw cos(wt) — 2iAsin(wt))
P = (2iw) "t e™ (2iw cos(wt)l — 2iXsin(wt) + 2i sin(wt)A)

= e™(cos(wt)l +w ' sin(wt)(A— Al)) O
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Complex eigenvalues — example
. 51 [x

x =ax+ By X
Suppose that . or |'.| =
PP y =-Bx+ay H {

Then
V4o —a? 3

§=a’+ B> A== =« w= 5

N

T =2«



Complex eigenvalues — example

x =ax+ By x « Bl
that . | '
Suppose tha y =—fx+ay or [y} {—5 a] [}’}
Then
— 3
r=2a §=a’+p Azgﬂ“ “:@:B

P = e (cos(wt)l +w *sin(wt)(A — Al))
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Then
T =2« b=ao’+ 5 A:%— 5

P = e (cos(wt)l +w *sin(wt)(A — Al))
= e™(cos(Bt)l + B sin(Bt)(A — al))



Complex eigenvalues — example

x =ax+ By | _[a Bl|x
Suppose that y =—Bxt+ay [_y:| - {—ﬁ a] [}’}

Then

T =20 s=a"+p5 A=

T_
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P = e (cos(wt)l +w *sin(wt)(A — Al))
= e™(cos(Bt)l + B sin(Bt)(A — al))
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x =ax+ By | _[a Bl|x
Suppose that y =—Bxt+ay [_y:| - {—ﬁ a] [}’}

Then

T =20 s=a"+p5 A=

T_
2 2

P = e (cos(wt)l +w *sin(wt)(A — Al))
= e™(cos(Bt)l + B sin(Bt)(A — al))

([0 ] 200 )

_ ot { cos(Bt) sin(ﬂt)}
- —sin(8t) cos(Bt)| "




Complex eigenvalues — example

x =ax+ By | _[a Bl|x
Suppose that y =—Bxt+ay [_y:| - {—ﬁ a] [)’}

Then

T =20 s=a"+p5 A=

T_
2 2

P = e (cos(wt)l +w *sin(wt)(A — Al))
= e™(cos(Bt)l + B sin(Bt)(A — al))

= (1787 ot 5 [ 3))

_ ot { cos(Bt) sin(/a’t)}
- —sin(8t) cos(Bt)| "

Thus, the solution is
x = e**(cos(Bt)xo + sin(St)yo)
y = e*(—sin(Bt)xo + cos(Bt)yo).
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Proposition: Suppose that the matrix A = [i Z} has complex eigenvalues.
Then bc < 0 (so b and ¢ are nonzero and have opposite sign).

We will need this when we discuss whether the flow lines for A go clockwise or
anticlockwise.

Proof.
Note that
7% — 46 = (a+ d)* — 4ad + 4bc = a° + 2ad + d* — 4ad + 4bc
=2’ —2ad + d” + 4bc = (a — d)’ + 4bc.



Clockwise or anticlockwise?

Proposition: Suppose that the matrix A = [i Z} has complex eigenvalues.
Then bc < 0 (so b and ¢ are nonzero and have opposite sign).

We will need this when we discuss whether the flow lines for A go clockwise or
anticlockwise.

Proof.
Note that
7% — 46 = (a+ d)* — 4ad + 4bc = a° + 2ad + d* — 4ad + 4bc
=2’ —2ad + d” + 4bc = (a — d)’ + 4bc.
Thus,

be = ((72 —48)— (a— d)2) .

e
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Proposition: Suppose that the matrix A = [i Z} has complex eigenvalues.
Then bc < 0 (so b and ¢ are nonzero and have opposite sign).

We will need this when we discuss whether the flow lines for A go clockwise or
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Proof.
Note that
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Clockwise or anticlockwise?

Proposition: Suppose that the matrix A = [i Z} has complex eigenvalues.
Then bc < 0 (so b and ¢ are nonzero and have opposite sign).

We will need this when we discuss whether the flow lines for A go clockwise or
anticlockwise.

Proof.
Note that
7% — 46 = (a+ d)* — 4ad + 4bc = a° + 2ad + d* — 4ad + 4bc
=2’ —2ad + d” + 4bc = (a — d)’ + 4bc.
Thus,

be = % (2 —48) ~ (a— ay?).

As A has complex eigenvalues, we must have 72 — 46 < 0.We also have
(a—d)? >0, so bc <0 as claimed. O
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clockwise clockwise clockwise
stable focus centre unstable focus
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Map of the (7,9) plane

) 2-45=0

<0, 72—45<0 >0, 72—45<0

stable focus unstable focus

T\

7<0, §>0, 72 —45>0 >0, §>0, 72 —46>0

stable node unstable node

|\
W7

AL, A = %(T:F V12— 49) T=M+ X 6 = M.
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Repeated eigenvalues

Proposition: If A has only one eigenvalue, say A then the matrix

P = e (I + t(A — \)) satisfies P = AP, and P = | when t = 0.

Proof: Put A= E 5} soT=a+d and d = ad — bc.

The eigenvalues (7 £ /72 — 45)/2 are the same, so we must have 7° = 44,
and the eigenvalue is A = 7/2 = a/2 + d/2. Note that

72 — 46 = (a+d)* —4ad + 4bc = a° +2ad + d* — 4ad + 4bc = (a— d)* + 4bc,

So we see that (a — d)? +4bc =0, or (a/2 — d/2)? + bc = 0.
Now consider the matrix B =A — X = A — 1(a+d)l, so P = (I + tB). In
the simplest case, B would be zero. It is not always zero, but at least B2 =0:

> _[a/2—d/2 b Ha/z—d/z b

B c d/2—a/2 c d/2—a/2



Repeated eigenvalues

Proposition: If A has only one eigenvalue, say A then the matrix
P = e (I + t(A — \)) satisfies P = AP, and P = | when t = 0.

Proof: Put A= E 3},50T:a+dand6:ad—bc.

The eigenvalues (7 £ /72 — 45)/2 are the same, so we must have 7° = 44,
and the eigenvalue is A = 7/2 = a/2 + d/2. Note that

72 — 46 = (a+d)* —4ad + 4bc = a° +2ad + d* — 4ad + 4bc = (a— d)* + 4bc,

So we see that (a — d)? +4bc =0, or (a/2 — d/2)? + bc = 0.
Now consider the matrix B =A — X = A — 1(a+d)l, so P = (I + tB). In
the simplest case, B would be zero. It is not always zero, but at least B2 =0:

B* = [2/2 c e d/2 i a/2} [2/2 c I d/2 i a/2}

B { (a/2 — d/2)* + bc (a/2 —d/2)b+ b(d/2 — a/Q)]
" |e(a/2—d/2)+ (d/2 — a/2)c cb+ (d/2 — a/2)?



Repeated eigenvalues

Proposition: If A has only one eigenvalue, say A then the matrix

P = e (I + t(A — \)) satisfies P = AP, and P = | when t = 0.

Proof: Put A= E 5} soT=a+d and 6 = ad — bc.

The eigenvalues (7 £ /72 — 45)/2 are the same, so we must have 7° = 44,
and the eigenvalue is A = 7/2 = a/2 + d/2. Note that

72 — 46 = (a+d)* —4ad + 4bc = a° +2ad + d* — 4ad + 4bc = (a— d)* + 4bc,

So we see that (a — d)? +4bc =0, or (a/2 — d/2)? + bc = 0.
Now consider the matrix B =A — X = A — 1(a+d)l, so P = (I + tB). In
the simplest case, B would be zero. It is not always zero, but at least B2 =0:

g2 _ [2/2-d/2 b } [a/2—d/2 b }

1 c d/2—a/2 c d/2—a/2
B (a/2 — d/2)* + bc (a/2—d/2)b+ b(d/2 — a/2)
" |c(a/2-d/2)+(d/2 - a/2)c cb+ (d/2 — a/2)? ]

[(a/2 — d/2)? + bc 0 }
0 (a/2 — d/2)* + bc
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Proposition: If A has only one eigenvalue, say A then the matrix

P = e (I + t(A — \)) satisfies P = AP, and P = | when t = 0.

Proof: Put A= E 5} soT=a+d and 6 = ad — bc.

The eigenvalues (7 £ /72 — 45)/2 are the same, so we must have 7° = 44,
and the eigenvalue is A = 7/2 = a/2 + d/2. Note that

72 — 46 = (a+d)* —4ad + 4bc = a° +2ad + d* — 4ad + 4bc = (a— d)* + 4bc,

So we see that (a — d)? +4bc =0, or (a/2 — d/2)? + bc = 0.
Now consider the matrix B =A — X = A — 1(a+d)l, so P = (I + tB). In
the simplest case, B would be zero. It is not always zero, but at least B2 =0:

g2 _ [2/2-d/2 b } [a/2—d/2 b }

1 c d/2—a/2 c d/2—a/2
B (a/2 — d/2)* + bc (a/2—d/2)b+ b(d/2 — a/2)
" |c(a/2-d/2)+(d/2 - a/2)c cb+ (d/2 — a/2)? ]

(2 dc/)2)2 o (a/2 — d(;2)2 + bc} - {8 8} :
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P = e (I + t(A — \)) satisfies P = AP, and P = | when t = 0.

The matrix B = A — Al satisfies B> = 0.

Next, we defined P to be e*'(/ + tB). This satisfies
P =XeM(I + tB) + "B = (A + tAB + B)
AP = (Al 4+ B)P = e (M + B)(I + tB)
= MM + tAB + B+ tB%) = e (A + tAB + B)



Repeated eigenvalues

Proposition: If A has only one eigenvalue, say A then the matrix
P = e (I + t(A — \)) satisfies P = AP, and P = | when t = 0.

The matrix B = A — Al satisfies B> = 0.

Next, we defined P to be e*'(/ + tB). This satisfies

P = Xe (I 4 tB) + eMB = (A + tAB + B)
AP = (Al 4+ B)P = e (M + B)(I + tB)
=M\ +tAB+ B+ tB?) = (M +tAB+B) =P

as claimed.



Repeated eigenvalues

Proposition: If A has only one eigenvalue, say A then the matrix
P = e (I + t(A — \)) satisfies P = AP, and P = | when t = 0.

The matrix B = A — Al satisfies B> = 0.

Next, we defined P to be e*'(/ + tB). This satisfies

P = Xe (I 4 tB) + eMB = (A + tAB + B)
AP = (Al 4+ B)P = e (M + B)(I + tB)
=M\ +tAB+ B+ tB?) = (M +tAB+B) =P

as claimed. Also, at t = 0 we have P = °(/ +0B) = |.
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> What is the equation of the red curve? 72 — 4§ =0
» What type is region A? Stable node.
> What are the equations for region B? 45 > 72, 7 > 0.

» What can we say about the eigenvalues in region C?
Both real, one positive, one negative.
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Consider a differential equation x = f(x,y), y = g(x,y).

An equilibrium point is a point (a, b) where f(a, b) =0 and g(a,b) =0. If
(a, b) is an equilibrium point then we have a constant solution (x,y) = (a, b)
to the equation.

What happens if we start at a point (xo, yo) that is very close to (a, b)? Then
f(xo, yo) and g(xo, yo) will be small, so the point will move slowly at first. If we
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(a) The point might move closer and closer to (a, b), and slow down even
more, with (x,y) — (a, b) and (x,y) — (0,0) as t — oo.

(b) The point might circle around (a, b), never moving very far away, but not
slowing down.

(c) The point might eventually move far away from (a, b).

If (a) always happens, the equilibrium point is asymptotically stable .
If (b) can also happen (but not (c)), the equilibrium point is stable .
If (c) can happen then the equilibrium point is unstable .
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Stability — precise definitions

More formal definitions are as follows.

> For any point u € R? and any t € R we write ¢(t, u) for the value at time
t of the solution that passes through v at t = 0. Thus ¢(0,u) = v and

% (t7 Ll) = f(¢(t7 U))

» Example: for the system x = 2x, y = 3y we have

#(t, (x0,50)) = (%0, € y0)-
» Example: for the system x =y, y = —x we have
o(t, (x0,¥0)) = (cos(t)xo + sin(t)yo, — sin(t)xo + cos(t)yo).
» The equilibrium point a is stable if for all € > 0 there exists § > 0 such

that whenever ||u — a|| < ¢ we have ||¢(t,u) — a|| < € for all t > 0.

» The equilibrium point a is asymptotically stable if it is stable, and there
exists & > 0 such that whenever ||u — a|| < § we have ||¢(t,u) —a|]| — 0 as
t — 00.

» If a is not stable, we say it is unstable.
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Equilibrium points for linear systems

Consider a linear system {X} = [a b} [X] with 7 = a+d and § = ad — bc.
y c djly

Then (0,0) is an equilibrium point (and is the only one, unless ad — bc = 0).

(a) If 7 <0 and ¢ > 0 then the system is a stable node or stable focus and
the equilibrium point is asymptotically stable.

(b) If 7 =0 and § > 0 then the system is a centre and the equilibrium point
stable but not asymptotically stable.

(c) If 7> 0ord <0 then the system is (usually) an unstable node or unstable
focus or saddle, and the equilibrium point is unstable.

)

stable focus unstable focus

stable node unstable node

T

saddle (unstable)
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(a) Suppose that there are two real eigenvalues A1, A2. Then 7 = A1 + X2 and
8 = A1)X2. The solutions involve et and e*?f, so they will converge to
zero if A1, A2 < 0, but will blow up to co if A1 > 0 or X2 > 0.

If A1tA2 =8 < 0 then Ay > 0 or A2 > 0, so (0,0) is unstable.

If A1\2 = d > 0 then A1 and A2 must both have the same sign.

If also A1 + A2 =7 > 0 then A1, A2 > 0 so (0,0) is unstable.

If &1 + A2 =7 < 0 then A1, A2 < 0 so (0,0) is asymptotically stable.

(b) Suppose that there are two complex eigenvalues, A & iw, so
T=2Xand § = (A + iw)(A — iw) = A?> + w?. The solutions involve
e* sin(wt) and e cos(wt), so the overall size is like e**.
If 7 =2X > 0 then (0,0) is unstable.
If 7 =0 then (0,0) is stable but not asymptotically stable.
If 7 =2\ < 0 then (0,0) is asymptotically stable.

stable unstable

stable unstable

unstable
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Consider a system x = f(x,y), y = g(x, y).

Suppose that (a, b) is an equilibrium point, so f(a, b) = g(a, b) = 0.
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Consider a system x = f(x,y), y = g(x, y).

Suppose that (a, b) is an equilibrium point, so f(a, b) = g(a, b) = 0.
We will study the behaviour of solutions (x, y) that are close to (a, b),
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Linearisation (Z&£4t)

Consider a system x = f(x,y), y = g(x, y).

Suppose that (a, b) is an equilibrium point, so f(a, b) = g(a, b) = 0.
We will study the behaviour of solutions (x, y) that are close to (a, b),
so (x,y) = (a+ a, b+ ) with a and 3 small.

We write f, = 9f /Ox and f, = Of /dy, so

f(x,y) = f(at+a, b+pB) ~ f(a, b)+£(a, b)atf,(a, b)B = fi(a, b)a+f,(a, b)S.

Also, as x = a+ « and a is constant, we have & = x = f(x, y).
We can do the same for 3, so we get

& = f(a, b)a+ f,(a, b)s
B = gx(a, b)a+ g,(a, b)B.
This is a linear system with matrix

= f(a,b) f,(a,b)
~ lex(a,b) g(ab)|’

called the Jacobian. We can classify it as before, using the trace and
determinant, or the eigenvalues.

Usually the flow lines for the original nonlinear system will be similar to those
for the linearised system, at least if we look close to (a, b).
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Consider the system x = 9y> — 1, y = 9x*> — 1. There is an equilibrium point at
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Linearisation example

Consider the system x = 9y? — 1, y = 9x*> — 1. There is an equilibrium point at
(1/3,1/3). There we have

oy )-1a Y-k g

. 1 1 .
It is easy to see that the vectors vi = 1 and v» = _q] are eigenvectors,
with eigenvalues A\; = 6 and A\, = —6. Solutions to the linear system
& «@
|l =4J are of the form
3 -1

6t —6t
al 6t —6t __ |a1e + ae

=aie i+ ae wn= 6t —6t| -
B ae’ — aze



Linearisation example

Consider the system x = 9y? — 1, y = 9x*> — 1. There is an equilibrium point at
(1/3,1/3). There we have

oy )-1a Y-k g

. 1 1 .
It is easy to see that the vectors vi = L} and v» = [71} are eigenvectors,

with eigenvalues A\; = 6 and A\, = —6. Solutions to the linear system
& «@
|l =4J are of the form

iR

2% + ape 0t
e — 20|

|:a:| = aleﬁtvl +4 azefﬁth = [
B
As x =1/3+4+ a and y = 1/3+ 3, the corresponding approximate solutions for

the original system are

x| _[1/3 6t —6t 1/3+3166t+82676t
[y] = {1/3} +aie vit+ae Tvo= |:1/3+3166t — apett| "
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Linearisation example

x=9y’—1 y=0x>—1

X 1/3 6t —6t 1/3+a166t—|—aze_6t

These are solutions for the linearised system.



The eigenvectors, more slowly

0 6
WehadJ—{6 0

This gives eigenvalues (0 £+ v/144)/2, so Ay = —6 and X\, = 6.

}. This has 7 = 0 and § = —36 so 72 — 46 = 144.

: _[p o B 6 6] [p] [0
The eigenvector v; = {q] must satisfy (J — A\1/)vi =0, or {6 6} [q} = {0}

which means that p + g = 0. We can therefore take v = {_11}

The vector v» = [g] must satisfy (J — X2/)v> =0, or {_66 _66] [p} = [g}

which means that p — g = 0. We can therefore take v» = {ﬂ
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There we have

J_ offox offdy | | 0 18y ] [0 6
~ | 0g/Ox 0Og/dy | ~ | 18x O -6 0]’

giving equations & = 68 and 8 = —6a.
Some solutions are
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Linearisation example

Consider again the system x = 9y® — 1, y = 9x* — 1.
There is another equilibrium point at (—1/3,1/3).
There we have

J_ offox offdy | | 0 18y ] [0 6
~ | 0g/Ox 0Og/dy | ~ | 18x O -6 0]’

giving equations & = 68 and 8 = —6a.
Some solutions are

x=—-1/34+a=—1/3+ Rcos(6t) y =1/3+p =1/3 — Rsin(6t)
(with R constant).

This means that the solution curves are circles centred at (—1/3,1/3).
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The damped Duffing oscillator is given by x = y and y = 2x — x> — 0.1y.
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The damped Duffing oscillator

The damped Duffing oscillator is given by x = y and y = 2x — x> — 0.1y.
There is an equilibrium point at (1/2,0). There we have

S [ of/ox ofjoy | _ 0 1 fo 1
T | 0g/ox Og/dy | T | 2—-3x*> —01 |  |-4 -01]°

This has 7 = —0.1 <0 and § =4 > 0 and 7> — 45 ~ —16. This gives a stable
focus with growth rate A = 7/2 = —0.05 and angular frequency

w =45 — 72/2 ~+/16/2 = 2. Solutions of the linearised equations can be
found as usual using the matrix

P = e (cos(wt)! 4w sin(wt)(J — Al))

o —0.05t 10 . 0.05 1
~e <cos(2t) {0 1} + 0.5sin(2t) [74 70.05])

\/ig-ao}

In particular, the solution with [

-

at time t = 0 is given by



The damped Duffing oscillator

x| _[v2 o005t cos(2t) + 0.025sin(2t)
2x — x5 — 0.1y yl |0 0 —2sin(2t) ’

<. X
I
<

These are solutions for the original system.



The damped Duffing oscillator

X =y x| _[v2 o005t cos(2t) + 0.025sin(2t)
y =2x—x>—0.1y yl |0 0 —2sin(2t) ’

A

-

These are solutions for the linearised system.
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The Hartman-Grobman Theorem

In the last example:
» J was [_01 (1)] with eigenvalues A1, A» = %/, so Re(A1) = Re(A\2) = 0.

» The phase portrait for the linearisation had different properties from the
phase portrait for the original system.

Theorem: Suppose that e = (a, b) is an equilibrium point for a system

x =f(x,y), y = g(x,y), and that the eigenvalues for the Jacobian matrix J
satisfy Re(A1) # 0 and Re(\2) # 0. Then the original system is locally
topologically conjugate to the linearised system.

3
complex eigenvalues complex eigenvalues
real part < 0 real part > 0

real eigenvalues, one < 0, one > 0

The theorem applies unless § =0, or ( =0 and 6 > 0).
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The Hartman-Grobman Theorem

Theorem: Suppose that e = (a, b) is an equilibrium point for a system
x=f(x,y), y = g(x,y), and that the eigenvalues for the Jacobian matrix J
satisfy Re(A1) # 0 and Re(\2) # 0. Then the original system is locally
topologically conjugate to the linearised system.

Explanation:

> Recall: there is a matrix P(t) such that the solutions to u(t) = Ju(t) are
u(t) = P(t)uo.

» In the linearised system we have x = e + u and xo = e + up, so the
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Theorem: Suppose that e = (a, b) is an equilibrium point for a system
x=f(x,y), y = g(x,y), and that the eigenvalues for the Jacobian matrix J
satisfy Re(A1) # 0 and Re(\2) # 0. Then the original system is locally
topologically conjugate to the linearised system.
Explanation:
> Recall: there is a matrix P(t) such that the solutions to u(t) = Ju(t) are
u(t) = P(t)uo.
» In the linearised system we have x = e + u and xo = e + up, so the
solutions are x(t) = e 4+ P(t)(x0 — e).
» In other words, if we put ¢o(x) = x — e, then the solutions to the
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Local topological conjugacy means that there is a function ¢ such that
> (x) is defined and continuous for x sufficiently close to e, with p(e) = 0.
> o (u) is defined and continuous for u close to 0, with ¢~ *(0) = e.
> The solutions for the original system are x(t) = ¢ *(P(t)¢(x0)).

» Thus, if we apply ¢! to the phase portrait for the linear system, we get
(part of) the phase portrait for the original system.

We will not prove this theorem.
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Here is an (unusual) example where we can find the map .

Consider the system x = —x +y 4+ 3y?, y =y.
The origin is an equilibrium, and the linearisation is x = —x 4+ y, y = y, with

solution t

(Xo + 2yo)e — 1yoe
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[

vl yoe' '

Suppose that x and y obey the linear equations, and we put
(X,Y)=(x+y?y). Then Y =Y and

X=x42yy=—-x+y+2y°
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Here is an (unusual) example where we can find the map .
Consider the system x = —x+y + 3y, y=y.

The origin is an equilibrium, and the linearisation is x = —x 4+ y, y = y, with
solution

[

vl yoe' '

Suppose that x and y obey the linear equations, and we put
(X,Y)=(x+y?y). Then Y =Y and

X=X+2y=-x+y+2y = —x—y +y+3y°
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Here is an (unusual) example where we can find the map .
Consider the system x = —x+y + 3y, y=y.

The origin is an equilibrium, and the linearisation is x = —x 4+ y, y = y, with
solution

[

vl yoe' '

Suppose that x and y obey the linear equations, and we put
(X,Y)=(x+y?y). Then Y =Y and

X=x+2yy=-x+y+2y°=-x—y +y+3y°=-X+Y+3Y°
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Here is an (unusual) example where we can find the map .
Consider the system x = —x+y + 3y, y=y.

The origin is an equilibrium, and the linearisation is x = —x 4+ y, y = y, with
solution

[

vl yoe' '

Suppose that x and y obey the linear equations, and we put
(X,Y)=(x+y?y). Then Y =Y and

X=x+2yy=—-x+y+2y°=—-x—y’ +y+3y =X+ Y +3Y?%

so X and Y obey the original nonlinear equations.



Hartman-Grobman example

Here is an (unusual) example where we can find the map .
Consider the system x = —x+y + 3y, y=y.

The origin is an equilibrium, and the linearisation is x = —x 4+ y, y = y, with
solution

[

vl yoe' '

Suppose that x and y obey the linear equations, and we put
(X,Y)=(x+y?y). Then Y =Y and

X=x+2yy=—-x+y+2y°=—-x—y’ +y+3y =X+ Y +3Y?%

so X and Y obey the original nonlinear equations. This means that we can
take ¢(x,y) = (x + y?, y) in the Hartman-Grobman Theorem.
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Hartman-Grobman example — zoomed in

This is the same as the previous slide, but zoomed in by a factor of 10.
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This is the phase portrait for the linearised system x = —x+y, y = y.
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Hartman-Grobman example — zoomed in

This is the same as the previous slide, but zoomed in by a factor of 10.
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This is the phase portrait for the original system x = —x +y + 3y?, y = y.
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Conserved quantities

Consider a system x = f(x,y), y = g(x,y) )
A conserved quantity is a differentiable function U(x, y) such that U = 0.
This means that U is constant on each flow line.

For any function U(x,y) we have
Ulx,y) = Ulx, y)5 + Uy (x,¥)y = Ux(x, ¥)F(x,¥) + Uy (x, )g (%, ¥)

(where Uy and U, are the partial derivatives of U).
Thus U is conserved if Usf + U,g = 0.
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Conserved quantities — example

Suppose x = 3y and y = —2x, and put U = 2x? + 3y2. Then

U=2x2xx+3x2yy =4x x 3y + 6y x (—2x) =0,

so U is a conserved quantity.

a b
—c -—a

More generally, suppose B] = { ] [;] and put U = ox? 4 2axy + by>.

Then

U= U+ Uyy = (2cx + 2ay)(ax + by) + (2ax + 2by)(—cx — ay) = 0.
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Conserved quantities — example

Suppose x = nx and y = —my (where n and m are integers). Put U = x"y".
Then

m—

U=mx"""xy" + ny" 'yx™ = nmx"y" — nmx™y"



Conserved quantities — example

Suppose x = nx and y = —my (where n and m are integers). Put U = x"y".
Then

m—

U = mx 1)—(yn + nyn—l}-/xm _ nmxmyn _ nmxmyn —=0.



Conserved quantities — example

Suppose x = nx and y = —my (where n and m are integers). Put U = x"y".
Then

U = mx 1)—(yn + nyn—l}-/xm _ nmxmyn _ nmxmyn —=0.

The picture shows the case n =4, m = 3.

/
"y

U=—10"2

\

u=10"1

.

U=10"2




Conserved quantity for the Lotka-Volterra model

Recall the Lotka-Volterra model for populations of fish and sharks:
F=(a—pBS)F,S=(6F —~)S.
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Recall the Lotka-Volterra model for populations of fish and sharks:
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Conserved quantity for the Lotka-Volterra model

Recall the Lotka-Volterra model for populations of fish and sharks:
F=(a—pBS)F,S=(0F —~)S. Put

U=aln(S)+~In(F)— S —dF.
Then
U=aS'S+~F 'F—-BS—6F
=a(0F =) +v(a— BS) — B(6F —7)S — 6(a — BS)F
= adF—avy + ay—pyS—BISF+pyS—adF+55SF
=0,

so U is a conserved quantity.
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The pendulum conserves energy

—sin(0).

—w, w=

0

Recall the pendulum equations:

o)
N

o)
N




—sin(#). Put

w, w
1,2
sw” — cos(#).

0
U

The pendulum conserves energy
Recall the pendulum equations:

o)
N
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The pendulum conserves energy

Recall the pendulum equations: 6 = w, & = —sin(f). Put
U= %of — cos(6).
Then

U =1 x 2w +sin(0)0
= w x (—sin(0)) + sin(f)w = 0.

==




The pendulum conserves energy

Recall the pendulum equations: 6 = w, & = —sin(f). Put

U= %w2 — cos(6).

Then
U =1 x 2w +sin(0)0
= w x (—sin(0)) + sin(f)w = 0.
In this case, there is a clear physical interpretation: %wz is the rotational

kinetic energy , — cos() is the gravitational potential energy , and U is the
total energy .

SN
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Proposition: If there is a conserved quantity U, there are no nodes or foci.
(Unless there is a nonempty open region where U is constant.)

Proof.
> Suppose that (a, b) is a stable node or focus.
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In particular, we can take t = 0 to get U(xo, y0) = U(a, b).



Conserved quantity means no nodes or foci

Proposition: If there is a conserved quantity U, there are no nodes or foci.
(Unless there is a nonempty open region where U is constant.)

Proof.

> Suppose that (a, b) is a stable node or focus.

» Consider a point (xo, yo) near (a, b).

» Then there is a solution (x(t), y(t)) with (x(0),y(0)) = (x0, y0) and
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vVvyYVvyyvyy

This means that for all points (xo, yo) close to (a, b) we have
U(xo,y0) = U(a, b), so U is constant on an open region.
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Proposition: If there is a conserved quantity U, there are no nodes or foci.
(Unless there is a nonempty open region where U is constant.)

Proof.
> Suppose that (a, b) is a stable node or focus.
» Consider a point (xo, yo) near (a, b).

» Then there is a solution (x(t), y(t)) with (x(0),y(0)) = (x0, y0) and
(x(t),y(t)) — (a, b) as t — oo.

This means that U(x(t), y(t)) — U(a, b).

However, U(x(t),y(t)) is constant because U is conserved.

The only way this can happen is if U(x(t),y(t)) = U(a, b) for all ¢.
In particular, we can take t = 0 to get U(xo, y0) = U(a, b).

vVvyYVvyyvyy

This means that for all points (xo, yo) close to (a, b) we have
U(xo,y0) = U(a, b), so U is constant on an open region.

v

If there is an unstable node or focus, consider t — —oo instead.



Saddles and centres are possible

2N
NNl

*:Xay:_y ).(:_y7}./:X
U = xy is conserved U = x* + y? is conserved
The origin is a saddle The origin is a centre
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Conserved quantity with arctan

Consider the linear system where x = —x —y and y = x — y.
» The matrix is []l :H with = -2, =2, 72— 45§ = -4 < 0.
Eigenvalues are A £+ jw with A = —1 and w =1,
so we have a stable focus.

» The fundamental solution is
P=e (cos(wt)l +w Lsin(wt)(A — /\I)>

= e (cos(t) 91+ sin(e) [251]) = e [ 4 2]

> Solution starting at [¢] is [}] = P[¢]



Conserved quantity with arctan

Consider the linear system where x = —x —y and y = x — y.
» The matrix is []l :H with = -2, =2, 72— 45§ = -4 < 0.
Eigenvalues are A £+ jw with A = —1 and w =1,
so we have a stable focus.

» The fundamental solution is
P =e (cos(wt)l + w tsin(wt)(A — /\I))
=" (cos(t) (39 +sin(e) [0 51]) = e [ ]

re™t cos(t) ]

re” tsin(t)

> Solution starting at [g]is [}] = P[§] = [



Conserved quantity with arctan

Consider the linear system where x = —x —y and y = x — y.

| 2

The matrix is []l :H with = -2, =2, 72— 45§ = -4 < 0.

Eigenvalues are A £+ jw with A = —1 and w =1,
so we have a stable focus.

The fundamental solution is
P =e (cos(wt)l + w tsin(wt)(A — /\I))
=" (cos(t) (39 +sin(e) [0 51]) = e [ ]

Solution starting at [§] is [] = P[g] = ['e_rms(t)] .

re” tsin(t)

Put V = arctan(y/x) and W = LIn(x* + y*) and U=V + W.



Conserved quantity with arctan

Consider the linear system where x = —x —y and y = x — y.

> The matrix is [ ;' Z}], with 7= -2, § =2, 7° — 46 = —4 < 0.
Eigenvalues are A £+ jw with A = —1 and w =1,
so we have a stable focus.

» The fundamental solution is
P=e (cos(wt)l +w Lsin(wt)(A — /\I)>

=" (cos(t) (39 +sin(e) [0 51]) = e [ ]

> Solution starting at [g]is [}] = P[§] = ['e_rms(t)] .

re” tsin(t)

> Put V =arctan(y/x) and W = 2 In(x* + y*) and U =V + W. Claim: U
is conserved.
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~—

. Using this, we get

|

V = arctan’(y/x)

(y/x)

Q.

t
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X==X—y y=x-y
U=V+W V=arctan(y/x) W =21In(x*+y?)

Recall that arctan’(z) = 1/(1 + z%). Using this, we get
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X==X—y y=x-y
U=V+W V=arctan(y/x) W =21In(x*+y?)

Recall that arctan’(z) = 1/(1 + z%). Using this, we get

d 1 yxX —yx
V = arctan’ (y/X)F( y/x) = 1+y2/x X2
:(X_ ) ( X_y) X2+y2:1
x2 + y? X2+ y?
11 d, s s 2xk+2yy
_2X2+y2dtx +y)_2(X2+y2)
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Recall that arctan’(z) = 1/(1 + z%). Using this, we get
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Recall that arctan’(z) = 1/(1 + z%). Using this, we get
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X==X—y y=x-y
U=V+W V=arctan(y/x) W =21In(x*+y?)

Recall that arctan’(z) = 1/(1 + z%). Using this, we get

1 YX — yX
1+y?2/x2 X2
x—y) _ X4yt

V = arctan (y/x)di( /x) =
y(=

_(xmy)x

X2+y X2+y2
W == — =2 =7
2X2+y2dtx+y) 2(x2 4 y?)
_xX(x =) tyx—y) =X =yt
X2+y2 X2+y2

V+W=1-1=0.

<.
I
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X==X—y y=x-y
U=V+W V=arctan(y/x) W =21In(x*+y?)

We saw that the solution starting at (r,0) is
x = re""cos(t) and y = re”"sin(t). For this we have

re”'sin(t)
re—t cos(t)

y/x=



Conserved quantity with arctan

X==X—y y=x-y
U=V+W V=arctan(y/x) W =21In(x*+y?)

We saw that the solution starting at (r,0) is
x = re""cos(t) and y = re”"sin(t). For this we have

y/x = re'sin(t) _ sin(t)

re—tcos(t)  cos(t)
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X==X—y y=x-y
U=V+W V=arctan(y/x) W =21In(x*+y?)

We saw that the solution starting at (r,0) is
x = re""cos(t) and y = re”"sin(t). For this we have

re"'sin(t)  sin(t)
= = = tan(t
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x>+ y? = rPe ¥ (cos’(t) + sin’(t)) = rPe "
3 In(x* +y*) =In(r) — t
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Conserved quantity with arctan

X==X—y y=x-y
U=V+W V=arctan(y/x) W =21In(x*+y?)

We saw that the solution starting at (r,0) is
x = re""cos(t) and y = re”"sin(t). For this we have

_re"fsin(t)  sin(t)
y/x= re~tcos(t)  cos(t) tan(t)
arctan(y/x) = arctan(tan(t)) =t
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Conserved quantity with arctan

X==X—y y=x-y
U=V+W V=arctan(y/x) W =21In(x*+y?)

We saw that the solution starting at (r,0) is
x = re""cos(t) and y = re”"sin(t). For this we have

_re"fsin(t)  sin(t)
y/x= re~tcos(t)  cos(t) tan(t)
arctan(y/x) = arctan(tan(t)) =t
x>+ y? = rPe ¥ (cos’(t) + sin’(t)) = rPe "
3 In(x* +y*) =In(r) — t
U = arctan(y/x) + 2 In(x* + y?) = t + (In(r) — t) = In(r).

As expected, this does not depend on t.
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We said that if there is a continuous, well-defined conserved quantity, then
there can only be saddles and centres, not nodes or foci.

In this example we have a conserved quantity and a stable focus. So what
is wrong?

The point is that U is not really well-defined (because you can add
multiples of 7 to the arctan term). We can make try to make it
well-defined by always taking the value of arctan that lies in (—7/2,7/2].
However, with this convention, U is discontinuous when y = 0. Also, U

will always be discontinuous at the point (0, 0), whatever convention we
make.



Conserved quantity with arctan

>
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We said that if there is a continuous, well-defined conserved quantity, then
there can only be saddles and centres, not nodes or foci.

In this example we have a conserved quantity and a stable focus. So what
is wrong?

The point is that U is not really well-defined (because you can add
multiples of 7 to the arctan term). We can make try to make it
well-defined by always taking the value of arctan that lies in (—7/2,7/2].
However, with this convention, U is discontinuous when y = 0. Also, U
will always be discontinuous at the point (0, 0), whatever convention we
make. The theorem only covers the case where U is well-defined and
continuous, so there is no contradiction.
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If V(x,y) >0 for all (x,y), we say that V is positive semi-definite.

If V(a,b) =0 but V(x,y) > 0 for all (x,y) # (a, b), we say that V is
positive definite around (a, b).

If V(x,y) <0 for all (x,y), we say that V is negative semi-definite.

If V(a,b) =0 but V(x,y) <0 for all (x,y) # (a, b), we say that V is
negative definite around (a, b).
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Definition: Consider a differentiable function V/(x,y), defined on some open
region R containing a point (a, b).
> If V(x,y) >0 for all (x,y), we say that V is positive semi-definite.
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Lyapunov functions

Definition: Consider a differentiable function V/(x,y), defined on some open
region R containing a point (a, b).
> If V(x,y) >0 for all (x,y), we say that V is positive semi-definite.
> If V(a,b) =0 but V(x,y) > 0 for all (x,y) # (a, b), we say that V is
positive definite around (a, b).
> If V(x,y) <0 forall (x,y), we say that V is negative semi-definite.
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y = g(x,y), so for any function V(x,y) we have V = V,f + V,g. Suppose
also that £(0,0) = g(0,0) =0, so (0,0) is an equilibrium point.
> If V is positive definite and V is negative semidefinite, we say that V is a
weak Lyapunov function.
» If V is positive definite and Vis negative definite, we say that V is a
strong Lyapunov function.
» If there is a strong Lyapunov function, then the origin is an asymptotically
stable equilibrium point.
» If there is a weak Lyapunov function, then the origin is an stable
equilibrium point, but may not be asymptotically stable.
» Note: any positive definite conserved quantity is a weak Lyapunov
function.
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Contours of a Lyapunov function

V=4
V=3
V=2

The blue lines are the contours for a function V/(x, y).

These red lines show a flow that cuts across the contours going downwards, so
V decreases as we move along this flow. The function V could be a Lyapunov
function for this flow.



Contours of a Lyapunov function

V=4
V=3
V=2

The blue lines are the contours for a function V/(x, y).

These red lines show a flow that cuts across the contours going upwards, so V
increases as we move along this flow. The function V' could not be a Lyapunov
function for this flow.



Contours of a Lyapunov function

V=4
V=3
V=2

The blue lines are the contours for a function V/(x, y).

These red lines show a flow that cuts across the contours sometimes going
upwards and sometimes going downwards. As we move along the flow, V
sometimes increases and sometimes decreases. The function V could not be a
Lyapunov function for this flow.



Contours of a Lyapunov function

V=4

\

V=3
V=2

The blue lines are the contours for a function V/(x, y).

These red lines show a flow that cuts across the contours at a shallow angle.
As we move along the flow, the function V decreases, but only slowly.



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.
(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.
(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.
(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
Proof:

(a) If a=0or c =0 or a, c have opposite sign then ac <0



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
Proof:

(a) If a=0or c =0 or a, c have opposite sign then ac < 0 so ac — b <0.



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
Proof:

(a) If a=0or c =0 or a, c have opposite sign then ac < 0 so ac — b <0.
Thus, if ac — b> > 0 then a and ¢ must be nonzero with the same sign.



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
Proof:

(a) If a=0or c =0 or a, c have opposite sign then ac < 0 so ac — b <0.
Thus, if ac — b> > 0 then a and ¢ must be nonzero with the same sign.

(b) Suppose that ac — b*> > 0 with a,c > 0.



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
Proof:

(a) If a=0or c =0 or a, c have opposite sign then ac < 0 so ac — b <0.
Thus, if ac — b> > 0 then a and ¢ must be nonzero with the same sign.

(b) Suppose that ac — b®> > 0 with a, ¢ > 0. We then find that

a '((ax + by)* + (ac — b)y?) = a 1(a°x® + 2abxy + b’y® + acy® — b’y?)



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
Proof:

(a) If a=0or c =0 or a, c have opposite sign then ac < 0 so ac — b <0.
Thus, if ac — b> > 0 then a and ¢ must be nonzero with the same sign.

(b) Suppose that ac — b®> > 0 with a, ¢ > 0. We then find that
a '((ax + by)* + (ac — b)y?) = a 1(a°x® + 2abxy + b’y® + acy® — b’y?)
= ax® + 2bxy + cy?



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
Proof:

(a) If a=0or c =0 or a, c have opposite sign then ac < 0 so ac — b <0.
Thus, if ac — b> > 0 then a and ¢ must be nonzero with the same sign.

(b) Suppose that ac — b®> > 0 with a, ¢ > 0. We then find that
a '((ax + by)* + (ac — b)y?) = a 1(a°x® + 2abxy + b’y® + acy® — b’y?)
=ax’ + 2bxy + ¢y’ = Q.



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
Proof:

(a) If a=0or c =0 or a, c have opposite sign then ac < 0 so ac — b <0.
Thus, if ac — b> > 0 then a and ¢ must be nonzero with the same sign.

(b) Suppose that ac — b®> > 0 with a, ¢ > 0. We then find that
a '((ax + by)* + (ac — b)y?) = a 1(a°x® + 2abxy + b’y® + acy® — b’y?)
=ax’ + 2bxy + ¢y’ = Q.

This representation makes it clear that @ > 0.



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
Proof:

(a) If a=0or c =0 or a, c have opposite sign then ac < 0 so ac — b <0.
Thus, if ac — b> > 0 then a and ¢ must be nonzero with the same sign.

(b) Suppose that ac — b®> > 0 with a, ¢ > 0. We then find that
a '((ax + by)* + (ac — b)y?) = a 1(a°x® + 2abxy + b’y® + acy® — b’y?)
=ax’ + 2bxy + ¢y’ = Q.

This representation makes it clear that @ > 0. Moreover @ can only be
equaltoOifax+by=0and y =0



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
Proof:

(a) If a=0or c =0 or a, c have opposite sign then ac < 0 so ac — b <0.
Thus, if ac — b> > 0 then a and ¢ must be nonzero with the same sign.

(b) Suppose that ac — b®> > 0 with a, ¢ > 0. We then find that
a '((ax + by)* + (ac — b)y?) = a 1(a°x® + 2abxy + b’y® + acy® — b’y?)
=ax’ + 2bxy + ¢y’ = Q.

This representation makes it clear that @ > 0. Moreover @ can only be
equal to 0 if ax + by = 0 and y = 0, which means that x =y = 0.



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
Proof:

(a) If a=0or c =0 or a, c have opposite sign then ac < 0 so ac — b <0.
Thus, if ac — b> > 0 then a and ¢ must be nonzero with the same sign.

(b) Suppose that ac — b®> > 0 with a, ¢ > 0. We then find that
a '((ax + by)* + (ac — b)y?) = a 1(a°x® + 2abxy + b’y® + acy® — b’y?)
=ax’ + 2bxy + ¢y’ = Q.

This representation makes it clear that @ > 0. Moreover @ can only be
equal to 0 if ax + by = 0 and y = 0, which means that x =y = 0.
Thus, Q is positive definite.



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
Proof:

(a) If a=0or c =0 or a, c have opposite sign then ac < 0 so ac — b <0.
Thus, if ac — b> > 0 then a and ¢ must be nonzero with the same sign.

(b) Suppose that ac — b®> > 0 with a, ¢ > 0. We then find that
a '((ax + by)* + (ac — b)y?) = a 1(a°x® + 2abxy + b’y® + acy® — b’y?)
=ax’ + 2bxy + ¢y’ = Q.
This representation makes it clear that @ > 0. Moreover @ can only be

equal to 0 if ax + by = 0 and y = 0, which means that x =y = 0.
Thus, Q is positive definite.

(c) Suppose instead that ac — b*> > 0 with a,c < 0.



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
Proof:

(a) If a=0or c =0 or a, c have opposite sign then ac < 0 so ac — b <0.
Thus, if ac — b> > 0 then a and ¢ must be nonzero with the same sign.

(b) Suppose that ac — b®> > 0 with a, ¢ > 0. We then find that
a '((ax + by)* + (ac — b)y?) = a 1(a°x® + 2abxy + b’y® + acy® — b’y?)
=ax’ + 2bxy + ¢y’ = Q.
This representation makes it clear that @ > 0. Moreover @ can only be

equal to 0 if ax + by = 0 and y = 0, which means that x =y = 0.
Thus, Q is positive definite.

(c) Suppose instead that ac — b*> > 0 with a,c < 0.
We can then use (b) to show that —Q is positive definite



Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy®.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac—b*> > 0 and a,c < 0 then Q is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
Proof:

(a) If a=0or c =0 or a, c have opposite sign then ac < 0 so ac — b <0.
Thus, if ac — b> > 0 then a and ¢ must be nonzero with the same sign.

(b) Suppose that ac — b®> > 0 with a, ¢ > 0. We then find that
a '((ax + by)* + (ac — b)y?) = a 1(a°x® + 2abxy + b’y® + acy® — b’y?)
=ax’ + 2bxy + ¢y’ = Q.
This representation makes it clear that @ > 0. Moreover @ can only be

equal to 0 if ax + by = 0 and y = 0, which means that x =y = 0.
Thus, Q is positive definite.

(c) Suppose instead that ac — b*> > 0 with a,c < 0.
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and this means that Q is negative definite.
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Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy?.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac — b* > 0 and a,c < 0 then @ is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.
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Definiteness for quadratic functions

Consider a quadratic function Q = ax? + 2bxy + cy?.

(a) If ac — b*> > 0 then a and c are nonzero and have the same sign.

(b) If ac — b*> > 0 and a,c > 0 then Q is positive definite.

(c) If ac — b* > 0 and a,c < 0 then @ is negative definite.

(d) If ac — b* < 0 then @ is neither positive definite nor negative definite.

Proof continued:

(d) Now suppose that ac — b> < 0. We need to show that Q is indefinite, so
we need to find a point (x,y) # (0,0) where Q = 0. If a # 0 we note that
x = (—b++/b2—ac)/ais a root of ax? +2bx+c=0,s0 Q =0 at
(x,1). Similarly, if ¢ # 0 then y = (—b+ v/b?> — ac)/c is a root of
a+2by +cy?=0,s0 @ =0 at (1,y). This just leaves the case where
a=c=0and Q =2bxy, so Q=0 at (1,0) or (0,1). O
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> Qi is positive definite: we always have 2x + 3y? > 0, and the only way
we can have 2x> +3y? =0isif x =y = 0.
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Question: Definiteness of quadratic forms

Are these positive (semi)definite or negative (semi)definite?
Q1 = 2x% + 3y2 Q@ =x"+2xy +y* @ = (x+y)(x+2y)

> Qi is positive definite: we always have 2x + 3y? > 0, and the only way
we can have 2x> +3y? =0isif x =y = 0.

> Q= (x+y)>>0, but @ =0at (1,—1). So Q, is positive semidefinite,
but not positive definite.

> s can be positive (at (1,0), for example) or negative (at (3, —2), for
example). Thus, it is indefinite.
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asymptotically stable.
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Lyapunov function for the slow spiral

Remember this system

{ﬂ = [_yx} + (X2 + y2) [:X] around the circle

y towards the origin

©

The linearisation is (x,y) = (y, —x), which has a centre, so it is not
asymptotically stable. But the original system is asymptotically stable. We can
prove this with a Lyapunov function.
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Lyapunov function for the slow spiral

x| _ |y 2 2y | —X around the circle
L'/} N [*X} Oy [—y] towards the origin

Put V = x>+ y2.
Then V > 0 except V =0 at (0,0), so V is positive definite.
V=Vix+ Vy
= 2x(y — (" +y*)x) + 2y (=x = (x* + y*)y)
=2y — 2 (x* 4+ y°) = 2xy — 2/°(x* + 1)
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=2y — 2 (x* 4+ y°) = 2xy — 2/°(x* + 1)
= —2(x* + y")?, which is negative definite.

So V is a strong Lyapunov function around (0, 0), so (0,0) is an asymptotically
stable equilibrium point.
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Lyapunov function for the slow spiral

x| _ |y 2 2y | —X around the circle
L'/} N [*X} Oy [—y] towards the origin

Put V = x>+ y2.
Then V > 0 except V =0 at (0,0), so V is positive definite.
V=Vix+ Vy
= 2x(y — (" +y*)x) + 2y (=x = (x* + y*)y)
=2y — 2 (x* 4+ y°) = 2xy — 2/°(x* + 1)
= —2(x* + y")?, which is negative definite.

So V is a strong Lyapunov function around (0, 0), so (0,0) is an asymptotically

stable equilibrium point. )
In fact V = —V? gives Z(V 1) = -V 2V =1
soVi=Vyl+tso V= (V; +t)t=W/(1+ Wt).
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Recall the pendulum equations: 6 = w, & = —sin(6).
The energy U = 1w” — cos(6) is conserved.
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Lyapunov function for the pendulum

Recall the pendulum equations: 6 = w, & = —sin(6).
The energy U = 1w” — cos(6) is conserved.
Note that U = —1 when (w, 8) = (0, 0).
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Lyapunov function for the pendulum

Recall the pendulum equations: 6 = w, & = —sin(6).

The energy U = 1w” — cos(6) is conserved.

Note that U = —1 when (w, ) = (0,0). However, we always have

1 — cos(f) > 0, so the function V = U+ 1 = 1w + 1 — cos(0) is positive
semi-definite.
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Lyapunov function for the pendulum

Recall the pendulum equations: 6 = w, & = —sin(6).

The energy U = 1w” — cos(6) is conserved.

Note that U = —1 when (w, ) = (0,0). However, we always have

1 — cos(f) > 0, so the function V = U+ 1 = 1w + 1 — cos(0) is positive
semi-definite. We only have V = 0 when (0,w) = (2n7,0) for some integer n.
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Lyapunov function for the pendulum

Recall the pendulum equations: 6 = w, & = —sin(6).

The energy U = w® — cos() is conserved.

Note that U = —1 when (w, ) = (0,0). However, we always have

1 —cos(f) > 0, so the function V = U + 1= 1w’ + 1 — cos() is positive
semi-definite. We only have V = 0 when (8,w) = (2nm,0) for some integer n.

If we consider only the region
R={(0,w)| —27 <0 < 2n}

then V is positive definite.




Lyapunov function for the pendulum

Recall the pendulum equations: 6 = w, & = —sin(6).

The energy U = w® — cos() is conserved.

Note that U = —1 when (w, ) = (0,0). However, we always have

1 —cos(f) > 0, so the function V = U + 1= 1w’ + 1 — cos() is positive
semi-definite. We only have V = 0 when (8,w) = (2nm,0) for some integer n.

If we consider only the region
R={(0,w)| —27 <0 < 2n}

then V is positive definite. It also has V =0, so it is a weak Lyapunov function.
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Lyapunov function for the pendulum

Recall the pendulum equations: 6 = w, & = —sin(6).

The energy U = w® — cos() is conserved.

Note that U = —1 when (w, ) = (0,0). However, we always have

1 —cos(f) > 0, so the function V = U + 1= 1w’ + 1 — cos() is positive
semi-definite. We only have V = 0 when (8,w) = (2nm,0) for some integer n.

If we consider only the region
R={(0,w)| —27 <6 <27}

then V is positive definite. It also has V =0, so it is a weak Lyapunov function.
Flow lines near the origin do not converge to the origin, so the origin is not
asymptotically stable, so there is no strong Lyapunov function.




Lyapunov function for a gradient flow

Consider the system x =x —x3, y =y —y°
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Consider the system x = x — x>, y = y — 3, and the function

V=0(*-1P2+ -1 =x"—2"+y" -2y — 2.
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This has V' > 0 everywhere, and V is only equal to 0 at the points (+1, £1).
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Lyapunov function for a gradient flow

Consider the system x = x — x3, y = y — y*, and the function
V=0(*-1P2+ -1 =x"—2"+y" -2y — 2.

This has V' > 0 everywhere, and V is only equal to 0 at the points (+1, £1).
It also satisfies
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This means that V < 0 everywhere, and V is only equal to 0 if x — x> = 0 and
3
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Lyapunov function for a gradient flow

Consider the system x = x — x3, y = y — y*, and the function
V=0(*-1P2+ -1 =x"—2"+y" -2y — 2.

This has V' > 0 everywhere, and V is only equal to 0 at the points (+1, £1).
It also satisfies
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This means that V < 0 everywhere, and V is only equal to 0 if x — x> = 0 and
y — y* =0, which means that x,y € {0,1, —1}.
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Consider the system x = x — x3, y = y — y*, and the function
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It also satisfies
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Lyapunov function for a gradient flow

Consider the system x = x — x3, y = y — y*, and the function
V=0(*-1P2+ -1 =x"—2"+y" -2y — 2.

This has V' > 0 everywhere, and V is only equal to 0 at the points (+1, £1).
It also satisfies

V = Vif+ Vg = (4 —4x)(x—x")+(4y’ —4y) (y—y°) = =4((x=x*)+(y—y*)?).
This means that V < 0 everywhere, and V is only equal to 0 if x — x> = 0 and
y — y* =0, which means that x,y € {0,1, —1}.

Now consider only the region R = {(x,y) | x >0 and y > 0}. In R we have
V > 0 except at (1,1), and V < 0 except at (1,1).




Lyapunov function for a gradient flow

Consider the system x = x — x3, y = y — y*, and the function

V=0(*-1P2+ -1 =x"—2"+y" -2y — 2.

This has V' > 0 everywhere, and V is only equal to 0 at the points (+1, £1).
It also satisfies

= —4((x=x")+(y—y*)").
This means that V < 0 everywhere, and V is only equal to 0 if x — x> = 0 and
y — y* =0, which means that x,y € {0,1, —1}.

Now consider only the region R = {(x,y) | x > 0 and y > 0}. In R we have

V > 0 except at (1,1), and V < 0 except at (1,1). Thus, V is a strong
Lyapunov function for the equilibrium point (1,1).

V = Vif+ Vg = (4 —4x)(x—x")+(4y* ~4y) (y—°)
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The (damped) oscillator has x = y and y = 2x — x> — ey for some € > 0.
Previously we considered ¢ = 0 (undamped) and € = 0.1 (damped).
Now consider the function
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This always has V > 0, with V = 0 only at (+v/2,0).

Region R = {(x,y) | x > 0}: the function V is positive definite for (+/2,0).
We also have

V =4yy + 4x°x — 8xx
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The (damped) oscillator has x = y and y = 2x — x> — ey for some € > 0.
Previously we considered ¢ = 0 (undamped) and € = 0.1 (damped).
Now consider the function
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This always has V > 0, with V = 0 only at (+v/2,0).

Region R = {(x,y) | x > 0}: the function V is positive definite for (+/2,0).
We also have

V =4yy +4x°% — 8xx = 4y(2x — X3 - ey) + 4x3y — 8xy
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The (damped) oscillator has x = y and y = 2x — x> — ey for some € > 0.
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This means that V < 0 everywhere, with V=0 only when y = 0. In
particular, V is negative semidefinite on R, so it is a weak Lyapunov function.
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This means that V < 0 everywhere, with V=0 only when y = 0. In
particular, V is negative semidefinite on R, so it is a weak Lyapunov function.
We deduce that (1/2,0) is a stable equilibrium point.
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Now consider the function

V=2y"+x"—ax® +4=2y"+ (x> -2

This always has V > 0, with V = 0 only at (+v/2,0).
Region R = {(x,y) | x > 0}: the function V is positive definite for (+/2,0).
We also have
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This means that V < 0 everywhere, with V=0 only when y = 0. In
particular, V is negative semidefinite on R, so it is a weak Lyapunov function.
We deduce that (1/2,0) is a stable equilibrium point. In fact, we can use more
complicated properties of V to show that (1/2,0) is even asymptotically stable.



Lyapunov function for the damped Duffing oscillator

The (damped) oscillator has x = y and y = 2x — x> — ey for some € > 0.
Previously we considered ¢ = 0 (undamped) and € = 0.1 (damped).
Now consider the function

V=2y"+x"—ax® +4=2y"+ (x> -2

This always has V > 0, with V = 0 only at (+v/2,0).
Region R = {(x,y) | x > 0}: the function V is positive definite for (+/2,0).
We also have

V =4yy +4x°% — 8xx = 4y(2x — X3 - ey) + 43y — 8xy = —4ey?.

This means that V < 0 everywhere, with V=0 only when y = 0. In
particular, V is negative semidefinite on R, so it is a weak Lyapunov function.
We deduce that (1/2,0) is a stable equilibrium point. In fact, we can use more
complicated properties of V to show that (1/2,0) is even asymptotically stable.
Note also that when € = 0 we have V =0, so V is a conserved quantity for the
undamped Duffing oscillator.



Lyapunov function for the damped Duffing oscillator

X=y y:2x—x3—ey V=2y2—|—(x2—2)2 \'/:_4€y2

In this example, Vis quite small, so the flow lines cross the lines of constant V
at a shallow angle, so it is hard to draw a clear picture.

=\




Damped Duffing is asymptotically stable




Damped Duffing is asymptotically stable

Recall that V = —4ey?, and this is the slope of the green graph of V against t.



Damped Duffing is asymptotically stable

Recall that V = —4ey?, and this is the slope of the green graph of V against t.
The blue graph shows y against t.



Damped Duffing is asymptotically stable

Recall that V = —4ey?, and this is the slope of the green graph of V against t.
The blue graph shows y against t.

When y # 0, we have V < 0 and the green graph slopes downwards.



Damped Duffing is asymptotically stable

Recall that V = —4ey?, and this is the slope of the green graph of V against t.
The blue graph shows y against t.

When y # 0, we have V < 0 and the green graph slopes downwards.

When y = 0 we have V =0 and the green graph is flat.



Damped Duffing is asymptotically stable

Recall that V = —4ey?, and this is the slope of the green graph of V against t.
The blue graph shows y against t.

When y # 0, we have V < 0 and the green graph slopes downwards.

When y = 0 we have V =0 and the green graph is flat.

This only happens for an instant before y becomes nonzero again and the
green graph continues to decrease.



Damped Duffing is asymptotically stable

Here is the same picture for a longer time:

N A s e
INLLAAAAARASMAS:

This shows that the flow line converges to the equilibrium point (ﬁ, 0) where
vV =0.
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Questions about Lyapunov functions

(p) One system has a strong Lyapunov function on the whole plane.

(q) One system has a strong Lyapunov function on a region R, but not on the
the whole plane.

(r) One system has a weak Lyapunov function but not a strong Lyapunov
function.

(s) One system does not even have a weak Lyapunov function.
Which is which?
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Another Lyapunov example

Suppose that x = x* — y> — 1, y = 2xy, so there are equilibria at (£3,0).
Put V = (x + 3)* + y°, which is positive definite around (—3,0).
Then

V = 2(x+ §)x 42y = 2(x + 3)(x* — y* — §) + 4x
=2(x+ 3)(x* — 1) + (4x = 2(x + 3))y°



Another Lyapunov example

Suppose that x = x* — y> — 1, y = 2xy, so there are equilibria at (£3,0).
Put V = (x + 3)* + y°, which is positive definite around (—3,0).
Then

V = 2(x+ §)x 42y = 2(x + 3)(x* — y* — §) + 4x
=2(x+ 3)(* — 1)+ (4x —2(x+ )y =2(x + 3)*(x — }) + (2x = 1)y’



Another Lyapunov example

Suppose that x = x* — y> — 1, y = 2xy, so there are equilibria at (£3,0).
Put V = (x+ %)2 + y?, which is positive definite around (7%, 0).
Then

V=2(x + D)k + 2yy = 2(x + 1) =y’ — 1) + 4%y’
=20x+ 1) = 1)+ (4x = 2(x + 1)y? = 2(x + 1)’ (x — 1) + (2x — 1)y?
= (2x—1)((x+ 3)* + 7).



Another Lyapunov example

Suppose that x = x* — y* — %, y = 2xy, so there are equilibria at (+3,0).
Put V = (x + 3)* + y°, which is positive definite around (—3,0).
Then

V=2(x+ 3x+2yy = 2(x + 1)(x* — y* — 1) + 4%/
= 20+ 0¢ — 1)+ (8= 20+ D)y = 20+ 10— 1)+ (2x— 1)y
= (2x = 1)((x +3)* + 7).

This is negative definite on the region R = {(x,y) | x < 1}.



Another Lyapunov example

Suppose that x = x* — y* — %, y = 2xy, so there are equilibria at (+3,0).
Put V = (x + 3)* + y°, which is positive definite around (—3,0).
Then

V=2(x + D)k + 2yy = 2(x + 1) =y’ — 1) + 4%y’
=20x+ 1) = 1)+ (4x = 2(x + 1)y? = 2(x + 1)’ (x — 1) + (2x — 1)y?
= (2x—1)((x+ 3)* + 7).

This is negative definite on the region R = {(x,y) | x < 1}.
It follows that (—3,0) is asymptotically stable.



Another Lyapunov example

Suppose that x = x% — y? — %, ¥ = 2xy, so there are equilibria at (+3,0).

Put V = (x + 3)* + y°, which is positive definite around (—3,0).

Then

V=2(x+ Dx+2yy =2(x + %)(XQ —y? - H+ 4xy?

=2(x + 5)0 = §) + (4 = 20x + 3))y* = 2(x + 3)*(x — 3) + (2x — 1)y?
= (2 = 1)((x + 3)* + 7).

This is negative definite on the region R = {(x,y) | x < 1}.

It follows that (—3,0) is asymptotically stable.
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Finding a Lyapunov function

> Consider the system x = 80(y*® — x°), y = —77(x® + y*).
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Consider the system x = 80(y'® — x°), y = —77(x™ + y').
There is an equilibrium point at the origin.

How can we find a Lyapunov function? Guess the general form, and then
adjust the coefficients.

Try V = ax®" + By*™ with a, 8,n, m > 0, where n and m are integers.
This is always positive definite, and we want to choose «, 8, n, m to make
sure that V is negative definite.

V=Vx+Vy
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Finding a Lyapunov function

> Consider the system x = 80(y™® — x°), y = —77(x"* + y').

There is an equilibrium point at the origin.

v

» How can we find a Lyapunov function? Guess the general form, and then
adjust the coefficients.

> Try V = ax® + By*™ with a, 3, n,m > 0, where n and m are integers.
This is always positive definite, and we want to choose «, 8, n, m to make
sure that V is negative definite.
V=Vix+V,y
= 2nax*""1.80(y"® — x%) — 2mBy*" L 77(x" + yM)
= —160nax”""® — 1548y*™10 1 160nax”" Ty — 1544x 2y

The first two terms give a negative definite function.



Finding a Lyapunov function

> Consider the system x = 80(y™® — x°), y = —77(x"* + y').

There is an equilibrium point at the origin.
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» How can we find a Lyapunov function? Guess the general form, and then
adjust the coefficients.

> Try V = ax® + By*™ with a, 3, n,m > 0, where n and m are integers.
This is always positive definite, and we want to choose «, 8, n, m to make
sure that V is negative definite.

V=Vx+Vy
— 2naX2n71'80(y15 _ X9) _ 2m5y2m71.77(xl3 +y11)
= —160nax*""® — 1548y>™ 10 1 160nax>""1y"" — 1545x"y 7"

The first two terms give a negative definite function. The other two terms can
be positive or negative depending on the signs of x and y.



Finding a Lyapunov function

> Consider the system x = 80(y™® — x°), y = —77(x"* + y').

There is an equilibrium point at the origin.

v

» How can we find a Lyapunov function? Guess the general form, and then
adjust the coefficients.

> Try V = ax® + By*™ with a, 3, n,m > 0, where n and m are integers.
This is always positive definite, and we want to choose «, 8, n, m to make
sure that V is negative definite.

V=Vx+Vy
— 2naX2n71'80(y15 _ X9) _ 2m5y2m71.77(xl3 +y11)
= —160nax*""® — 1548y>™ 10 1 160nax>""1y"" — 1545x"y 7"

The first two terms give a negative definite function. The other two terms can
be positive or negative depending on the signs of x and y. To make the whole
thing negative definite, we need the last two terms to cancel.



Finding a Lyapunov function

% = 80(y15 _ X9) y _ —77(X13 +yll) V= aX2n + ﬁy2m
V = —160nax>"® — 1548y°" 1% 4 160nax>""'y"® — 1548x"y "




Finding a Lyapunov function

)-( _ 80(y15 _ X9) y _ 777(X13 +yll) V _ aXZn + ﬂy2m
V = —160nax""® — 1548y*™ 1% 4 160nax”" "ty — 1548xy" 7!

The last two terms should cancel, so we want

160na = 154mp 2n—-1=13 15=2m-1



Finding a Lyapunov function

x = 80(y15 _ X9) y _ 777(X13 +yll) V= aXZn + ﬂy2m
V = —160nax""® — 1548y>™ 1 4 160nax®""1y"® — 1548x3y*" !

The last two terms should cancel, so we want
160na = 154mp3 2n—1=13 15=2m-1

son=7and m=8.



Finding a Lyapunov function

x = 80(y15 _ X9) y _ 777(X13 +yll) V= aXZn + ﬂy2m
V = —160nax""® — 1548y>™ 1 4 160nax®""1y"® — 1548x3y*" !

The last two terms should cancel, so we want
160na = 154mp3 2n—1=13 15=2m-1

son=7and m=8.

. . . _ 154x85 _ 11
Putting this in 160na = 154mf3 gives a = 155556 = 15




Finding a Lyapunov function

)-( _ 80(y15 _ X9) y _ 777(X13 +yll) V _ aXZn + ﬂy2m
V = —160nax""® — 1548y*™ 1% 4 160nax”" "ty — 1548xy" 7!

The last two terms should cancel, so we want
160na = 154mp3 2n—1=13 15=2m-1

son=7and m=8.
Putting this in 160na = 154m/3 gives o = iggig = %ﬂ so we can choose
a =11 and 8 = 10.




Finding a Lyapunov function

)-( — 80(y15 _ X9) y _ 777(X13 +yll) V _ aX2n + ﬂyZm
V = —160nax""® — 1548y*™ 1% 4 160nax”" "ty — 1548xy" 7!

The last two terms should cancel, so we want
160na = 154mp3 2n—1=13 15=2m-1

son=7and m=8.

: . . _ 154x8.p _ 11
Putting this in 160na = 154mf3 gives a = g5 8 = 158 so we can choose
a =11 and 8 = 10.
We conclude that the function V = 11x** + 10y'® is a strong Lyapunov
function.
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Lyapunov method for instability

So far we have used Lyapunov functions to prove that points are stable.
We now give a similar method to prove that points are unstable.

Theorem: Let V be a differentiable function defined on some open region R
containing an equilibrium point (a, b). Suppose that Vis positive definite, and
that for all € > 0 there is a point (x,y) with ||(x,y) — (a, b)|| < € and

V(x,y) > 0. Then (a, b) is unstable.

In particular:
If both V' and V are positive definite around (a, b), then (a, b) is unstable.



Instability for a linear saddle

If V is positive definite, and for all ¢ > 0 there is a point where
I(x,y) — (a, b)|| < €and V >0, then (a, b) is unstable.




Instability for a linear saddle

If V is positive definite, and for all ¢ > 0 there is a point where
I(x,y) — (a, b)|| < €and V >0, then (a, b) is unstable.

Consider the system x = x, y = —y, which has a saddle at (0, 0).
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Instability for a linear saddle

If V is positive definite, and for all ¢ > 0 there is a point where
I(x,y) — (a, b)|| < €and V >0, then (a, b) is unstable.

Consider the system x = x, y = —y, which has a saddle at (0, 0).
Put V = x* — y2.

V<0
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Instability for a linear saddle

If V is positive definite, and for all ¢ > 0 there is a point where
I(x,y) — (a, b)|| < €and V >0, then (a, b) is unstable.

Consider the system x = x, y = —y, which has a saddle at (0, 0).
Put V = x?> — y2. Then

V =2xx —2yy

V<0
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Instability for a linear saddle

If V is positive definite, and for all ¢ > 0 there is a point where
I(x,y) — (a, b)|| < €and V >0, then (a, b) is unstable.

Consider the system x = x, y = —y, which has a saddle at (0, 0).
Put V = x?> — y2. Then

V = 2xx — 2yy = 2x° 4+ 2y

V<0
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Instability for a linear saddle

If V is positive definite, and for all ¢ > 0 there is a point where
I(x,y) — (a, b)|| < €and V >0, then (a, b) is unstable.

Consider the system x = x, y = —y, which has a saddle at (0, 0).
Put V = x?> — y2. Then

V = 2xx — 2yy = 2x° + 2y°,

which is positive definite.

V<0
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Instability for a linear saddle

If V is positive definite, and for all ¢ > 0 there is a point where
I(x,y) — (a, b)|| < €and V >0, then (a, b) is unstable.

Consider the system x = x, y = —y, which has a saddle at (0, 0).
Put V = x?> — y2. Then

V = 2xx — 2yy = 2x° + 2y°,

which is positive definite. Also, for any € > 0 there is a point (0, €) with
l(e,0) — (0,0)]| =€ and V =€ > 0.
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Instability for a linear saddle

If V is positive definite, and for all ¢ > 0 there is a point where
I(x,y) — (a, b)|| < €and V >0, then (a, b) is unstable.

Consider the system x = x, y = —y, which has a saddle at (0, 0).
Put V = x?> — y2. Then

V = 2xx — 2yy = 2x° + 2y°,

which is positive definite. Also, for any € > 0 there is a point (0, €) with
ll(e,0) — (0,0)]| = € and V = € > 0. Thus, (0,0) is unstable.
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Instability for a gradient flow

Consider the system x =x —x%, y =y — y*
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Instability for a gradient flow

Consider the system x = x — x>, y = y — %, and the function V = x? + y?.
This is positive definite around (0,0). We also have

V = 2xx + 2yy = 2x(x — x3) +2y(y — )’3)




Instability for a gradient flow

Consider the system x = x — x>, y = y — %, and the function V = x? + y?.
This is positive definite around (0,0). We also have

V = 2xx +2yy = 2x(x — x°) 4+ 2y(y — y*) = 2x*(1 — x*) + 2)°(1 — y?).




Instability for a gradient flow

Consider the system x = x — x>, y = y — %, and the function V = x? + y?.
This is positive definite around (0,0). We also have

V = 2xx +2yy = 2x(x — x°) 4+ 2y(y — y*) = 2x*(1 — x*) + 2)°(1 — y?).
This is positive definite on the region
R:{(X7y) | _1<Xay< 1}7

so the origin is an unstable equilibrium.




van der Pol instability

Consider the van der Pol oscillator, with x = y and y = 2(1 — x?)y — x.
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Consider the van der Pol oscillator, with x = y and y = 2(1 — x?)y — x. Put
V=x—xy+y’ =3(x =y’ +ilx+y)
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Consider the van der Pol oscillator, with x = y and y = 2(1 — x?)y — x. Put
V=x—xy+y*=3(x—y) + i(x + ),

so V is positive definite.




van der Pol instability

Consider the van der Pol oscillator, with x = y and y = 2(1 — x?)y — x. Put
V=x—xy+y*=3(x—y) + i(x + ),

so V is positive definite. We also have

V=02x—y)x+ (2y — x)y




van der Pol instability

Consider the van der Pol oscillator, with x = y and y = 2(1 — x?)y — x. Put
V=x®—xy+y = 30x =yl +i(x+y)
so V is positive definite. We also have

V= (2x —y)x+ (2y —x)y = (2x — y)y + (2y — x)(2y — 2x°y — x)




van der Pol instability

Consider the van der Pol oscillator, with x = y and y = 2(1 — x?)y — x. Put
V=x®—xy+y = 30x =yl +i(x+y)
so V is positive definite. We also have
V= (2x —y)x+(2y = x)y = (2x = y)y + (2y = x)(2y = 2"y —x)
= 2xy — y2 + 4y2 — 4x2y2 —2xy — 2xy + 2x3y +x?




van der Pol instability

Consider the van der Pol oscillator, with x = y and y = 2(1 — x?)y — x. Put
V=x’—xy+y = 3(x—y) + 5 (x +y)
so V is positive definite. We also have
V= (2x —y)x+(2y = x)y = (2x = y)y + (2y = x)(2y = 2"y —x)
= 2xy — y2 + 4y2 — 4x2y2 —2xy — 2xy + 2x3y +x?
=x*— 2xy + 3y2 + 2X3y - 4X2y2




van der Pol instability

Consider the van der Pol oscillator, with x = y and y = 2(1 — x?)y — x. Put
V=x’—xy+y = 3(x—y) + 5 (x +y)
so V is positive definite. We also have
V= (2x —y)x+(2y = x)y = (2x = y)y + (2y = x)(2y = 2"y —x)
= 2xy — y2 + 4y2 — 4x2y2 —2xy — 2xy + 2x3y +x?
= x> —2xy +3y> + 2%y — 4x°y? = (x — y)? 4+ 2y° + (2x°y — 4x°yP).




van der Pol instability

Consider the van der Pol oscillator, with x = y and y = 2(1 — x?)y — x. Put
V=x—xy+y*=3(x—y) + i(x + ),
so V is positive definite. We also have
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Consider the van der Pol oscillator, with x = y and y = 2(1 — x?)y — x. Put
V=x—xy+y*=3(x—y) + i(x + ),
so V is positive definite. We also have
V= (2x —y)x+(2y = x)y = (2x = y)y + (2y = x)(2y = 2"y —x)

= 2xy — y2 + 4y2 — 4x2y2 —2xy — 2xy + 2x3y +x?

= x> —2xy +3y> + 2%y — 4x°y? = (x — y)? 4+ 2y° + (2x°y — 4x°yP).
Now let R be a small square around (0,0), say R = {(x,y) | |x],|y| < 1072}
If (x,y) € R and (x,y) # (0,0) then (x — y)? + 2y? will be strictly positive.
The other term 2x*y — 4x?y? might be negative, but it is smaller by a factor of

about 107, so it cannot cancel out the first term and we see that V > 0. This
shows that V and V are both positive definite on R, so (0,0) is an unstable

equilibrium.
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van der Pol instability

x=y, y=21-x)y—x V = x*—xy+y’ V = x*—2xy+3y°+2x°y —4x’y>.

For a more careful argument, we can check by expanding everything out that

V= (3- 4x2)71 (((3 — 4X2)y + (X3 — x))2 + x2(3 —(1+ X2)2)) .

Suppose that |x| < v/v/3 — 1 =~ 0.855.

Then 3 — 4x* >3 —4(v/3 - 1) ~ 0.072 > 0,
and 1 +x* <3503~ (1+x%)?>0.
Moreover, squares are always nonnegative, so ((3 — 4x?)y + (x — x*))?> > 0.

Putting this together, we see that V > 0. After examining the above equation
more closely, we also see that V can only be zero if (x,y) = (0,0), so V (as
well as V) is positive definite on the region R’ = {(x,y) | |x| < vV v/3 — 1}.

We again see that the origin is an unstable equilibrium.
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Questions about Lyapunov definitions

Suppose we have a system with an equilibrium at the origin, and that V is
defined on all of R?. Are the following true or false?

(A) If V is a strong Lyapunov function then V is positive definite.

(B) If Vis a positive definite conserved quantity, then the origin is
asymptotically stable.

(C) If V is a weak Lyapunov function then the origin cannot be a saddle.
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Questions about Lyapunov definitions

Suppose we have a system with an equilibrium at the origin, and that V is
defined on all of R2. Are the following true or false?

(A) If V is a strong Lyapunov function then V is positive definite.

(B) If Vis a positive definite conserved quantity, then the origin is
asymptotically stable.

(C) If V is a weak Lyapunov function then the origin cannot be a saddle.

> (A) is False: if V is a strong Lyapunov function then V is negative
definite, not positive definite.

> (B) is False: if V is a positive definite conserved quantity then V is
constant on any flow line, so the flow lines cannot converge to the origin
where V = 0, so the origin is not asymptotically stable.

» (C)is True: if V is a weak Lyapunov function then the origin is stable, but
saddles are not stable, so the origin cannot be a saddle.
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Systems (B) and (D) have foci, and (C) has nodes, so these cannot have an
interesting conserved quantity. System (A) has only saddles and centres, so it
can have a conserved quantity.



Questions about conserved quantities

Which system has a (continuous, non-constant) conserved quantity?

Systems (B) and (D) have foci, and (C) has nodes, so these cannot have an
interesting conserved quantity. System (A) has only saddles and centres, so it
can have a conserved quantity.

In fact, system (A) is on the problem sheet. The equations are x = sin(wy) and
y = sin(mx), and the function U = cos(mx) — cos(my) is a conserved quantity.
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Second order linear equations

We will consider differential equations of the form

Ay” 4+ By’ 4+ Cy =0,

where A, B, C and y are functions of x, and y’ means dy/dx. Examples:

> If A, B and C are constant then the solutions are like y = Pe** 4+ Qe"* or
o Ax .

y = e™(P cos(wx) + Qsin(wx)).

> Bessel's equation xy” + xy’ 4 (x* — n?)y = 0 (where n is constant).
(This is relevant for many problems with circular symmetry, such as
vibrations of a drum, or signals in an optic fibre.)

» The Legendre equation (1 — x?)y” — 2xy’ + n(n+ 1)y = 0.

> The Airy equation y” — (x — A)y = 0, which is related to the optics of
rainbows.

> The Hermite equation y” — 2xy’ + 2ny = 0, which is related to the
normal distribution in statistics.

We will use
» Power series methods.
» Sturm-Liouville theory: eigenvalues of self-adjoint differential operators.
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Reminder of the constant coefficient case

Consider the equation y”’ + Py’ + Qy = 0, where P and Q are constant.
We look for solutions of the form y = e**. Then y’ = Xe™ and y” = X\?e™ so

y// + Py/ + Qy _ )\26/\x + P)\ekx + QeAx _ p()\)eAx7

where p(t) = t> + Pt + Q is the auxiliary polynomial.

(a) If P> —4Q > 0 then there are two distinct real roots, say A and p. We
then have solutions y = Ae™ + Be**, where A and B can be any
constants.

(b) If P2 — 4@ < 0 then there are two distinct complex roots, say A + iw and
A — iw. This gives solutions u = X and v = e =) However, it is
more convenient to use the combinations

(u+v)/2 = e™ cos(wx) (u—v)/(2i) = e™ sin(wx).

Any solution can be written as y = (A cos(wx) 4 B sin(wx)) for some
constants A and B.
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Reminder of the constant coefficient case

Consider the equation y”’ + Py’ + Qy = 0, where P and Q are constant.
We look for solutions of the form y = e™. Then y’ = Ae™ and y”’ = A2e™ so

y// + Py/ + Qy _ )\Ze)\x + P)\e)\x + Qekx _ p(}\)e/\x’

where p(t) = t> + Pt + Q is the auxiliary polynomial.

(c) If P? — 4Q = 0 then there is only one root A = —P/2,
and the differential equation is y” — 2\y’ + X%y = 0.
To understand this equation, put y = e**z. We then have

y/ _ Ae/\xz + e)\xz/ _ e)\X(Zl + )\Z)
y// _ )\e)\X(z/ + AZ) + e/\X(z// + )\Z/) _ e)\X(z// + 2)\2/ + )\22)7
SO
y' + Py +Qy =™ + A+ P)Z + (A + PA+ Q)z).

However, 2\ + P =0and X2+ PA+ Q =0so y” + Py’ + Qy = 2",
so the differential equation is equivalent to z” = 0. This means that
z=Ax+ B and y = e**(Ax + B) for some constants A and B.
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Boundary values

Often we have boundary values as well as a differential equation.
The equation y” + 100y = 0 has solution

y = Acos(10x) + B'sin(10x)
y' = —10Asin(10x) + 108 cos(10x)

» With boundary values y(0) = 0 and y(7/40) = 11:
0=y(0)=Acos(0) + Bsin(0) = Aso A= 0 so y = Bsin(10x).
Now 11 = y(r/40) = Bsin(7/4) = B/v/2 so B = 111/2 so
y = 114/25sin(10x).
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again A=0so y = Bsin(10x) so 11 = y’(7/20) = 10B cos(7/2) = 0; no
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> With boundary values y’(0) = y'(w) = 0:
0 = y’(0) = —10Asin(0) + 10B cos(0) = 10B so B = 0 so y = Acos(10x)
and y' = —10Asin(10x). Now y’(7) = 0 automatically, so y = Acos(10x)
is a solution for any A.
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Power series for constant coefficient case

Consider again y” + Py’ + Qy = 0, and suppose that the auxiliary polynomial
p(t) = t? + Pt + Q has two distinct roots A and p.

Any solution has the form y = Ae™ + Be!~.

Using e* = >°, x*/k!, this becomes

)\ka kak A)\k+B,LLk B
y_;(Ak! +B k!)_; Ko

We can also find similar formulae for the case when p(t) has two complex
roots, or one repeated root. Later we will explain how to find power series
solutions even when P is not constant.




Questions: standard power series

1+ x4+ X"+ 4=
100x*>  1000x3

L4100+ =5 e o =
X3 X5 X7
X—grtg ot =
X2 X3 X4
X_E_F?_Z_F..._
’7'!'2X2 ’7'('4X4 7'('6X6
R T TR T
2 4 4

1—mx+7x - + x4+ =

1+ 2x 437 +4° +5x*" +... =

1 +L X2 n x3
10 100 1000 10000




Questions: standard power series

l+x+x+x+---=1/(1-x)
1+10X+100x2+1000x3+“:
2 6
X3 X5 X7
X=gitE gt
X2 X3 X4
X_E_F?_Z_F..._
7'!'2X2 7'('4X4 7'('6X6
R T TR T
2 4 4

1—mx+7x - + x4+ =

1+ 2x 437 +4° +5x*" +... =

1 +L X2 n x3
10 100 1000 10000




Questions: standard power series

l+x+x+x+---=1/(1-x)
1+ 10x+ 100x2 N 1000x° L o
2 6
X3 X5 X7
X=gitE gt
X2 X3 X4
X_E_F?_Z_F..._
7'!'2X2 7'('4X4 7'('6X6
R T TR T
2 4 4

1—mx+7x - + x4+ =

1+ 2x 437 +4° +5x*" +... =

1 +L X2 n x3
10 100 1000 10000




Questions: standard power series

l+x+x+x+---=1/(1-x)
1+ 10x+ 100x* N 1000x° L o
2 6
X3 X5 X7 .
xfaJrafﬁqu»:sm(x)
X2 X3 X4
X_E_F?_Z_F..._
7'!'2X2 7'('4X4 7'('6X6
R T TR T
2 4.4

1—mx+7x - + x4+ =

1+ 2x 437 +4° +5x*" +... =

1 +L X2 n x3
10 100 1000 10000




Questions: standard power series

l+x+x+x+---=1/(1-x)
100x?  1000x*
1+1OX+ OOX + OOOX +“.:elox
2 6
X3 X5 X7 .
Xty g b= sink)
2 3 4
X X X
_Z 42 2 4 = In(1
Xty ot n(1+x)
7'!'2X2 7'('4X4 7'('6X6
R T TR T
2 4.4

1—mx+7x - + x4+ =

1+ 2x 437 +4° +5x*" +... =

1 +L X2 n x3
10 100 1000 10000




Questions: standard power series

l+x+x+x+---=1/(1-x)
100x?  1000x*
1+1OX+ OOX + OOOX +“.:elox
2 6
X3 X5 X7 .
Xty g b= sink)
2 3 4
X X X
_Z2 42 2 4 = (1
Xty ot n(1+x)
’7'!'2X2 ’7'('4X4 7'('6X6
=St e T s
2 4 4

1—mx+7x - + x4+ =

1+ 2x 437 +4° +5x*" +... =

1 +L X2 n x3
10 100 1000 10000




Questions: standard power series

l+x+x+x+---=1/(1-x)
100x>  1000x*
14 10x + ng n 0060x L= el
2 x X .
xfaJrafﬁqu»:sm(x)
2 3 4
x—%—l—%—%—i—---:ln(l—l—x)
P B N S
=St e T s
1—7mx+ 7% — 1o +a*x* + - = 1/(1 + 7x)

1+ 2x 437 +4° +5x*" +... =

1 +L X2 n x3
10 100 1000 10000




Questions: standard power series

l+x+x+x+---=1/(1-x)
100x>  1000x*
1+1OX+ OOX + OOOX +“.:elox
2 6
2 x X .
X — §TA+ 5] 4,?TA+...A, sin(x)
2 3 4
x> x> X
_ 242 24— 1
Xty ot n(1+x)
x?  atx* %0
=St e T s
1—7mx+ 7% — 1o +a*x* + - = 1/(1 + 7x)
1—|—2x—|—3x2—|—4x3—l—5x4—|—---:1/(1—x)2
2 3

1 +L X n X
10 100 1000 10000




Questions: standard power series

l+x+x+x+---=1/(1-x)
100x>  1000x*
1+1OX+ OOX + OOOX +“.:elox
2 6
2 x X .
X — §TA+ 5] 4,?TA+...A, sin(x)
2 3 4
x> x> X
_ 242 24— 1
Xty ot n(1+x)
x?  atx* %0
=St e T s
1—7mx+ 7% — 1o +a*x* + - = 1/(1 + 7x)
1—|—2x—|—3x2—|—4x3—l—5x4—|—---:1/(1—x)2
2 3

1 +L X n X
10 100 1000 10000

4+ =1/(10 — x)



Bessel's equation

Consider x?y" 4+ xy’ 4+ (x* — n?)y = 0 where n is a natural number.



Bessel's equation

Consider x?y" 4+ xy’ 4+ (x* — n?)y = 0 where n is a natural number.
We will see that there are two basic solutions, J,(x) and Y;(x).



Bessel's equation

Consider x?y" 4+ xy’ 4+ (x* — n?)y = 0 where n is a natural number.
We will see that there are two basic solutions, J,(x) and Y;(x).

I 1

Jo(x) Jo(x), Yo (x)

\/ \/» \/a vxj‘ \(/m AN EVARY AN R OV e

Jo(x)zlf%x2+&x4f---

o2 eos(x-T)



Bessel's equation

Consider x?y" 4+ xy’ 4+ (x* — n?)y = 0 where n is a natural number.
We will see that there are two basic solutions, J,(x) and Y;(x).
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Bessel's equation

Consider x?y" 4+ xy’ 4+ (x* — n?)y = 0 where n is a natural number.
We will see that there are two basic solutions, J,(x) and Y;(x).
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Bessel's equation

Consider x?y" 4+ xy’ 4+ (x* — n?)y = 0 where n is a natural number.
We will see that there are two basic solutions, J,(x) and Y;(x).
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Bessel's equation

Consider x?y" 4+ xy’ 4+ (x* — n?)y = 0 where n is a natural number.
We will see that there are two basic solutions, J,(x) and Y;(x).
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Bessel's equation

Consider x?y" 4+ xy’ 4+ (x* — n?)y = 0 where n is a natural number.
We will see that there are two basic solutions, J,(x) and Y;(x).
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Every solution has the form y = AJ,(x) 4+ BY,(x) for constants A and B.



Drum

Modes of vibration of a drum of radius 1 are given by
z = Asin(t) cos(nf)Jn(ankr),

where (r,8) are polar coordinates and an« is the k'th root of J,(x).

The movie shows the case where n =2 and k = 3, so
z = Asin(t) cos(260)Jz(asr).



Legendre's equation

Consider (1 — x?)y” — 2xy’ + n(n+ 1)y = 0 where n is a natural number.
y



Legendre's equation

Consider (1 — x?)y” — 2xy’ 4+ n(n+ 1)y = 0 where n is a natural number.
We will see that there are two basic solutions, P,(x) and Qa(x).



Legendre's equation

Consider (1 — x?)y” — 2xy’ 4+ n(n+ 1)y = 0 where n is a natural number.
We will see that there are two basic solutions, P,(x) and Qa(x).

Po(x)

Po(x) = 1 Qo(x) = L 1n (X“)

x—1



Legendre's equation

Consider (1 — x?)y” — 2xy’ 4+ n(n+ 1)y = 0 where n is a natural number.
We will see that there are two basic solutions, P,(x) and Qa(x).
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Legendre's equation

Consider (1 — x?)y” — 2xy’ 4+ n(n+ 1)y = 0 where n is a natural number.
We will see that there are two basic solutions, P,(x) and Qa(x).
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Legendre's equation

Consider (1 — x?)y” — 2xy’ 4+ n(n+ 1)y = 0 where n is a natural number.
We will see that there are two basic solutions, P,(x) and Qa(x).
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Legendre's equation

Consider (1 — x?)y” — 2xy’ 4+ n(n+ 1)y = 0 where n is a natural number.
We will see that there are two basic solutions, P,(x) and Qa(x).
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Legendre polynomials — orthogonality

1
Whenever n and m are different we have / Pa(x)Pm(x) dx = 0.
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Legendre polynomials — orthogonality

1
Whenever n and m are different we have / Pa(x)Pm(x)dx =0
1
Example:

This is similar to the fact that

Pa(x) P (x)Pa(x)
27

sin(nx) sin(mx) dx = 0 for n # m,
0
which is the basis of Fourier theory.



Legendre polynomials — orthogonality

1
Whenever n and m are different we have / Pa(x)Pm(x)dx =0
1
Example:

\ / \ |
\\\ / ‘\‘ /
\\ / \ / \\ /
L VAR,
Pa(x) Py (x) P (x)Pa(x)
27

This is similar to the fact that

sin(nx) sin(mx) dx = 0 for n # m,
0
which is the basis of Fourier theory.

We will show that solutions of many other linear second order differential
equations have similar orthogonality properties.
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The roots of Pi(x) alternate with the roots of Pii1(x).
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Alternating roots
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Alternating roots

The roots of Pi(x) alternate with the roots of Pii1(x).

Py (x) Ps(x)

This is not just a special property of Legendre functions; it is a fairly general
feature of linear second order differential equations.



As x runs from —1 to 1, the point (Ps(x), (1 — x*)P%(x)) rotates around the
origin through an angle of 5.
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Rotation around the origin

As x runs from —1 to 1, the point (Pk(x), (1 — x?)P;(x)) rotates around the
origin through an angle of k.

4

(Ps(x), (1 — x*)P{(x)) rotates through an angle of 5.

This is not just a special property of Legendre functions; it is a fairly general
feature of linear second order differential equations.
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Consider y" — 2xy’ + 2ny = 0 where n is a natural number.
We will see that there is a polynomial solution H,(x).

R , .
The function e /?H,(x) is also important.
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Hermite polynomials — orthogonality

Whenever n and m are different we have /
—o0

Example:

e iy (x)Hs(x)

/2 Hy(x)

27
This is similar to the fact that sin(nx) sin(mx) dx = 0 for n # m,
which is the basis of Fourier theory.

We will show that solutions of many other linear second order differential

equations have similar orthogonality properties.
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Here ap and a; are arbitrary, and they determine a2, as and so on.
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Power series solutions — all terms

" Zjozo(,] + 1)(J + 2) aj+2 X
Py' = 5550 (Sheoli = -+ Dpaaynin)
y =27 (Zﬂ:o q,,aj,,,) x.

Consider the coefficient of x/ in y” + Py’ + Qy = 0:

U+ 10 +2)a2+ (i(J —n+ 1)Pnajn+1> + <2J: qnajn> =0

n=0
so ;
o= Gz (S0 s + )
Note that only ao, ..., aj+1 appear on the right hand side.

Thus ag and a; are arbitrary,
but ap, a3, as, ... are determined inductively by the above formula.
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Suppose we have a series like
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k=0
We usually define ax = 0 for k < 0, so
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With this convention, we have
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k=0 k=—00

(When k < 0 the terms axx* are zero, so it does not matter whether we
include them or not.)

This will simplify various formulae, because we do not need to remember where
the series starts.
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y:Za;xi:aoJra1x+agx2+a3x3+a4x4+---
y = Zl:ia,-x"*l = a1+ 2a>x + 3a3x” + 42 + - -
y' = zlj(i —1)iaix'"? = 2a, + 6asx + 12a,x° + - - -
= zl:(j +1)(j +2)aj2¢ (reindexing with j = i — 2)
J

y'+y= Z(af +(+1)( +2)aj2)x .

J

At x =0 we have y = ap and y' = a1, so ap = 1 and a; = 0.



Power series solutions — simple example

Consider the equation y”' +y =0with y =1, y =0 at x = 0.

y:Za;xi:aoJra1x+agx2+a3x3+a4x4+---
y = Zl:ia,-x"*l = a1+ 2a>x + 3a3x” + 42 + - -
y' = zlj(i —1)iaix'"? = 2a, + 6asx + 12a,x° + - - -
= zl:(j +1)(j +2)aj2¢ (reindexing with j = i — 2)
J

y'+y= Z(af +(+1)( +2)aj2)x .

J
At x =0 we have y = ap and y' = a1, so ap = 1 and a; = 0.

For the differential equation y”’ + y = 0 to hold, we must have
aj+(U+1)J+2)a2=0



Power series solutions — simple example

Consider the equation y”' +y =0with y =1, y =0 at x = 0.

y:Za;xi:aoJra1x+agx2+a3x3+a4x4+---
y' = iia,—xif1 = a1 + 2ax + 3a3x” + 4asx’ + - -
y' = ZI:(,' —1)iaix'"? = 2a, + 6asx + 12a,x° + - - -
= zl:(j +1)(j +2)aj2¢ (reindexing with j = i — 2)
j

y'+y= Z(af +(+1)( +2)aj2)x .

J
At x =0 we have y = ap and y' = a1, so ap = 1 and a; = 0.

For the differential equation y”’ + y = 0 to hold, we must have
aj+(+1)(j+2)a2=0,so0
-1

TG+



Power series solutions — simple example

—aj

" i
+y=0, = aix , a=1, aa =0, Ay = — T
T = the 2 GG 2)




Power series solutions — simple example

—aj

" i
+y=0, = aix , a=1, aa =0, Ay = — T
T = the 2 GG 2)

a =1 a=0



Power series solutions — simple example

. . —a;
+y=0, = aix', a=1, a1 =0, a0 = A ——.
vty y=2 =t A VRS (=)
a =1 ai=0
— a0
a =



Power series solutions — simple example

. . —a;
+y=0, = aix', a=1, a1 =0, a0 = A ——.
vty y=2 =t A VRS (=)
a =1 ai=0
—ap 1
a = =—=




Power series solutions — simple example

. . —a;
+y=0, = aix', a=1, a1 =0, a0 = A ——.
vty y=2 =t A VRS (=)
a =1 ai=0
—ao 1 -1
ap = - =5




Power series solutions — simple example

. . —aj
+y=0, = aix', a=1, a1 =0, a0 = A ——.
vty y=2 =t A VRS (=)
ap = 1 al — 0
—ao 1 -1 —ai
a = = —— = — a3 =



Power series solutions — simple example

" i —aj
+y =0, = aix', a=1, a =0, Ao = Pt ——.
T =2 o TR )
ao—l 31—0
_ 1 —1 _
az = il —— = —— a = = =0



Power series solutions — simple example

" _ _ o _ _ ) _ 7aj
y +y=0, nya,x, a=1, aa =0, aj+2f(j+1)(j+2).
a =1 a=0
o _ 1 N
1x2 2 2! 2x3
—a
as —

3x4



Power series solutions — simple example

" _ _ o _ _ ) _ 7aj
y +y=0, nya,x, a=1, aa =0, aj+2f(j+1)(j+2).
a =1 a=0
o _ 1 N
1x2 2 2! 2x3
—a
as — = —

3x4 24



Power series solutions — simple example

" i —aj
+y =0, = aix', a=1, a =0, i = .
T =2 o TR )
aozl 3120
3= 0 __1_-1 _ T
2T 1x2 " 27 2 BT o3
— 1 1
as = a2 :—‘,——:i

3x4 24 41



Power series solutions — simple example

i —aj
TS S TP S
a =1 a=0
a—iaO__l_;l _731_0
*T1ix2 2 2 R
_ 1 1 _
as = a2:+—:i as = 33:0

3x4 24~ 4l 4x5



Power series solutions — simple example

" i —aj
+y =0, = aix', a=1, a =0, i = .
Y g Z o A ) ()
ao—l 3120
a_fao _1_;1 _ T -0
2T 1x2 2 2 BTox3 "
—a 1 _il _ —as
=324 T = 1%5 0
o
ae —




Power series solutions — simple example

—aj

1 i
+y =0, = aix, a=1 a =0, Qg = — I
Y > b 2= G 1Y)

2021 3120
32:730 :_l:;l a3 = —a :0
1x2 2 2! 2x3
—az 1 +1 —a3
HT3 T Tw T w %= gx5 0

—ag 1
ae — =

5x6 720



Power series solutions — simple example

—aj

1 i
+y =0, = aix, a=1 a =0, Qg = — I
Y > b 2= G 1Y)

2021 3120

ay — —4o :_l:;l a3 = —a :0
1x2 2 2! 2x3
—az 1 +1 —a3

HT3 T Tw T w %= gx5 0
—ag 1 —1

ae — =

5x6 720 6!



Power series solutions — simple example

i —aj

a =1 ai=0

a—iaO__l_;l _731_0
2T 1x2 2 2 BTox3 "
a1 41 _ —a
¥T3xaT T2 4 =255 0
_—a 1 -1 _ —a
®T5x6 720 6 =570




Power series solutions — simple example

y'+y=0, y:Za;Xi, ap=1, a1 =0, ajﬂZWm-
2021 3120
a_iao __1_;1 _ a4 -0
2T 1x2 2 2 BTox3 "
a1 41 _ A
AT S VY =255 0
_ a1 -1 _ —a
®T5x6 720 6 =570
(=1)

== (2p)!



Power series solutions — simple example

i —aj

a =1 ai=0

a—iaO__l_;l _731_0
2T 1x2 2 2 BTox3 "
a1 41 _ —a
AT S VY =255 0
_ a1 -1 _ —as
®T5x6 720 6 =570

(-1)°

ap = (2p)' azp+l = 0




Power series solutions — simple example

Vihy=0 y=3ax,  am=la=0  aw= o
2021 3120
a—iao ——1—;1 a—ial—O
Tix2 T 27 2 *To2x3
a1 41 _ A
¥T3xaT T2 4 =255 0
_ a1 -1 _ —a
®T5x6 720 6 =570
_ (=1 _
ay = 2p)! ayp+1 =0

So

1, 1, 1
—1-= Xt
Y 2 T ogX T X T




Power series solutions — simple example

y'+y=0, y:Za;Xi, ap=1, a1 =0, ajﬂZWm-
2021 3120
a—iao ——1—;1 a—ial—O
Tix2 T 27 2 *To2x3
_ o~ _ 1+l _—a
#T3%aT T4 A =755 0
_ a1 -1 _ T3 _
®T5x6 720 6 =570
_(=1)”
ay = 2p)! ayp+1 =0
So
12 1 4 6 Oo(_l)pZ
:1—— — _ — .. = P
Y 2 T T T 2 p)




Power series solutions — simple example

y'+y=0, :Za;xi, a=1, aa =0, aj+2:ﬁg_‘r2).
a =1 a=0
a — :—1:;1 a3 = —a
1x2 2 2! 2x3
—a 1 —
=354 ﬂ:%!l %= grg 0
—a 1 — —
ay = ((;;;:) ayp+1 =0
So -
= 1_}X2_~_7 7;0 Pz; (2p)| P = cos(x).




Power series solution — another example

Consider (x — 1)y” + 2y’ =0, with y =y’ = 1 when x = 0.
Rewrite as y” —2y’/(1 — x) = 0.



Power series solution — another example

Consider (x — 1)y” + 2y’ =0, with y =y’ = 1 when x = 0.
Rewrite as y” —2y’/(1 — x) = 0.

Note:
We can always rewrite Ny’ + Py’ + Qy =0 as y"' + (P/N)y’ + (Q/N)y =0



Power series solution — another example

Consider (x — 1)y” + 2y’ =0, with y =y’ = 1 when x = 0.
Rewrite as y” —2y’/(1 — x) = 0.
Note:

We can always rewrite Ny’ + Py’ + Qy =0 as y"" + (P/N)y’ + (Q/N)y =0,
but this will cause trouble at places where N = 0.



Power series solution — another example

Consider (x — 1)y” + 2y’ =0, with y =y’ = 1 when x = 0.
Rewrite as y” —2y’/(1 — x) = 0.

Note:

We can always rewrite Ny” + Py’ + Qy =0 as y” + (P/N)y’ + (Q/N)y =0,
but this will cause trouble at places where N = 0. Here there is no problem
because we are looking for a power series at x =0, and 1 — x # 0 when x = 0.



Power series solution — another example

Consider (x — 1)y” + 2y’ =0, with y =y’ = 1 when x = 0.
Rewrite as y” —2y’/(1 — x) = 0.

y:Za;xi = ao+a1x+a2x2+a3x3+---
y' = Zia;x"_1 = a1 +2ax +3a3x" 4 = Z(/ + 1)ajp1x
i j

y' =i —1)aix"? =2a + 6asx + - = »_(n+1)(n+ 2)an2x"

n



Power series solution — another example

Consider (x — 1)y” + 2y’ =0, with y =y’ = 1 when x = 0.
Rewrite as y” —2y’/(1 — x) = 0.

y:Za;xi = ao+a1x+a2x2+a3x3+---
y' = Zia;x"_1 = a1 +2ax +3a3x" 4 = Z(/ + 1)ajp1x
i j
y' =i —1)aix"? =2a + 6asx + - = »_(n+1)(n+ 2)an2x"
i

n

1/(1—x) = in (geometric progression )



Power series solution — another example

Consider (x — 1)y” + 2y’ =0, with y =y’ = 1 when x = 0.
Rewrite as y” —2y’/(1 — x) = 0.

y:Za;xi = ao+a1x+a2x2+a3x3+---
y' = Zia;x"_1 = a1 +2ax +3a3x" 4 = Z(/ + 1)ajp1x
i j
y' =i —1)aix"? =2a + 6asx + - = »_(n+1)(n+ 2)an2x"
i n

1/(1—x) = in (geometric progression )

2y' /(1 = x) = 2Zx" ZU +1) aj 11X



Power series solution — another example

Consider (x — 1)y” + 2y’ =0, with y =y’ = 1 when x = 0.
Rewrite as y” —2y’/(1 — x) = 0.

y:Za;xi = ao+a1x+a2x2+a3x3+---
y' = Zia;x"_1 = a1 +2ax +3a3x" 4 = Z(/ + 1)ajp1x
= i(i—1)ax? =2z +6asx+ - = (n+1)(n+2)anox"
i n

1/(1—x) = in (geometric progression )

2y/(1—x)_2z ZQ+1)a,+1xf_2Z(J+ ajx' "



Power series solution — another example

Consider (x — 1)y” + 2y’ =0, with y =y’ = 1 when x = 0.
Rewrite as y” —2y’/(1 — x) = 0.

y:Za;xi = ao+a1x+a2x2+a3x3+---
y' = Zia;x"_1 = a1 +2ax +3a3x" 4 = Z(/ + 1)ajp1x
=i~ 1) aix 7 =23 + 6asx + - = Y _(n+1)(n+ 2)ans2x"
i n

1/(1—x) = in (geometric progression )

2y/(1—x)_2z ZQ+1)a,+1xf_2Z(J+ ajx' "

= ZXnZZ(_j + 1) aj+1-
n j=0



Power series solution — another example

Consider (x — 1)y” + 2y’ =0, with y =y’ = 1 when x = 0.
Rewrite as y” —2y’/(1 — x) = 0.

y:Za;xi = ao+a1x+a2x2+a3x3+---
y' = Zia;x"_1 = a1+ 2ax+3a3x° - = Z(/ +1)ajx
= i(i—1)ax'? =2am +6asx+ - =D _(n+1)(n+2)anox"
1/(1—x) = zl:xi (geometric progression ) "
2y' /(1 = x) = 22 ZU +1)ajx = 22(1 +1)ajax'"
- ZX"Zzg +1) aj41.
n j=0

For the equation y”’ — y’/(1 — x) to hold, we must have

(D)0t Dansa =3 20+ )z



Power series solution — another example

Consider (x — 1)y” 42y’ =0, with y = y" = 1 when x = 0.
y =>;aix" with (n+1)(n+ 2)an2 = >-7 ,2( + 1) aj11.

J




Power series solution — another example

Consider (x — 1)y” 42y’ =0, with y = y" = 1 when x = 0.
y =>;aix" with (n+1)(n+ 2)an2 = >-7 ,2( + 1) aj11.

J

At x=0wehave y =apand y’ = a;, butalsoy =y =1,s0 ag = a; = 1.



Power series solution — another example

Consider (x — 1)y” 42y’ =0, with y = y" = 1 when x = 0.
y = ;ax with (n+1)(n+2)an2 = 377 1 2(j + 1) aj41.

At x=0wehave y =apand y’ = a;, butalsoy =y =1,s0 ag = a; = 1.
Take n=0in (n+1)(n+2)an2 = > 7 ;2(j + 1) aj+1 to get

0
2a, = Z 2(] + l)aj+1

=0



Power series solution — another example

Consider (x — 1)y” 42y’ =0, with y = y" = 1 when x = 0.
y = ;ax with (n+1)(n+2)an2 = 377 1 2(j + 1) aj41.

At x=0wehave y =apand y’ = a;, butalsoy =y =1,s0 ag = a; = 1.
Take n=0in (n+1)(n+2)an2 = > 7 ;2(j + 1) aj+1 to get

0
23, = 2(j+1)aji1 =22 =2
Jj=0



Power series solution — another example

Consider (x — 1)y” 42y’ =0, with y = y" = 1 when x = 0.
y = ;ax with (n+1)(n+2)an2 = 377 1 2(j + 1) aj41.

At x=0wehave y =apand y’ = a;, butalsoy =y =1,s0 ag = a; = 1.
Take n=0in (n+1)(n+2)an2 = > 7 ;2(j + 1) aj+1 to get

0
23, = 2(j+1)aji1 =22 =2 a=1
Jj=0



Power series solution — another example

Consider (x — 1)y” 42y’ =0, with y = y" = 1 when x = 0.
y = ;ax with (n+1)(n+2)an2 = 377 1 2(j + 1) aj41.

At x=0wehave y =apand y’ = a;, butalsoy =y =1,s0 ag = a; = 1.
Take n=0in (n+1)(n+2)an2 = > 7 ;2(j + 1) aj+1 to get

0
23, = 2(j+1)aji1 =22 =2 a=1
Jj=0

1
6as; = ZZ(_} + 1)aj+1

Jj=0



Power series solution — another example

Consider (x — 1)y” 42y’ =0, with y = y" = 1 when x = 0.
y = ;ax with (n+1)(n+2)an2 = 377 1 2(j + 1) aj41.

At x=0wehave y =apand y’ = a;, butalsoy =y =1,s0 ag = a; = 1.
Take n=0in (n+1)(n+2)an2 = > 7 ;2(j + 1) aj+1 to get

0

23, = 2(j+1)aji1 =22 =2 a=1
Jj=0
1

6az = ZZ(_} +1)ajy1 =2a1 +4a, =6

Jj=0



Power series solution — another example

Consider (x — 1)y” 42y’ =0, with y = y" = 1 when x = 0.
y = ;ax with (n+1)(n+2)an2 = 377 1 2(j + 1) aj41.

At x=0wehave y =apand y’ = a;, butalsoy =y =1,s0 ag = a; = 1.
Take n=0in (n+1)(n+2)an2 = > 7 ;2(j + 1) aj+1 to get

0

23, = 2(j+1)aji1 =22 =2 a=1
Jj=0
1

6a3:ZZ(j+1)aj+1:231—|—432:6 a=1

Jj=0



Power series solution — another example

Consider (x — 1)y” 42y’ =0, with y = y" = 1 when x = 0.
y =>;aix" with (n+1)(n+ 2)an2 = >-7 ,2( + 1) aj11.

J

At x=0wehave y =apand y’ = a;, butalsoy =y =1,s0 ag = a; = 1.
Take n=0in (n+1)(n+2)an2 = > 7 ;2(j + 1) aj+1 to get

0

23, = 2(j+1)aji1 =22 =2 a=1
Jj=0
1

6a3:Z2U+1)aj+1:231—|—432:6 a=1
Jj=0

2
12a, = » 2(j + 1)aj1

j=0



Power series solution — another example

Consider (x — 1)y” 42y’ =0, with y = y" = 1 when x = 0.
y =>;aix" with (n+1)(n+ 2)an2 = >-7 ,2( + 1) aj11.

J

At x=0wehave y =apand y’ = a;, butalsoy =y =1,s0 ag = a; = 1.
Take n=0in (n+1)(n+2)an2 = > 7 ;2(j + 1) aj+1 to get

0

23, = 2(j+1)aji1 =22 =2 a=1
Jj=0
1

6a3:Z2U+1)aj+1:231—|—432:6 a=1
Jj=0

2
12a = 2(j + 1)aj1 = 2a1 + 4a; + 6a3 = 12

j=0



Power series solution — another example

Consider (x — 1)y” 42y’ =0, with y = y" = 1 when x = 0.
y =>;aix" with (n+1)(n+ 2)an2 = >-7 ,2( + 1) aj11.

J

At x=0wehave y =apand y’ = a;, butalsoy =y =1,s0 ag = a; = 1.
Take n=0in (n+1)(n+2)an2 = > 7 ;2(j + 1) aj+1 to get

0
232=Z2U+1)3j+1:231:2 =1
Jj=0
1
6a3:Z2U+1)aj+1:231—|—432:6 a=1
Jj=0
2
12a = 2(j + 1)aj1 = 2a1 + 4a; + 6a3 = 12 ar=1

j=0



Power series solution — another example

Consider (x — 1)y” 42y’ =0, with y = y" = 1 when x = 0.
y =>;aix" with (n+1)(n+ 2)an2 = >-7 ,2( + 1) aj11.

J

At x=0wehave y =apand y’ = a;, butalsoy =y =1,s0 ag = a; = 1.
Take n=0in (n+1)(n+2)an2 = > 7 ;2(j + 1) aj+1 to get

0
232=Z2U+1)3j+1:231:2 =1
Jj=0
1
6a3:Z2U+1)aj+1:231—|—432:6 a=1
Jj=0
2
12a = 2(j + 1)aj1 = 2a1 + 4a; + 6a3 = 12 ar=1
j=0

3

20as = » 2(j + 1)ajs1 = 2a1 + 4a; + 623 + 8as = 20
Jj=0



Power series solution — another example

Consider (x — 1)y” 42y’ =0, with y = y" = 1 when x = 0.
y =>;aix" with (n+1)(n+ 2)an2 = >-7 ,2( + 1) aj11.

J

At x=0wehave y =apand y’ = a;, butalsoy =y =1,s0 ag = a; = 1.
Take n=0in (n+1)(n+2)an2 = > 7 ;2(j + 1) aj+1 to get

0
232=Z2U+1)3j+1:231:2 =1
Jj=0
1
6a3:Z2U+1)aj+1:231—|—432:6 a=1
Jj=0
2
12a = 2(j + 1)aj1 = 2a1 + 4a; + 6a3 = 12 ar=1
j=0

3

20as = » 2(j + 1)ajs1 = 2a1 + 4a; + 623 + 8as = 20 as = 1.
Jj=0



Power series solution — another example

Consider (x — 1)y” 42y’ =0, with y = y" = 1 when x = 0.
y =>;aix" with (n+1)(n+ 2)an2 = >-7 ,2( + 1) aj11.

J

At x=0wehave y =apand y’ = a;, butalsoy =y =1,s0 ag = a; = 1.
Take n=0in (n+1)(n+2)an2 = > 7 ;2(j + 1) aj+1 to get

0
232=Z2U+1)3j+1:231:2 =1
Jj=0
1
6a3:Z2U+1)aj+1:231—|—432:6 a=1
Jj=0
2
12a = 2(j + 1)aj1 = 2a1 + 4a; + 6a3 = 12 ar=1
Jj=0

3

20as = » 2(j + 1)ajs1 = 2a1 + 4a; + 623 + 8as = 20 as = 1.
j=0

It looks like ax = 1 for all k.



Power series solution — another example

(x=1)y"+2y'=0,y= Eia,-xf with a9 = a; = 1 and
(n =+ 1)(!1 —+ 2)an+2 = 27:0 2(] —+ 1) aj+1.

J

Claim: ax =1 for all k.



Power series solution — another example

(x=1)y"+2y'=0,y= Eia,-xi with a9 = a; = 1 and
(n =+ 1)(!1 —+ 2)an+2 = 27:0 2(] —+ 1) aj+1.

J

Claim: ax =1 for all k.

Proof by induction :



Power series solution — another example

(x=1)y"+2y'=0,y= Zia,-xi with ap = a1 = 1 and
(n+1)(n+2)aniz =37 520 +1) aj41.

Claim: ax =1 for all k.

Proof by induction : We are given that ap = a; = 1.
Suppose we already know that ap = -+ = ap11 = 1.



Power series solution — another example

(x=1)y"+2y'=0,y= Zia,-xi with ap = a1 = 1 and
(n+1)(n+2)aniz =37 520 +1) aj41.

Claim: ax =1 for all k.

Proof by induction : We are given that ap = a; = 1.
Suppose we already know that ag = --- = apy1 = 1. Then

(n+1)(n+2)ant2 = 22(1 +1)aj+1



Power series solution — another example

(x=1)y"+2y'=0,y= Zia,-xi with ap = a1 = 1 and
(n+1)(n+2)aniz =37 520 +1) aj41.

Claim: ax =1 for all k.
Proof by induction : We are given that ap = a; = 1.
Suppose we already know that ag = --- = apy1 = 1. Then

n

(n+1)(n+2)ap2 = Z2(j+laj+1 > 2(j+1).

Jj=0



Power series solution — another example

(x=1)y"+2y'=0,y= Zia,-xi with ap = a1 = 1 and
(n+1)(n+2)aniz =37 520 +1) aj41.

Claim: ax =1 for all k.
Proof by induction : We are given that ap = a; = 1.
Suppose we already know that ag = --- = apy1 = 1. Then

n

(n+1)(n+2)ap2 = Zz(jﬂaﬁl > 2(j+1).

Jj=0

This is an arithmetic progression .



Power series solution — another example

(x=1)y"+2y'=0,y= Zia,-xi with ap = a1 = 1 and
(n+1)(n+2)aniz =37 520 +1) aj41.

Claim: ax =1 for all k.
Proof by induction : We are given that ap = a; = 1.
Suppose we already know that ag = --- = apy1 = 1. Then

n

(n+1)(n+2)ap2 = Zz(jﬂaﬁl > 2(j+1).

Jj=0

This is an arithmetic progression .
There are n+ 1 terms, from 2 to 2(n+ 1).



Power series solution — another example

(x=1)y"+2y'=0,y= Zia,-xi with ap = a1 = 1 and
(n+1)(n+2)aniz =37 520 +1) aj41.

Claim: ax =1 for all k.

Proof by induction : We are given that ap = a; = 1.
Suppose we already know that ag = --- = apy1 = 1. Then

(n+1)(n+2)ap2 = Zz(jﬂaﬁl > 2(j+1).

Jj=0

This is an arithmetic progression .
There are n+ 1 terms, from 2 to 2(n+ 1).
The average is 1(2+2(n+1)) = n+2



Power series solution — another example

(x=1)y"+2y'=0,y= Zia,-xi with ap = a1 = 1 and
(n+1)(n+2)aniz =37 520 +1) aj41.

Claim: ax =1 for all k.

Proof by induction : We are given that ap = a; = 1.
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Radius of convergence

Consider a series f(x) = 57, ckx”.
» There is a number R with 0 < R < oo, called the radius of convergence.

If |x| < R then the series "3° ckx* converges.

If |x| > R then the series >"7°  ckx* does not converge.

If |x| = R then the series 32 cxx* may or may not converge.

The derivative is f/(x) = 377, (k + 1) ckr1x*, and this has the same
radius of convergence as f(x).
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(a) If the sequence |ak|/|ak+1| has a limit, then that limit is R.
(only meaningful if ax # 0 for all k > ko).
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Consider a series f(x) = 57, ckx”.
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found small corrections to the orbit of Venus, and to the theory of the rainbow.
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Airy's equation

Airy’s equation is y” — xy = 0.
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This is George Biddell Airy. He was the British Astronomer Royal from 1835 to
1881. Among his many achievements, he measured the mass of Jupiter, and
found small corrections to the orbit of Venus, and to the theory of the rainbow.
He established the Prime Meridian (zero degrees of latitude) through the Royal
Greenwich Observatory in London. This crater on Mars is named after him.
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Airy’s equation is y” — xy = 0.
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Airy’s equation is y” — xy = 0.
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Airy’s equation is y” — xy = 0.
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Airy’s equation is y” — xy = 0.

y:Za;xi :ao+alx+azx2+a3x3+~~-
xy = axt=agx+a +ad fan + =) ap1x”
y" = Z i(i—1) aix' 2 =22, + bazx + - = Z(n +1)(n+ 2)ans2x".

For the equation y” — xy = 0 to hold, we must have (n+1)(n+2)an2 = an—1,
or equivalently (m+ 2)(m + 3)am+3 = am, of am+z = am/((m+ 2)(m + 3)).
(Special case: the constant term in y” — xy = 0 gives a, = 0.)
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Airy's equation is y” — xy = 0, where y = 3", axx*.
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> as is like ap/(3k)!, except that terms like 3/ + 1 are missing from the
factorial.
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Airy's equation is y” — xy = 0, where y = 3", axx*.

A= ﬂ anr=— a as=0
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> as is like ap/(3k)!, except that terms like 3/ + 1 are missing from the
factorial.

» a3y is like a1/(3k + 1)!, except that terms like 3/ + 2 are missing.

» The radius of convergence is infinite.
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Four solutions for Airy's equation

Bi(x)

B
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> y =1+ 0(x%) and z = x + O(x?)
» It is more traditional to use Ai(x) and Bi(x).

» These are Ai(x) = ay + Bz and Bi(x) = vy + 6z
for some (complicated) constants «, 3,7, 4.
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The Airy integral

Another method (relevant for the rainbow): consider the function
oo

A(x) = / cos(t®/3 + xt) dt (which only converges because of cancellation.)
t=0

‘ ?3 /3+xt) /\

0s [ cos(t3 /3+xt) dt

/\ /\/\/\/\/\/\/\/\/\/\ t

\/ VAVAAAAAAL

The pictures show x = 2; we see thatuA(2) ~ 0.1818604914.
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This integral does not really converge, but it is natural to think that the value
should be zero, because the graph of cos(u) is symmetrical about the u-axis.
However, some difficult arguments are needed to justify this.



The Airy integral

Consider the function
A(x) = / cos(t>/3 4 xt) dt
A(x) = / —cost/3+xt)dt:—/ t sin(t2/3 + xt) dt
t t=0
ey > d 03 _ < 2 3
A'(x) = — (t sin(t /3—|—xt)) dt = — t° cos(t”/3 + xt) dt
t=0 d t:

=0

A”(x) — x A(x) = / (£ + x) cos(£/3 + xt) dt.

We can integrate this by substituting u = t3/3 + xt, so (t*> + x) dt = du.
Moreover, we have u = 0 when t = 0, and u = oo when t = co. This gives

')

A’(x) — x A(x) = / cos(u) du.
u=0
This integral does not really converge, but it is natural to think that the value
should be zero, because the graph of cos(u) is symmetrical about the u-axis.
However, some difficult arguments are needed to justify this. Anyway, the
conclusion is that A”(x) — x A(x) = 0, so A(x) is a solution for the Airy
equation.
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Consider the equation 4x%y” +y =0, or y" 4+ 1x %y = 0.

The function %x_2 is not a power series, so our previous method does not work.

Maybe we need to let y have negative powers of x as well? Still does not work.

If the first term in y is ax”, then

the first term in y” is n(n — 1)ax""?, and the first term in $x °y is $ax""2.
If y” + 1x~%y = 0 then these must cancel, so n(n —1) + 1 = 0.

There are no integers n with this property.

However, there is a fractional solution, namely n = 1/2.

/2 then y' = %x’l/z and y" = —%x’3/2 so 4x%y" +y =0.

If y =x
If y = In(x)x'/2 then

y = x4 In(x).%x_l/2 =(1+3 In(x))x /2

v = BT (14 E () (—1x Y = —Hin(x)x

so again 4x°y" +y = 0.

We will see that many equations of the form y” + Py’ + Qy = 0 have similar
properties.
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Regular singular points

Consider an equation y”’ + Py’ + Qy = 0.
> If P =300 pex* and Q = 3°0°, qrx* (ordinary power series), we say
that x = 0 is an ordinary point. We studied this case already.
» Suppose instead that

P=pox '+ pitpox+psx’+-= XﬁlZPka
k=0

oo
Q=qgx 4+ ax "+ @+ gx+aqg’+---=x2 Z arx®,
k=0

where po, qo and g1 are not all zero. Then we say that x = 0 is a regular
singular point. In this case, the indicial polynomial is defined to be

x(@) = a(a - 1) + poa + qo.

» In any other case, we say that x = 0 is an irregular singular point.
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Regular singular point — simplest case

Consider an equation y”’ + Py’ + Qy = 0, where P = pox~* and Q = qox~2 for
some constants pp and qo. We look for solutions of the form y = x“. We have

a—2

y" = a(a—1)x

/ —1 a—1 a—2
Py" = pox™".ax = poax

Qy _ quiz.Xa _ qua72

Y+ Py + Qy = (a(a — 1) + poa + qo)x" 7 = x(a)x" 2.
Thus y = x* is a solution if and only if x(«) = 0; in other words, « should be
a root of the indicial polynomial.
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Consider an equation y”’ + Py’ + Qy with a regular singular point at x = 0.
Let x(t) be the indicial polynomial, with roots e and 8 where Re(a) > Re(3).

eorem: Suppose that o — (8 is not an integer. en there is a unique
Th Supp h ger. Th h q
solution of the form y = 3"%° axx*** with ap = 1, and there is a unique
solution of the form z = Z:io bkx*[”k with bg = 1.

Theorem: Suppose that o — 3 is a nonzero integer. Then there is a unique
solution of the form y = >"77/ akx®H* with ap = 1, and there is another
solution of the form z = cy In(x) + >3, bx” ™ with by = 1.

(Sometimes ¢ = 0, so the end result is the same as the first theorem.)

Theorem: Suppose that o = 3. Then there is a unique solution of the form
Y =>0% ax®T* with ag = 1, and there is a unique solution of the form

z=yln(x) + 352, bex*** with bp = 1.

In all three cases, every solution is Ay + Bz for some constants A and B.
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» If the indicial polynomial is (t — 1/2)(t — 1/3) then there are solutions
y= x1/2(1 + O(x)) and z = x1/3(1 + O(x)).
» If the indicial polynomial is (t — 8)(t — 9) then there are solutions
y =x°(1 4+ O(x)) and z = x®(1 4 O(x)) + ¢y In(x).
Here ¢ might be zero, in which case z = x®(1 + O(x)).
> If the indicial polynomial is (t — 1/2)? then there are solutions
y = vx(14 O(x)) and z = /x(1 + O(x)) + y In(x).
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Series solution at a regular singular point

We have not stated these theorems very precisely.

» There are various problems about convergence of series and domains of
solutions.

a+k

» |t is hard to interpret x if x < 0 or if a is complex.

We will discuss some of these problems later.
We will prove the first theorem but not the other two.
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For x3y" + 4x*y’ + 2xy = 0, what is the indicial polynomial?

We have P = 4x~ ! and Q = 2x72, so po =4 and g = 2, so

x(t) = t(t — 1)+ pot +qo = t° + 3t +2 = (t + 1)(t + 2).
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Consider again an equation y” + Py’ + Qy = 0, where
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n=0
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Series solution at a regular singular point

y = Z ax Tk P= z:pkxk*1 Q= Z qix* 2 x(t) = t(t—1)+pot+qo.
k=0 k=0 k=0

x(a+n)an = =327, piea+n—j)anj— 27 Ganj.
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» For n = 0 we have x(a)ag = 0; so for a solution with ap = 1, we must
have x(a) = 0.
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» For n = 0 we have x(a)ag = 0; so for a solution with ap = 1, we must
have x(a) = 0.
» If x(aw+ n) # 0 for all n > 0 then we can define a, recursively by
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and this will give a solution y =", agx>k.
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» Usually x(t) will have two different roots « and 3 such that o — 8 is not
an integer, so x(a + n) and x(8 + n) are nonzero for all n > 0. We then
have one solution y = 3=, axx*** and another solution y = 3" bex” .



Series solution at a regular singular point

y = Z axotk P= z:pkxk*1 Q= Z qux* 2 x(t) = t(t—1)+pot+qo.
k=0 k=0 k=0

x(a+n)an= =327 pila+n—jlan— 37, ganj.

» For n = 0 we have x(a)ag = 0; so for a solution with ap = 1, we must
have x(a) = 0.
» If x(aw+ n) # 0 for all n > 0 then we can define a, recursively by

an=—x(n+a)” (ij o+ n—j)an; +qua,,_j> ;
j=1

and this will give a solution y =", agx>k.

» Usually x(t) will have two different roots « and 3 such that o — 8 is not
an integer, so x(a + n) and x(8 + n) are nonzero for all n > 0. We then
have one solution y = 3=, axx*** and another solution y = 3" bex” .

> If x(t) has a repeated root, or two roots separated by an integer, then the
situation is more complicated.
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Regular singular point example — non-integer gap

Consider the equation
2y +xy' = (x+1)y =0o0ry" + 3x7y + (—3x7 = 3x7*)y = 0.

There is a regular singular point at x = 0, with py = % and qo = —3,
1

so the indicial polynomial is a(a— 1)+ Ja— 1 =0o0ra® — fa— 1

I

N

The roots are f% and 1; the difference is not an integer.
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Consider the equation 2x°y"” + xy’ — (x + 1)y = 0; indicial roots v = —1, 1.

y:Zk akx1+k

2=3, bx1/2k

E}

In fact, in this case it is possible to find exact solutions:
u=evV>(1-1/v2x) v=e V(1 +1/v2x)

y=2(+v)
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Consider the equation 2x°y"” + xy’ — (x + 1)y = 0; indicial roots v = —1, 1.

Y=k akX1+k

z:Ek bkx—1/2+k
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In fact, in this case it is possible to find exact solutions:
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3
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= 5 (COSh(\/g) - @)
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Consider the equation 2x°y"” + xy’ — (x + 1)y = 0; indicial roots v = —1, 1.

y:Zk akx1+k

2=3, bx1/2k

E}

In fact, in this case it is possible to find exact solutions:

u=evV>(1-1/v2x) v=eV(1+41/v2x)
}’:%(U-l-v) z:%(v—u)

3 sinh(v/2x)
= 5 (COSh(\/g) - \/ﬂ)



Regular singular point example — non-integer gap

Consider the equation 2x°y"” + xy’ — (x + 1)y = 0; indicial roots v = —1, 1.

Y=k akX1+k

z:Ek bkx—1/2+k

-3

In fact, in this case it is possible to find exact solutions:

u=eV>(1-1/v2x) v=e VX(1+1/v2x)
3 1
}’:Z(U-l-v) z:ﬁ(v—u)
3 sinh(v/2x) _ cosh(v/2x) i =
=5 (cosh(\/g) — @) =2 (@ h(ﬁ))
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Regular singular point example — repeated root

Now consider instead the equation y” 4 (x~* + 1)y’ +2x~ 'y = 0.
This has a regular singular point at x = 0, with pp = 1 and go = 0.
The indicial polynomial is

a(a—1) + poa + qo
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Now consider instead the equation y” 4 (x~* + 1)y’ +2x~ 'y = 0.
This has a regular singular point at x = 0, with pp = 1 and go = 0.
The indicial polynomial is

ala—1)+pa+qg=0c’—a+a
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Now consider instead the equation y” 4 (x~* + 1)y’ +2x~ 'y = 0.
This has a regular singular point at x = 0, with pp = 1 and go = 0.
The indicial polynomial is

ala—1)+pa+gp=0’—at+a=ao’
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Now consider instead the equation y” 4 (x~* + 1)y’ +2x~ 'y = 0.
This has a regular singular point at x = 0, with pp = 1 and go = 0.
The indicial polynomial is

a(a71)+poa+q0:a27a+a:a2,

so there is a repeated root o = 0.
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Now consider instead the equation y” 4 (x~* + 1)y’ +2x~ 'y = 0.

This has a regular singular point at x = 0, with pp = 1 and go = 0.

The indicial polynomial is
a(a71)+poa+q0:a27a+a:a2,

so there is a repeated root o = 0.

Thus, there is a unique solution y = Zzio akx® with ap = 1,

and there is a unique solution z = In(x)y + >°7°, bex* with by = 1.
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Now consider instead the equation y” 4 (x~* + 1)y’ +2x~ 'y = 0.

This has a regular singular point at x = 0, with pp = 1 and go = 0.

The indicial polynomial is
a(a71)+poa+q0:a27a+a:a2,

so there is a repeated root o = 0.

Thus, there is a unique solution y = Zzio akx® with ap = 1,

and there is a unique solution z = In(x)y + >°7°, bex* with by = 1.

Y= k(k—1)ax""?
k
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This has a regular singular point at x = 0, with pp = 1 and go = 0.

The indicial polynomial is
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Regular singular point example — repeated root

Now consider instead the equation y” 4 (x~* + 1)y’ +2x~ 'y = 0.
This has a regular singular point at x = 0, with pp = 1 and go = 0.
The indicial polynomial is

a(a71)+poa+q0:a27a+a:a2,

so there is a repeated root o = 0.
Thus, there is a unique solution y = Zzio akx® with ap = 1,
and there is a unique solution z = In(x)y + >°7°, bex* with by = 1.

Y =37 k(k — 12 =20 +2)( + Dajeox

(x_1 + 1)y/ = Z kagx""2 + Z kapx*1
K K



Regular singular point example — repeated root

Now consider instead the equation y” 4 (x~* + 1)y’ +2x~ 'y = 0.
This has a regular singular point at x = 0, with pp = 1 and go = 0.
The indicial polynomial is

a(a71)+poa+q0:a27a+a:a2,

so there is a repeated root o = 0.
Thus, there is a unique solution y = Zzio akx® with ap = 1,
and there is a unique solution z = In(x)y + >°7°, bex* with by = 1.

Y =37 k(k — 12 =20 +2)( + Dajeox

1)y = 3 ka2 4 S ket = 3G+ 2)a2 + (4 Dapa)x
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Now consider instead the equation y” 4 (x~* + 1)y’ +2x~ 'y = 0.
This has a regular singular point at x = 0, with pp = 1 and go = 0.
The indicial polynomial is

a(a71)+poa+q0:a27a+a:a2,

so there is a repeated root o = 0.
Thus, there is a unique solution y = Zzio akx® with ap = 1,
and there is a unique solution z = In(x)y + >°7°, bex* with by = 1.
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2x71y = Z 2akxk71
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Regular singular point example — repeated root

Now consider instead the equation y” 4 (x~* + 1)y’ +2x~ 'y = 0.
This has a regular singular point at x = 0, with pp = 1 and go = 0.
The indicial polynomial is

a(a71)+poa+q0:a27a+a:a2,

so there is a repeated root o = 0.
Thus, there is a unique solution y = Zzio akx® with ap = 1,
and there is a unique solution z = In(x)y + >°7°, bex* with by = 1.

Y= k(k—1)ax""? =Y (+2)(+ Dajx
k i
LY =) ka4 kT =) (G 2)ame + (G Dag)X
k k j
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Now consider instead the equation y” 4 (x~* + 1)y’ +2x~ 'y = 0.
This has a regular singular point at x = 0, with pp = 1 and go = 0.
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Regular singular point example — repeated root

Now consider instead the equation y” 4 (x~* + 1)y’ +2x~ 'y = 0.
This has a regular singular point at x = 0, with pp = 1 and go = 0.
The indicial polynomial is

a(a71)+poa+q0:a27a+a:a2,

so there is a repeated root o = 0.
Thus, there is a unique solution y = Zzio akx® with ap = 1,
and there is a unique solution z = In(x)y + >°7°, bex* with by = 1.

Y= k(k—1)ax""? =Y (+2)(+ Dajx
k j
1)y = 3 ka2 4 S ket = 3G+ 2)a2 + (4 Dapa)x
k k J
2x71y = Z 2akxk71 = Z 2aj+1xj
k J

We need (j +2)(j + 1)ajr2 + ( + 2)ajr2 + ( + 1)aj11 + 2311 =0,
which simplifies to (j + 2)?aj+2 + (j + 3)aj+1 = 0.



Regular singular point example — repeated root

Now consider instead the equation y” 4 (x~* + 1)y’ +2x~ 'y = 0.
This has a regular singular point at x = 0, with pp = 1 and go = 0.
The indicial polynomial is

a(a71)+poa+q0:a27a+a:a2,

so there is a repeated root o = 0.
Thus, there is a unique solution y = Zzio akx® with ap = 1,
and there is a unique solution z = In(x)y + >°7°, bex* with by = 1.

Y= k(k—1)ax""? =Y (+2)(+ Dajx
k j
1)y = 3 ka2 4 S ket = 3G+ 2)a2 + (4 Dapa)x
k k J
2x71y = Z 2akxk71 = Z 2aj+1xj
k J

We need (j +2)(j + 1)ajr2 + ( + 2)ajr2 + ( + 1)aj11 + 2311 =0,
which simplifies to (j + 2)?aj+2 + (j + 3)aj+1 = 0.
Put m=j+42to get am = —(m+ l)m_2am_1 for m > 0.
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y +(X_1+1)y'—|—2x_1y =0 y= Zakxk ax = —(k—l—l)k_zak,l
k=0

a=1



Regular singular point example — repeated root

y +(X_1+1)y'—|—2x_1y =0 y= Zakxk ax = —(k—l—l)k_zak,l
k=0

a =1 a=——5



Regular singular point example — repeated root

"

y +(X_1+1)y'—|—2x_1y =0 y= Zakxk ax = —(k—l—l)k_2

2 2.3
a =1 = —— a = +ﬁ



Regular singular point example — repeated root

y”—l—(x_1 +1)y'—|—2x_1y =0 y= Z agx® ax=—(k+ 1)k_2
2 2.3
a=1 ar = _F a = +ﬁ
2.3.4
a3 —

T 122232



Regular singular point example — repeated root

y//+(x_1+1)y/+2x_1y20 y= Zakxk ax = —(k—l—l)k_2
- 2 2.3
a =1 ai —F ax = +ﬁ
234 2345
a3 = 122232 4= +12223242



Regular singular point example — repeated root

y"+(x_1+1)y'—|—2x_1y:O y= Zakxk ax = —(k—l—l)k_zak,l
k=0
2 23
a =1 alz—ﬁ 32—+ﬁ
2.3.4 2.3.4.5 2.3.4.5.6
az = as =+ as =

T 122232 12023242 T 1222324252
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y“—|—(x_1+1)y'—|—2x_1y:O y= Zakxk ax = —(k—l—l)k_zak,l
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y“—|—(x_1+1)y'—|—2x_1y:O y= Zakxk ax = —(k—l—l)k_zak,l
k=0
2 ., 23
a =1 alz—ﬁ 32—+ﬁ
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a = - 120232 an = +12223242 a5 = — 1202324252
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2 ., 23
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y“—|—(x_1+1)y'—|—2x_1y:O y= Zakxk ax = —(k—l—l)k_zak,l
k=0
2 ., 23
a =1 alz—ﬁ 32—+ﬁ
2.3.4 _ 2.3.45 B 2.3.45.6
a = - 120232 an = +12223242 a5 = — 1202324252
4 _ 4 _s s 6 6
T 123 3l T 12347 4 © 12345 5l

In general, a = (~1)“55% = (1)} + )



Regular singular point example — repeated root

y“—|—(x_1+1)y'—|—2x_1y:O y= Zakxk ax = —(k—l—l)k_zak,l
k=0
2 ., 23
a =1 alz—ﬁ 32—+ﬁ
2.3.4 _ 2.3.45 B 2.3.45.6
a = - 120232 an = +12223242 a5 = — 1202324252
4 _ 4 _s s 6 6
T 123 3l T 12347 4 © 12345 5l

In general, ax = (—1)"% = (—1)"(% + %) = (—l)k(% + ﬁ)



Regular singular point example — repeated root

"

Y+ (T 1)y +2x 7y =0

[e o]

k

y = E akX
k=0

ar = —(k+ 1)k a1

a =1 a = —%
2.3.4 2.3.45
S = g
4 4 5 5
“T123° 3 T 1234 Tw

23
%=1y
23456
a5 = - 1202324252
___ 6 __6
12345 5l

In general, a, = (—1)*5 = (—1)*(& + £) = (-1)"(& + ﬁ) Thus

y=2_ (_k)? +; (k_—X)l)!

k
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y“—|—(x_1—|-1)y/—|—2x_1y:O y= Zakxk = —(k—l—l)k_2
k=0
2 2.3
%=1 A="p e
2.3.4 2345 23456
a3 = 120232 a +12223242 a5 = - 1202324252
4 _ 4 __ s _ s _ 5 _ 6
T 123 3l T 12347 4 © 12345 5l
In general, ax = (—1)" kk = (—1)"(,(l k,) = (- 1) (kI + (= 1 -)- Thus

y=>_ (_k)? +; (k_—X)l)l

k

= e_X—X; (( X_)]_)I
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y“—|—(x_1—|-1)y/—|—2x_1y:O y= Zakxk = —(k—l—l)k_2
k=0
2 2.3
%=1 A="p e
2.3.4 2345 23456
a3 = 120232 a +12223242 a5 = - 1202324252
4 _ 4 __ s _ s _ 5 _ 6
T 123 3l T 12347 4 © 12345 5l
In general, ax = (—1)" kk = (—1)"(,(l k,) = (- 1) (kI + (= 1 -)- Thus

y=>_ (_k)? +; (k_—X)l)l

k

= e_X—X; (( X_)]_)I

—Xx —X

=e “—xe " = (1-x)e™".
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y'+(xTH)y'42xty =0 first solution: y = (1—x)e™ ™ = Z 2 (—x)*
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Yy +H(x )y +2x Ty =0 first solution: y = (1—x)e™ ™ = Z k:_l ! (—x)*

Second solution: z = yIn(x) + u, where u =", bix* with by = 1.



Regular singular point example — repeated root

", go— - , . —x k+1
Yy +H(x )y +2x Ty =0 first solution: y = (1—x)e™ ™ = Z 2 (—x)*

Second solution: z = yIn(x) + u, where u =", bix* with by = 1.

z=yln(x)4+u
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Yy +H(x )y +2x Ty =0 first solution: y = (1—x)e™ ™ = Z k:_l ! (—x)*

Second solution: z = yIn(x) + u, where u =", bix* with by = 1.

z=yln(x)4+u
Z =y In(x)+yx '+



Regular singular point example — repeated root

", go— - , . —x k+1
Yy +H(x )y +2x Ty =0 first solution: y = (1—x)e™ ™ = Z 2 (—x)*

Second solution: z = yIn(x) + u, where u =", bix* with by = 1.

z=yln(x)4+u
Z =y In(x)+yx '+

Z// _ y// In(x) 4 y/X—l + ylel o yX72 y

17



Regular singular point example — repeated root

Yy +H(x )y +2x Ty =0 first solution: y = (1—x)e™ ™ = Z k:_l ! (—x)*

Second solution: z = yIn(x) + u, where u =", bix* with by = 1.

z=yln(x)4+u
Z =y In(x)+yx '+
/7

Z/ — y// |n(X) +y/X—1 +yIX71 _ yx72 + u//
_ y// In(x) + 2y/X—l - YX—Q + u”’
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Yy +H(x )y +2x Ty =0 first solution: y = (1—x)e™ ™ = Z k:_l ! (—x)*

Second solution: z = yIn(x) + u, where u =", bix* with by = 1.

z=yln(x)4+u
Z =y In(x)+yx '+
=y In(x)+y'x Ty x x4
=y"In(x)4+2y'x " —yx? +u”
(D 2Tz = () (T 1)y +2x ) In(x) +
u’ 4+ (x71 + l)u' +ox tu+

2y x T —yx P (x TP+ 1)yx !



Regular singular point example — repeated root

Yy +H(x )y +2x Ty =0 first solution: y = (1—x)e™ ™ = Z k:_l ! (—x)*

Second solution: z = yIn(x) + u, where u =", bix* with by = 1.
z=yln(x)4+u
Z =y In(x)+yx '+
Z// — y” |n(X) + ylel + ylel _ yxi2 + u//
=y"In(x)+2y'x " —yx T+’

(D 2Tz = () (T 1)y +2x ) In(x) +
u’ 4+ (x71 + l)u' +ox tu+

2y x T —yx P (x TP+ 1)yx !

=u" 4+ (x T+ 1)+ 2x T+ xTH 2y + y).



Regular singular point example — repeated root

Yy +H(x )y +2x Ty =0 first solution: y = (1—x)e™ ™ = Z k:_l ! (—x)*

Second solution: z = yIn(x) + u, where u =", bix* with by = 1.

z=yln(x)+u

2=y In(x)+yx T4

Z// — y” |n(X) + ylel + ylel _ yx72 + u//

=y"In(x)+2y'x " —yx T+’

(D 2Tz = () (T 1)y +2x ) In(x) +
u’ 4+ (x71 + l)u' +ox tu+
2y'x P —yx P (X71 + 1)y><71

=u" 4+ (x T+ 1)+ 2x T+ xTH 2y + y).

We need to find u such that this last expression is zero.



Regular singular point example — repeated root

—X

Y+ (x Ty +2xty =0 solutions: y = (1 —x)e ", z=yln(x)+u

(T D)0 F2x a4+ xT N2y +y) =0
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—X

Y+ (x Ty +2xty =0 solutions: y = (1 —x)e ", z=yln(x)+u

(T D)0 F2x a4+ xT N2y +y) =0

u= Z bkxk, bh=1
k=0
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Y+ (x Ty +2xty =0 solutions: y = (1—x)e™™, z=ylIn(x)+u

(T D)0 F2x a4+ xT N2y +y) =0

u= Z bkxk, bh=1
k=0

(T +2x e = Z((k + 2)%biya 4 (k + 3)beyr)x¥
K
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Y+ (x Ty +2xty =0 solutions: y = (1—x)e™™, z=ylIn(x)+u

(T D)0 F2x a4+ xT N2y +y) =0

u= Z bkxk, bh=1
k=0
(T +2x e = Z((k + 2)%biya 4 (k + 3)beyr)x¥
K

y'=—e"+(1-x)(-e7)
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Y+ (x Ty +2xty =0 solutions: y = (1—x)e™™, z=ylIn(x)+u

(T D)0 F2x a4+ xT N2y +y) =0

u= Z bkxk, bh=1
k=0
(T +2x e = Z((k + 2)%biya 4 (k + 3)beyr)x¥
K

Y = —e "+ (1-x)(—e ) = (x—2)e "
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Y+ (x Ty +2xty =0 solutions: y = (1—x)e™™, z=ylIn(x)+u

(T D)0 F2x a4+ xT N2y +y) =0

u= Z bkxk, bh=1
k=0
(T +2x e = Z((k + 2)%biya 4 (k + 3)beyr)x¥
K

Y = e 4 (1 x)(—e ) = (x — 2)e
x T2y +y)=x"12(x —2)+ (1 —x))e~



Regular singular point example — repeated root

Y+ (x Ty +2xty =0 solutions: y = (1—x)e™™, z=ylIn(x)+u

(T D)0 F2x a4+ xT N2y +y) =0

u= Z bkxk, bh=1
k=0
(T +2x e = Z((k + 2)%biya 4 (k + 3)beyr)x¥
K

Y = e 4 (1 x)(—e ) = (x — 2)e
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Series solutions for the Bessel equation

Yy (=t )y =0 y=>ax" a=1  ac o= —k(@2ntk)a
k=0

Here n > 0, so for k > 0 we have k(2n+ k) # 0 and ax = —ax—2/(k(2n+ k)).

For odd k: a_1 =0, so a1 =0, so a3 = 0 and so on; so ax = 0 when k is odd.
For even k:

-1 1 -1
ag =1 agy = ay =

2(2n + 2) 2.4.(2n + 2)(2n + 4) %= 2.4.6.(2n + 2)(2n + 4)(2n + 6)

and so on. It is convenient to write this using the Pochhammer symbol:

(@)p=a(a+1)(a+2) - (a+p—1).
With this notation we have

(=17 (-1)°
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y =Jn(x) = 225X = — L 7 __x .
22 =2 i),



Series solutions for the Bessel equation

o S Ly

<2y +xy'+(x*—n 0 One solution: = jn(x
Y xy (0 =n")y = = Jn(x) 25 1),




Series solutions for the Bessel equation

2 1 rg2 2 . . = (=1/4)P .
Xy 4+xy'+(x*=n")y =0 One solution: = ju(x) = — LT TP,
Y Axy +( )y ¥ = jn(x) EICES)

p=0

You will more often see a different function J,(x), called the Bessel function,
which is a certain constant C, times j,(x). We will not give a formula for C,
here.
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Series solutions for the Bessel equation

2 1 2 . . = (_1/4)p
Xy +xy'+(x*—n =0 One solution: = jn(x — 1 7 x
Y xy +(x* =n®)y y =Jn(x) = pEOP'("Jrl)

n+2p

You will more often see a different function J,(x), called the Bessel function,
which is a certain constant C, times j,(x). We will not give a formula for C,

here.

If nis not an integer then there is another solution

O
p pl(—n+1), ’

However, if nis a positive integer then the n'th term involves division by
(=n+ 1), which is zero; so j_n(x) cannot be defined.



Series solutions for the Bessel equation

2.1 2 _ o . = ( 1/4 n+2p
x“y" +xy +(X —n7)y =0 One solution:  y = ja(x) = pz: pl(n 1), .

You will more often see a different function J,(x), called the Bessel function,
which is a certain constant C, times j,(x). We will not give a formula for C,
here.

If nis not an integer then there is another solution

O
p pl(—n+1), ’

However, if nis a positive integer then the n'th term involves division by
(=n+ 1), which is zero; so j_n(x) cannot be defined. Instead, the second
solution is ¢ In(x)jn(x) + u(x) with u(x) = 3, bx~""* say. We will not give
the formula for bi here.
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Here we will give the formula for the other solution, but we will not check it.
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The case n = 0 of the Bessel equation is x2y” + xy’ + x>y = 0. One solution is
Jo(x). The formula for j,(x) involves (n+ 1), but (1), = p! so the formula is
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Bessel functions of order zero

The case n = 0 of the Bessel equation is x2y” + xy’ + x>y = 0. One solution is
Jo(x). The formula for j,(x) involves (n+ 1), but (1), = p! so the formula is

_JO(X Z( 1/4)

12
p=0 P

Here we will give the formula for the other solution, but we will not check it.
We first need the function

©

x|~

>
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The second solution is

2= 3 CUA 20500 — ().

2
p=0 P!
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Sturm-Liouville form

If p, g, r are smooth functions of x, we can define

L(y) = (") +ay)/r.
A Sturm-Liouville operator is an operator L of the above form.
Proposition: Consider an operator L(y) = Ay” + By’ + Cy,

where A, B and C are functions of x, with A > 0 at all points of interest.
Then L can be rewritten in Sturm-Liouville form: L(y) = ((py")’ + qy)/r, where

p=exp(/ B/Adx) qg=pC/A r=p/A
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Sturm-Liouville form

If p, g, r are smooth functions of x, we can define

L(y) = (") +ay)/r.
A Sturm-Liouville operator is an operator L of the above form.
Proposition: Consider an operator L(y) = Ay” + By’ + Cy,

where A, B and C are functions of x, with A > 0 at all points of interest.
Then L can be rewritten in Sturm-Liouville form: L(y) = ((py")’ + qy)/r, where

p=exp(/ B/Adx) qg=pC/A r=p/A

Proof: Put v= [ B/Adx, so v/ = B/A. Then p=¢", so
p'=Vv'e" = (B/A)e" = pB/A. Now

/
(o) +ay)/r=(py" + Py +ay)/r= éy" + pTy/ + gy
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The Bessel equation in Sturm-Liouville form

Ay" + By + Cy = ((py') + ay)/r, where

p:exp(/B/Adx) qg=pC/A r=p/A.

Recall the Bessel equation

Xy +xy' + (x> = n’)y = 0.
We can write this as Ly = n’y, where Ly = x*y" + xy’ + x°y.
Here A= x? and B = x and C = x2. Thus
B/A=x""1
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The Bessel equation in Sturm-Liouville form

Ay" + By + Cy = ((py') + ay)/r, where

p:exp(/B/AdX) qg=pC/A r=p/A.

Recall the Bessel equation

Xy +xy' + (x> = n’)y = 0.
We can write this as Ly = n’y, where Ly = x*y" + xy’ + x°y.
Here A= x? and B = x and C = x%. Thus
B/A=x"' so [ B/Adx =In(x), so p=exp(f B/Adx) = exp(In(x)) = x.
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Ay" + By + Cy = ((py') + ay)/r, where

p:exp(/B/AdX) qg=pC/A r=p/A.

Recall the Bessel equation

Xy +xy' + (x> = n’)y = 0.
We can write this as Ly = n’y, where Ly = x*y" + xy’ + x°y.
Here A= x? and B = x and C = x*. Thus
B/A=x"' so [ B/Adx =In(x), so p=exp(f B/Adx) = exp(In(x)) = x.
This gives g = pC/A = x.x*/x* = x
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The Bessel equation in Sturm-Liouville form

Ay" + By + Cy = ((py') + ay)/r, where
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Recall the Bessel equation
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We can write this as Ly = n’y, where Ly = x*y" + xy’ + x°y.
HereAfx and B =xand C = x>. Thus
B/A=x"" so [B/Adx =In(x), so p=exp([ B/Adx) = exp(ln(x))
This gives g = pC/A = x.x*/x* =x and r = p/A = x/x* = x~

In conclusion:

L(y) = (() +xy)/x*



The Bessel equation in Sturm-Liouville form

Ay" + By + Cy = ((py') + ay)/r, where

p:exp(/B/AdX) qg=pC/A r=p/A.

Recall the Bessel equation

Xy +xy' + (x> = n’)y = 0.
We can write this as Ly = n’y, where Ly = x*y" + xy’ + x°y.
HereAfx and B =xand C = x>. Thus
B/A=x"" so [B/Adx =In(x), so p=exp([ B/Adx) = exp(ln(x))
This gives g = pC/A = x.x*/x* =x and r = p/A = x/x* = x~

In conclusion:

L(y) = () +xy)/x " = ((') + xy)x.
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The Legendre equation in Sturm-Liouville form

Ay" + By + Cy = ((py') + ay)/r, where

p:exp(/B/Adx) qg=pC/A r=p/A.

Recall the Legendre equation
(1-x")y” —2xy' + n(n+1)y =0.

We can write this as Ly = —n(n+ 1)y, where Ly = (1 — x?)y"” — 2xy’.
Here A=1—x? and B = —2x and C = 0. This gives
B —2x _ (1-x)—(1+x)
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The Legendre equation in Sturm-Liouville form
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Recall the Legendre equation
(1-x")y” —2xy' + n(n+1)y =0.

We can write this as Ly = —n(n+ 1)y, where Ly = (1 — x?)y"” — 2xy’.
Here A=1—x? and B = —2x and C = 0. This gives
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The Legendre equation in Sturm-Liouville form

Ay" + By + Cy = ((py') + ay)/r, where

p:exp(/B/Adx) qg=pC/A r=p/A.

Recall the Legendre equation
(1-x")y” —2xy' + n(n+1)y =0.

We can write this as Ly = —n(n+ 1)y, where Ly = (1 — x?)y"” — 2xy’.

Here A=1—x? and B = —2x and C = 0. This gives
E_ -2x  (1-x)—(1+x) 1 B 1
A 1-x2 (1-x)(1+4+x)  1+x 1-x’

SO

/B/Adx =1In(1+x)+In(1—x)
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Ay" + By + Cy = ((py') + ay)/r, where

p:exp(/B/Adx) qg=pC/A r=p/A.

Recall the Legendre equation
(1-x")y” —2xy' + n(n+1)y =0.

We can write this as Ly = —n(n+ 1)y, where Ly = (1 — x?)y"” — 2xy’.

Here A=1—x? and B = —2x and C = 0. This gives
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SO
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Ay" + By + Cy = ((py') + ay)/r, where
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Recall the Legendre equation
(1-x")y” —2xy' + n(n+1)y =0.

We can write this as Ly = —n(n+ 1)y, where Ly = (1 — x?)y"” — 2xy’.

Here A=1—x? and B = —2x and C = 0. This gives
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Ay" + By + Cy = ((py') + ay)/r, where

p:exp(/B/Adx) qg=pC/A r=p/A.

Recall the Legendre equation
(1-x")y” —2xy' + n(n+1)y =0.

We can write this as Ly = —n(n+ 1)y, where Ly = (1 — x?)y"” — 2xy’.

Here A=1—x? and B = —2x and C = 0. This gives
E_ -2x  (1-x)—(1+x) 1 B 1
A 1-x2 (1-x)(1+4+x)  1+x 1-x’

so
/B/A dx = In(1+ x) 4+ In(1 — x) = In((1 + x)(1 — x)) = In(1 — x°),

so p=exp(fB/Adx)=1—x>



The Legendre equation in Sturm-Liouville form

Ay" + By + Cy = ((py') + ay)/r, where

p:exp(/B/Adx) qg=pC/A r=p/A.

Recall the Legendre equation
(1-x")y” —2xy' + n(n+1)y =0.

We can write this as Ly = —n(n+ 1)y, where Ly = (1 — x?)y"” — 2xy’.

Here A=1—x? and B = —2x and C = 0. This gives
E_ -2x  (1-x)—(1+x) 1 B 1
A 1-x2 (1-x)(1+4+x)  1+x 1-x’

so
/B/A dx = In(1+ x) 4+ In(1 — x) = In((1 + x)(1 — x)) = In(1 — x°),

so p=exp(fB/Adx)=1—x>
This in turn gives g = pC/A =10



The Legendre equation in Sturm-Liouville form

Ay" + By + Cy = ((py') + ay)/r, where

p:exp(/B/Adx) qg=pC/A r=p/A.

Recall the Legendre equation
(1-x")y” —2xy' + n(n+1)y =0.

We can write this as Ly = —n(n+ 1)y, where Ly = (1 — x?)y"” — 2xy’.

Here A=1—x? and B = —2x and C = 0. This gives
E_ -2x  (1-x)—(1+x) 1 B 1
A 1-x2 (1-x)(1+4+x)  1+x 1-x’

so
/B/A dx = In(1+ x) 4+ In(1 — x) = In((1 + x)(1 — x)) = In(1 — x°),

so p=exp(fB/Adx)=1—x>
This in turn gives g = pC/A=0and r = p/A=1.



The Legendre equation in Sturm-Liouville form

Ay" + By + Cy = ((py') + ay)/r, where

p:exp(/B/Adx) qg=pC/A r=p/A.

Recall the Legendre equation
(1-x")y” —2xy' + n(n+1)y =0.

We can write this as Ly = —n(n+ 1)y, where Ly = (1 — x?)y"” — 2xy’.

Here A=1—x? and B = —2x and C = 0. This gives
E_ -2x  (1-x)—(1+x) 1 B 1
A 1-x2 (1-x)(1+4+x)  1+x 1-x’

so
/B/A dx = In(1+ x) 4+ In(1 — x) = In((1 + x)(1 — x)) = In(1 — x°),

so p=exp(fB/Adx)=1—x>
This in turn gives g = pC/A =0 and r = p/A=1. In conclusion:

Liy) = (1= x)y").
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Ay" + By + Cy = ((py') + ay)/r, where

p:exp(/B/AdX) qg=pC/A r=p/A.

Recall the Hermite equation
y" —2xy’ 4+2ny =0.

We can write this as Ly = —2ny, where Ly = y"" — 2xy’.
HereA:IandB:72xandC:02. ,
This gives p = exp([ B/Adx) = e > ,s0o q=pC/A=0and r=p/A=e*.

In conclusion: , ,
Ly)=¢€"(e "y
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Reminder about matrices and eigenvectors

Let A be an n X n matrix, and let u and v be vectors in R" or C".
The transpose AT has entries (A7); = Aji.

We say that A is symmetric if AT = A.

The inner product (u, v) is Y ;_, uivi.

The transpose and inner product are related by (Au,v) = (u, ATv).

vVvYVvyVvTyy

A number X\ € C is an eigenvalue of A if there is a nonzero vector u € C"
with Au = Au. Any such vector is called an eigenvector.

» If A is symmetric, then all eigenvalues are real. Moreover, if u and v are

eigenvectors with different eigenvalues, then (u, v) = 0.

Now let L be a differential operator, like Lpessel(y) = X%y + xy’ + x°y.

A number A € C is an eigenvalue if there is a nonzero function y with
L(y) = Ay. Any such function is called an eigenfunction.
eg: Lpessel(Jn) = n’Jy, so J, is an eigenfunction of Lgessel with eigenvalue n’.

We will see that Sturm-Liouville operators behave like symmetric matrices:
all eigenvalues are real, and eigenfunctions with distinct eigenvalues have an
orthogonality property.
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Let L be a Sturm-Liouville operator, say L(y) = ((py’) + qy)/r.
For any two functions f and g, we put

W(f,g) = pfg’ — pf'g.
This is called the modified Wronskian.
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Proof:
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Boundary conditions

In applications, we often want to solve differential equations with boundary
conditions. For example, consider again the vibration of a drum of radius R.
The height y is a function of the distance r from the centre. The edge of the
drum cannot move, so y = 0 when r = R; this is a boundary condition.

Consider a Sturm-Liouville operator Ly = ((py’)’ + qy)/r,
where p, g, r and y are all defined on some interval [a, b].
We might need to use boundary conditions of the following kinds:

» Dirichlet conditions: y = 0 when x = a or x = b.
» Neumann conditions: y’ = 0 when x = a or x = b.
> Periodic conditions: y(a) = y(b) and y'(a) = y'(b).
We will only discuss Dirichlet conditions. Other cases are similar.
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constants A and B. The boundary condition f(0) = 0 gives A+ B =0,
and the condition f(1) = 0 gives Ae* + Be™* = 0. As 11 > 0 we have
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> Suppose instead that A = 0, so the equation L(f) = Af just gives f” = 0.
It is easy to see that the only solutions are f = Ax + B with A and B
constant. The conditions f(0) = f(1) =0 give B=A+ B =0, so
A= B =0, so again f = 0. Thus, there are no eigenfunctions with A = 0.

» Suppose that A < 0, so A = —w? for some w > 0. The equation Lf = \f
says " 4+ w?f = 0, which has solutions f = Asin(wx) 4+ B cos(wx). The
condition f(0) = 0 gives B =0. The condition f(1) = 0 becomes
Asin(w) = 0, which gives A = 0 unless w = n7 for some integer n > 0.

Conclusion:
; 22 ; ;
the only real eigenvalues are A = —n“7*; eigenfunctions are sin(nmx).
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Proof: Suppose we have a complex eigenfunction f = g + ih # 0, with a
complex eigenvalue A = u + iv. Now
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Proof: By the proposition, (Lf,g) = (f,Lg). As Lf = Af, the left hand side
is \(f,g). As Lg = pug, the right hand side is (f, g). As both sides are the
same, (A — p)(f,g) =0, but A\ —pu #0so (f,g) =0. O

Corollary: All eigenvalues of L (subject to Dirichlet conditions) are real.

Proof: Suppose we have a complex eigenfunction f = g + ih # 0, with a
complex eigenvalue A = u + iv. Now
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Self-adjointness under Dirichlet conditions

Corollary: If Lf = \f and Lg = pg with A # 1, and
f(a) = g(a) = f(b) = g(b) =0, then (f, g) = 0.

Proof: By the proposition, (Lf,g) = (f,Lg). As Lf = Af, the left hand side
is \(f,g). As Lg = pug, the right hand side is (f, g). As both sides are the
same, (A — p)(f,g) =0, but A\ —pu #0so (f,g) =0. O

Corollary: All eigenvalues of L (subject to Dirichlet conditions) are real.
Proof: Suppose we have a complex eigenfunction f = g + ih # 0, with a
complex eigenvalue A = u + iv. Now

Lg +ilh=Lf = Xf = (u+ iv)(g + ih) = (ug — vh) + i(ph + vg),

so Lg = ug —vh and Lh = puh + vg. We assume that f is 0 at a and b, so g
and h are also 0 at a and b, so the Proposition gives (Lg, h) — (g, Lh) = 0.
This gives

b
0= (ug —vh,h) — (g, uh+vg) = —v((g,g) + (h,h)) = —V/ r(g” + h’) dx.

Now r > 0 everywhere and f = g + ih is not the zero function so
fab r(g® + h?) dx > 0. This means that v = 0, so X is real.
We also see that Lg = Ag and Lh = \h, so g and h are real eigenfunctions. [
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Discreteness of eigenvalues

Consider again a Sturm-Liouville operator Ly = ((py’)" + qy)/r,

where p, g, r and y are all defined on some interval [a, b],

and p and r are everywhere positive.

Consider eigenvalues and eigenfunctions subject to Dirichlet conditions.

Theorem: The eigenvalues can be listed as Ao, A1, A2, ... with [Ak] < [Ak1]
and |A\«| = co. Moreover, for any given k, the space of eigenfunctions of

eigenvalue \x has dimension one or two.

We will not prove this theorem.
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Sometimes it is easier to work with equations like y”" + Ry = 0, where there is
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the original equation y” + Py’ + Qy = 0.

Proof: First note that m’ = —%Pm. We can differentiate this again to get
/! 1p/ 1 / 1p/ 1 1 1p/ 1 p2
y'=Z"m+2Zm +zm" =2"m— PzZ’m— %P'zm + %P2zm

Py = PzZ’m+ Pzm' = Pz’'m — %Pzzm
Qy = Qzm



Normal form

Sometimes it is easier to work with equations like y”" + Ry = 0, where there is
no term involving y’. This is called normal form.

For any equation y” 4+ Py’ + Qy = 0, there is an equivalent equation in normal
form.
In more detail: put v = [ Pdxand m=e "> Thenput R=Q— 1P —1p%
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Sometimes it is easier to work with equations like y”" + Ry = 0, where there is
no term involving y’. This is called normal form.

For any equation y” 4+ Py’ + Qy = 0, there is an equivalent equation in normal
form.
In more detail: put v = [ Pdxand m=e "> Thenput R=Q— 1P —1p%

Proposition: If z satisfies z”/ + Rz = 0, then the function y = zm satisfies
the original equation y” + Py’ + Qy = 0.

Proof: First note that m’ = —%Pm. We can differentiate this again to get
m'=-1P'm-1Pm' =-1P'm-1P(-iPm)=—-1P'm+iP°m.
y'=Z"m+2Zm +zm" =2"m— PzZ’m— %P'zm + %P2zm
Py = PzZ’m+ Pzm' = Pz’'m — %Pzzm
Qy = Qzm

y'+ Py +Q =2"m— }P'zm— %PQZm + Qzm = (2" + Rz)m.



Normal form

Sometimes it is easier to work with equations like y”" + Ry = 0, where there is
no term involving y’. This is called normal form.

For any equation y” 4+ Py’ + Qy = 0, there is an equivalent equation in normal
form.
In more detail: put v = [ Pdxand m=e "> Thenput R=Q— 1P —1p%

Proposition: If z satisfies z”/ + Rz = 0, then the function y = zm satisfies
the original equation y” + Py’ + Qy = 0.

Proof: First note that m’ = —%Pm. We can differentiate this again to get
m'=-1P'm-1Pm' =-1P'm-1P(-iPm)=—-1P'm+iP°m.
y'=Z"m+2Zm +zm" =2"m— PzZ’m— %P'zm + %P2zm
Py = PzZ’m+ Pzm' = Pz’'m — %Pzzm
Qy = Qzm

y'+ Py +Q =2"m— }P'zm— %PQZm + Qzm = (2" + Rz)m.

Thus, if 2/ + Rz =0 then y’ + Pz + Qz =0. [
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Suppose P and Q are constant. The auxiliary polynomial is t*> + Pt + Q; the
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Suppose P and Q are constant. The auxiliary polynomial is t*> + Pt + Q; the
roots are (—P ++/D)/2 where D = P> — 4Q. The solutions are

y = Ae(7P+\/5)x/2 + Be(fPfx/E)x/2 _ 67PX/2(Ae\/5)</2 + Be’ﬁx/z),

(If D < 0: use '’ = cos(f) + isin(6) to rewrite this in terms of sin and cos.)
Normal form: [ Pdx = Px so m = e™/2,

Also P'=0so R=Q— 1P>=-D/4.

Equation for z is z”/ — £ Dz = 0, with solutions z = AeVD¥/2 | Be
This gives
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which is the same as before.
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y=mz Z/+Rz=0

Consider the equation x2y” — 2uxy’ + (u(p + 1) + x*)y = 0.
We can divide by x* to get y” — 2ux~'y’ + (u(p + 1)x~2 + 1)y = 0.
Thisis y” + Py’ + Qy =0, where P = —2ux"" and Q = p(u + 1)x 7% + 1.
We now have
m = exp(—3 / P dx) = exp(pIn(x)) = x*
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We thus have y = x*z with z”/ + z = 0, which means that
z = Acos(x) + Bsin(x) for some constants A and B.
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Consider the equation x2y” — 2uxy’ + (u(p + 1) + x*)y = 0.

We can divide by x* to get y” — 2ux"'y’ + (u(p + 1)x 2 + 1)y = 0.
Thisis y” + Py’ + Qy =0, where P = —2ux"" and Q = p(u + 1)x 7% + 1.
We now have

m = exp(—3 / P dx) = exp(pIn(x)) = x*
R=Q 1P —iPP=p(u+1)x > +1- 3 x2ux?) - L xap’x > =1

We thus have y = x*z with z”/ + z = 0, which means that
z = Acos(x) + Bsin(x) for some constants A and B.

Conclusion: the solution for x*y”" — 2uxy’ + (u(u+1) +x?)y =0 is

y = (Acos(x) + Bsin(x))x".
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Consider again the Bessel equation x2y” +xy + (x2 — n2)y =0.
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Y'+PyY + Q=0 m:exp(fé/de) R=Q-1iP —1p°

y=mz Z/+Rz=0

Consider again the Bessel equation x?y” + xy’ + (x*> — n?)y = 0.
We can divide by x? to get y” +x7'y' + (1 — n®’x" %)y = 0.
Thisis y" + Py’ + Qy =0, where P = x ' and @ =1 — n’x~2.
We now have

m = exp(—3 / P dx) = exp(—3 In(x)) = x?
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Normal form for the Bessel equation

Y'+PyY + Q=0 m:exp(fé/de) R=Q-1iP —1p°

y =mz Z'+Rz=0

Consider again the Bessel equation x?y” + xy’ + (x*> — n?)y = 0.
We can divide by x? to get y” +x7'y' + (1 — n®’x" %)y = 0.
Thisis y" + Py’ + Qy =0, where P = x ' and @ =1 — n’x~2.
We now have

m = exp(—3 / P dx) = exp(—3 In(x)) = x?
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Normal form for the Bessel equation

y'+Py +Qy=0 m:exp(fé/PdX) R=Q-1P —1iP?

y =mz Z'+Rz=0

Consider again the Bessel equation x2y” + xy’ + (x> — n*)y = 0.

We can divide by x? to get y” +x7'y' + (1 — n®’x" %)y = 0.
Thisis y" + Py’ + Qy =0, where P = x ' and @ =1 — n’x~2.
We now have

m = exp(—3 / P dx) = exp(—3 In(x)) = x?

_ _ 1—4n?
_ 1p/ _ 1p2 _ 2 1,-2  1,-2 _

R=Q~-3 —ZP—l—nx +ox T—gx T=1+ 2
Conclusion: the solutions for x*y” + xy’ + (x* — n*)y = 0 have the form

y = x"Y2z, where z”—l—( + l 4n )z:O.



Normal form for the Bessel equation

Y'+PyY + Q=0 m:exp(fé/de) R=Q-1iP —1p°

y =mz Z'+Rz=0

Consider again the Bessel equation x2y” + xy’ + (x> — n*)y = 0.

We can divide by x? to get y” +x7'y' + (1 — n®’x" %)y = 0.
Thisis y" + Py’ + Qy =0, where P = x ' and @ =1 — n’x~2.
We now have

m = exp(—3 / P dx) = exp(—3 In(x)) = x?

1—4n?
1 1p2 2 1,-2_1,-2 _
R:Q—E'—Zle—nx +3x T—gx T=1+ e
Conclusion: the solutions for x*y” + xy’ + (x* — n*)y = 0 have the form

y =x"Y2z, where 2’ + ( + 2% )z =0.
For large x, this is approxnmately z” +2z=0,so0 zis like Acos(x + ¢), so y is
like Ax™Y/2 cos(x + ).



Normal form for the Bessel equation

VMV‘ A A

Y vﬁvovow g

For large x, this is approximately z’/ + z =0, so z is like Acos(x + @), so y is
like Ax~Y/2 cos(x + )
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» To understand this, put
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p = distance from (0,0) to (u,v) = Vu?+ v?
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» We will show that

0" = n(n+ 1)sin*(8) + cos*(8)/(1 — x°)

» Note that this is a first order nonlinear equation for €, not involving p.
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> Suppose u solves the Legendre equation ((1 — x*)u’)’ 4+ n(n+ 1)u = 0.

Put v=(1-x*)u, so v/ = —n(n+1)u.

> We explained before that the point (u, v) rotates through nm about the
origin as x goes from —1 to 1.

v

» (A similar thing works for other Sturm-Liouville equations as well.)

» To understand this, put

= angle from the y-axis to (u,v) = arctan(u/v)

p = distance from (0,0) to (u,v) = v/ u? + v2
so u=psin(d) and v =pcos(f).

»> We will show that
0" = n(n+ 1)sin*(8) + cos*(8)/(1 — x°)
o = Lpsin(20)(1/(1 — x) — n(n + 1))

» Note that this is a first order nonlinear equation for €, not involving p.



Prifer angles for the Legendre equation

> Suppose u solves the Legendre equation ((1 — x*)u’)’ 4+ n(n+ 1)u = 0.

Put v=(1-x*)u, so v/ = —n(n+1)u.

> We explained before that the point (u, v) rotates through nm about the
origin as x goes from —1 to 1.

v

» (A similar thing works for other Sturm-Liouville equations as well.)

» To understand this, put

= angle from the y-axis to (u,v) = arctan(u/v)

p = distance from (0,0) to (u,v) = v/ u? + v2
so u=psin(d) and v =pcos(f).

»> We will show that
0" = n(n+ 1)sin*(8) + cos*(8)/(1 — x°)
o = Lpsin(20)(1/(1 — x) — n(n + 1))

p = exp <% /sin(20)(1/(1 —x*) = n(n+1)) dx) .

» Note that this is a first order nonlinear equation for €, not involving p.
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v=(1-x)d v =—n(n+1)u u = psin(6) v = pcos(6).

(a) v=(1—-x*)u" and v/ = —n(n + 1)u gives

H _ {v/(l fXZ)} _ {pcos(e)/(l — )

v'| 7 |=n(n+1)u| — |—n(n+ 1)psin(0)

® [1] = [pin@)] s
o] = [ ]
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v=(1-x)d v =—n(n+1)u u = psin(6) v = pcos(6).

(a) v=(1—-x*)u" and v/ = —n(n + 1)u gives
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v=(1-x)d v =—n(n+1)u u = psin(6) v = pcos(6).

(a) v=(1—-x*)u" and v/ = —n(n + 1)u gives

o] = [ ] = (252
)

”[%wm%%mwm
(c) Using [ } { ] d (b) we get

mﬁmeuﬁw
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{p@’} B {cos(Q) —sin(O)} {pcos(e)/(l —X2)}

P | |sin(@) cos(8) | |—n(n+1)psin(0)

Expand and divide by p to get
0’ = cos’(0)/(1 — x*) + n(n+1)sin*(9) >0
p'/p = sin(#) cos(0)/(1 — x*) — n(n + 1) sin(f) cos(6)
= Lsin(20)(1/(1 — x*) — n(n + 1)).

Note that p’/p = In(p)’, so
In(p) = / %sin(260)(1/(1 - x*) = n(n+ 1)) dx
p = exp (/ %sin(20)(1/(1 - x*) = n(n+ 1)) dx> .



Prifer angles for the Legendre equation

{p@’} B {cos(Q) —sin(O)} {pcos(e)/(l —X2)}

P | |sin(@) cos(8) | |—n(n+1)psin(0)

Expand and divide by p to get
0’ = cos’(0)/(1 — x*) + n(n+1)sin*(9) >0
p'/p = sin(#) cos(0)/(1 — x*) — n(n + 1) sin(f) cos(6)
= Lsin(20)(1/(1 — x*) — n(n + 1)).

Note that p’/p = In(p)’, so
In(p) = / %sin(260)(1/(1 - x*) = n(n+ 1)) dx
p = exp (/ %sin(20)(1/(1 - x*) = n(n+ 1)) dx) .

When x = +1 we have v = (1 — x*)u’ = 0, so (u, v) starts and ends on the
(positive or negative) x-axis.



Prifer angles for the Legendre equation

{p@’} _ {cos(Q) —sin(O)} {pcos(e)/(l —X2)}

s sin(0)  cos(6) | |—n(n+ 1)psin(6)

Expand and divide by p to get
0’ = cos’(0)/(1 — x*) + n(n+1)sin*(9) >0
p'/p = sin(#) cos(0)/(1 — x*) — n(n + 1) sin(f) cos(6)
= Lsin(20)(1/(1 — x*) — n(n + 1)).

Note that p’/p = In(p)’, so
In(p) = / %sin(260)(1/(1 - x*) = n(n+ 1)) dx
p = exp (/ %sin(20)(1/(1 - x*) = n(n+ 1)) dx) .

When x = +1 we have v = (1 — x*)u’ = 0, so (u, v) starts and ends on the
(positive or negative) x-axis. It must therefore rotate through an angle mm for
some integer m > 0.



Prifer angles for the Legendre equation

{p@’} _ {cos(@) —sin(O)} {pcos(e)/(l —X2)}

s sin(0)  cos(6) | |—n(n+ 1)psin(6)

Expand and divide by p to get

0 = cos’(A)/(1 — x*) + n(n+1)sin’*(#) >0
sin(#) cos(0) /(1 — x*) — n(n + 1) sin(f) cos(6)

1sin(20)(1/(1 — x°) — n(n +1)).

o'/p

Note that p'/p = In(p)’, so
In(p) = / %sin(260)(1/(1 - x*) = n(n+ 1)) dx
p = exp (/ %sin(20)(1/(1 - x*) = n(n+ 1)) dx) .
When x = +1 we have v = (1 — x*)u’ = 0, so (u, v) starts and ends on the
(positive or negative) x-axis. It must therefore rotate through an angle mm for

some integer m > 0. This means that there must be m times where (u, v)
passes through the y-axis, ie m roots of u.



Prifer angles for the Legendre equation

{p@’} _ {cos(@) —sin(O)} {pcos(e)/(l —X2)}

s sin(0)  cos(6) | |—n(n+ 1)psin(6)

Expand and divide by p to get

0 = cos’(A)/(1 — x*) + n(n+1)sin’*(#) >0
sin(#) cos(0) /(1 — x*) — n(n + 1) sin(f) cos(6)

1sin(20)(1/(1 — x°) — n(n +1)).

o'/p

Note that p'/p = In(p)’, so
In(p) = / %sin(260)(1/(1 - x*) = n(n+ 1)) dx
p = exp (/ %sin(20)(1/(1 - x*) = n(n+ 1)) dx) .
When x = +1 we have v = (1 — x*)u’ = 0, so (u, v) starts and ends on the
(positive or negative) x-axis. It must therefore rotate through an angle mm for

some integer m > 0. This means that there must be m times where (u, v)
passes through the y-axis, ie m roots of u. (In fact m = n, but this is harder.)



Transformations

Suppose that x = e, and write v’ = du/dx and i = du/dt.



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (ezt — n2)y =0.



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (ezt — n2)y =0.
Proof:
dx

X = —

dt



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0

is equivalent to y + (e** — n?)y = 0.

Proof:

. dx d ,

T gt T dt



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (ezt — n2)y =0.
Proof:
dx d . ‘

X:E:ae =e



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (ezt — n2)y =0.
Proof:
dx d . ‘

X=—=—e =e =X
dt dt



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (ezt — n2)y =0.

Proof:
X—%—iet—et—x
Tdt dt
,_dy

Y=g



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (ezt — n2)y =0.

Proof:
X—%—iet—et—x
Tdt dt
,_dy _dxdy

Y= 4t T dt dx



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (e** — n?)y = 0.
Proof:
X—%—iet—et—x
S dt dt
. dy dxdy
Y=dt T dtdx "



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (e** — n?)y = 0.
Proof:
X—%—iet—et—x
S dt dt
. dy dxdy
Y= de T dtdx Y
d .. d,
W)= )



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (e** — n?)y = 0.
Proof:
x—%—iet—et—x
S dt dt
. dy dxdy
Y= de T dtdx Y

d . d
0= &(Xy') =y +x/



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (ezt — n2)y =0.

Proof:
X—%—iet—et—x
Tdt dt
._dy_%ﬂ_ ,
Y= 4 " dtdx Y
d . _ d N1 "
a(}’)— dX(X)/)—y + xy

y=20)



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (ezt — n2)y =0.

Proof:
X—%—iet—et—x
Tdt dt
jod_dxdy

dt  dtdx Y
. d
—W) = &(Xy') =y +xy

. d . dx d ,.
Y—I(}’)—Ea(}’)



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (ezt — n2)y =0.

Proof:

dx
dt
dy_
i

d

= I(Y)

= —e =€ =X

dt
dxdy
dtdx 7

d
= )=y +x"

_dx d

A / "
= W) =X )



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (ezt — n2)y =0.

Proof:
X—%—iet—et—x
Tdt dt
._dy_%ﬂ_ ,
Y= 4 " dtdx Y
d . _ d N1 "
a(}’)— dX(X)/)—y + xy

d, .. dxd

y = I(y) = Ea(y) — X(y’ +Xy//) _ X2y// +Xyl



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (ezt — n2)y =0.

Proof:
X—%——et—et—x
Tdt dt
._dy_%ﬂ_ ,
Y= 4 " dtdx Y
d . _ d no_ 1 7"
a(}’)—dx(x)/)—y + xy
_i . _%i . _ ! 1 _ 2 1 /
=)= 0 =X 7)) =Xy Xy
SO

}-/- + (e2t _ n2)y _ X2y// + X_)// + (X2 _ n2)y



Transformations

Suppose that x = e’, and write v’ = du/dx and i = du/dt.
Claim: the Bessel equation x?y” + xy’ + (x> — n?)y = 0
is equivalent to y + (ezt — n2)y =0.

Proof:
X—%——et—et—x
Tdt dt
._dy_%ﬂ_ ,
Y= 4 " dtdx Y
d . _ d no_ 1 7"
a(}’)—dx(x)/)—y + xy
_i . _%i . _ ! 1 _ 2 1 /
=)= 0 =X 7)) =Xy Xy
SO

}-/- + (e2t _ n2)y _ X2y// + X_)// + (X2 _ n2)y
so solutions to ¥ + (e%* — n?)y = 0 are y = AJ,(e") + BYn(e").



Transformations

Suppose that x = t? and z = y/x°.



Transformations

Suppose that x = t? and z = y/x°.
Claim: Legendre equation (1 — x?)y” — 2xy’ + 12y =0
is equivalent to (t® — t?)z + (15¢° — 11t)z — 24z = 0.



Transformations

Suppose that x = t? and z = y/x°.

Claim: Legendre equation (1 — x?)y” — 2xy’ + 12y =0
is equivalent to (t® — t?)z + (15¢° — 11t)z — 24z = 0.
Proof:

7 = x_3y/ — 3x_4y



Transformations

Suppose that x = t? and z = y/x°.

Claim: Legendre equation (1 — x?)y” — 2xy’ + 12y =0
is equivalent to (t® — t?)z + (15¢° — 11t)z — 24z = 0.
Proof:

2 = X—3y/ _ 3x_4y _ t—6y/ _ 3t_8y



Transformations

Suppose that x = t? and z = y/x°.

Claim: Legendre equation (1 — x?)y” — 2xy’ + 12y =0
is equivalent to (t® — t?)z + (15¢° — 11t)z — 24z = 0.
Proof:

2 = X—3y/ _ 3x_4y _ t—6y/ _ 3t_8y

/

2= X73y” . 6X74y' + 12x75y



Transformations

Suppose that x = t? and z = y/x°.

Claim: Legendre equation (1 — x?)y” — 2xy’ + 12y =0
is equivalent to (t® — t?)z + (15¢° — 11t)z — 24z = 0.
Proof:

2 = X—3y/ _ 3x_4y _ t—6y/ _ 3t_8y

z// _ X—3yu _ 6X—4y/ + 12X—5y _ tiﬁy” o 6t78y/ + 12t710y



Transformations

Suppose that x = t? and z = y/x°.

Claim: Legendre equation (1 — x?)y” — 2xy’ + 12y =0
is equivalent to (t® — t?)z + (15¢° — 11t)z — 24z = 0.
Proof:

2 = X—3y/ _ 3x_4y _ t—6y/ _ 3t_8y
z// _ X—3yu _ 6X—4y/ + 12X—5y _ tiﬁy” o 6t78y/ + 12t710y
. dz dxdz
zZ == ——
dt dt dx



Transformations

Suppose that x = t? and z = y/x°.

Claim: Legendre equation (1 — x?)y” — 2xy’ + 12y =0
is equivalent to (t® — t?)z + (15¢° — 11t)z — 24z = 0.
Proof:

2 = X—3y/ _ 3x_4y _ t—6y/ _ 3t_8y
z// _ X—3yu _ 6X—4y/ + 12X—5y _ tiﬁy” o 6t78y/ + 12t710y
. dz dxdz

=2 =222 92t
=gt T dtdx



Transformations

Suppose that x = t? and z = y/x°.

Claim: Legendre equation (1 — x?)y” — 2xy’ + 12y =0
is equivalent to (t® — t?)z + (15¢° — 11t)z — 24z = 0.
Proof:

2 = X—3y/ _ 3x_4y _ t—6y/ _ 3t_8y

z// _ X—3yu _ 6X—4y/ + 12X—5y _ tiﬁy” o 6t78y/ + 12t710y
. dz dxdz

== =

= = = 2tz
dt  drdx

d
--:2 / 2 - !
zZ z + tdt(z)



Transformations

Suppose that x = t? and z = y/x°.

Claim: Legendre equation (1 — x?)y” — 2xy’ + 12y =0
is equivalent to (t® — t?)z + (15¢° — 11t)z — 24z = 0.
Proof:

2 = X—3y/ _ 3x_4y _ t—6y/ _ 3t_8y

z// _ X—3yu _ 6X—4y/ + 12X—5y _ tiﬁy” o 6t78y/ + 12t710y
. dz dxdz

== =

= = = 2tz
dt  drdx

- / d no_ / %i ’
zZ=2z +2tdt(z)_22 +2tdtdxz)



Transformations

Suppose that x = t? and z = y/x°.

Claim: Legendre equation (1 — x?)y” — 2xy’ + 12y =0
is equivalent to (t® — t?)z + (15¢° — 11t)z — 24z = 0.
Proof:

2 = X—3y/ _ 3x_4y _ t—6y/ _ 3t_8y

z// _ X—3yu _ 6X—4y/ + 12X—5y _ tiﬁy” o 6t78y/ + 12t710y
. dz dxdz

== =

= = = 2tz
dt  drdx

d dx d

5 =27 +2t—(2') =22 +2t— —(Z
Z=2z 42t () =2z 2t o (7)
=27 +2t.2t7"



Transformations

Suppose that x = t? and z = y/x°.

Claim: Legendre equation (1 — x?)y” — 2xy’ + 12y =0
is equivalent to (t® — t?)z + (15¢° — 11t)z — 24z = 0.
Proof:

2 = X—3y/ _ 3x_4y _ t—6y/ _ 3t_8y

z// _ X—3yu _ 6X—4y/ + 12X—5y _ tiﬁy” o 6t78y/ + 12t710y
. dz dxdz

== =

= = = 2tz
dt  drdx

d dx d
;=27 +2t—(Z') =27 +2t— —(¢
zZ z + tdt(z) z + tdthZ)

=27 4+ 2t2t7" =27 + 4?7



Transformations

Suppose that x = t* and z = y/x°.
Claim: Legendre equation (1 — x?)y” — 2xy’ + 12y =0
is equivalent to (t® — t?)z + (15¢° — 11t)z — 24z = 0.

Proof:
2 = X—3y/ _ 3x_4y _ t—6y/ _ 3t_8y
10

7' = x73y” — 6x74y' + 12x75y = tiﬁy” - 6t78y/ + 12t 7y
y 92 _ dxdz 2tz = 2t_5y/ — 6t_7y

27 dr T dt dx
. ! d / / Xd /
zZ=2z +2tdt(z) z + tdt X )
2_1

=27 +2t2t7" =27 + 4t°z



Transformations

Suppose that x = t* and z = y/x°.
Claim: Legendre equation (1 — x?)y” — 2xy’ + 12y =0
is equivalent to (t® — t?)z + (15¢° — 11t)z — 24z = 0.

Proof:
2 = X—3y/ _ 3x_4y _ t—6y/ _ 3t_8y
10

7' = x73y” — 6x74y' + 12x75y = tiﬁy” - 6t78y/ + 12t 7y
y 92 _ dxdz 2tz = 2t_5y/ — 6t_7y

2T gt T dt dx
d Ix d
;=27 +2t—(Z') =27 +2t— —(¢
zZ z+tdt(z) z—l—tdtdx )
=27 4+ 2t2t7" =27 + 4?7
10

3t 8y) + 4% (t %y y)

=2(t7% - " 6t78y 412t



Transformations

Suppose that x = t* and z = y/x°.
Claim: Legendre equation (1 — x?)y” — 2xy’ + 12y =0
is equivalent to (t® — t?)z + (15¢° — 11t)z — 24z = 0.
Proof:
2 = X—3y/ _ 3x_4y _ t—6y/ _ 3t_8y
z// _ X—3yu _ 6X—4y/ + 12X—5y _ tiﬁy” o 6t78y/ + 12t710y

. dz dxdz , 5 4 _7
z e dt dx tz t 7y —6t 'y
d dx d
;=27 +2t—(Z') =27 +2t— —(¢
zZ z + tdt(z) z + tdthZ)

2_n

=27 +2t2t7" =27 + 4t°z
=2(t7 % =3t 8y) +4’(t %" —6t %y + 12t
= 4t74y" — 22t76y' + 42t78y

10y)



Transformations

x=1t z=y/x*=y/t°
z=2t75y' —6t7"y  F=4t7y" —22t7%/ + 42t 8y




Transformations

x=1t z=y/x*=y/t°
=2t —6t7 Ty  iF=4t7ty" —22t7% 42t 0y

(t6 — %)z + (15¢° — 11)z — 24z
= (t° — )4ty — 22t % + 42t %)) +
(15¢° — 11t)(2t %y’ — 6t~ "y) — 24t °y



Transformations

x=1t z=y/x*=y/t°
=2t —6t7 Ty  iF=4t7ty" —22t7% 42t 0y

(t° — £%)z + (15¢° — 11)z — 24z

(t° — ) (4t~ %y — 2270y  + 42t 8y) +

(15¢° — 11t)(2t_5 " — 6t y) — 24t %y

=4t —t7%)y" + (—22+ 22t + 30— 22t %)y  +
(42t‘2 42¢t7° - 90t > + 66t ° — 24t %)y



Transformations

x=1t z=y/x*=y/t°
z=2t"%"—6t"7y  Z=4t"%y" —22t7 %/ + 42178y

(t° — t*)z + (15¢° — 11)z — 24z
= (t° — )4ty — 22t % + 42t %)) +
(15¢° — 11t)(2t %y’ — 6t~ "y) — 24t °y
=4 — t7%)y" + (=22 4+ 22t +30 — 22t )y +
(4272 —42t7° — 90t % + 66t ° — 24t )y
=4 —t?)y" + 8y — 48t %y



Transformations

x=1t z=y/x*=y/t°
z=2t"%"—6t"7y  Z=4t"%y" —22t7 %/ + 42178y

(t° — t*)z + (15¢° — 11)z — 24z
= (t° — ?) (4t ty" — 22t 7%/ + 42t By) +
(15¢° — 11t)(2t %y’ — 6t~ "y) — 24t °y
=4t —t7%)y" + (—22+ 22t + 30— 22t %)y  +
(4272 —42t7° — 90t % + 66t ° — 24t )y
=4 —t?)y" + 8y — 48t %y
=—4t73((1 - tY)y" — 2ty + 12y)



Transformations

x =1t z=y/x*=y/t°
z=2t"%"—6t"7y  Z=4t"%y" —22t7 %/ + 42178y

(t° — t*)z + (15¢° — 11)z — 24z
= (t° — ?) (4t ty" — 22t 7%/ + 42t By) +
(15¢° — 11t)(2t %y’ — 6t~ "y) — 24t °y
=4t —t7%)y" + (—22+ 22t + 30— 22t %)y  +
(4272 —42t7° — 90t % + 66t ° — 24t )y
=4 —t?)y" + 8y — 48t %y
=—4t?((1 -ty —28% +12y) =—4x" (1 = XP)y" — 2xy' + 12y)



Transformations

x =1t z=y/x*=y/t°
z=2t"%"—6t"7y  Z=4t"%y" —22t7 %/ + 42178y

(t° — £%)z + (15¢° — 11)z — 24z
= (t° — ?) (4t ty" — 22t 7%/ + 42t By) +
(15¢° — 11t)(2t %y’ — 6t~ "y) — 24t °y
=4t —t7%)y" + (—22+ 22t + 30— 22t %)y  +
(4272 —42t7° — 90t % + 66t ° — 24t )y
=4 —t?)y" + 8y — 48t %y
=—4t72((1 = tY)y" — 2% +12y) =—4x" (1 — x)y” — 2xy’ + 12y)

So (1 — x?)y” —2xy’ 4+ 12y = 0 is equivalent to
(t® — t?)3 + (15¢t° — 11)z — 24z = 0.



Transformations

x =1t z=y/x*=y/t°
z=2t"%"—6t"7y  Z=4t"%y" —22t7 %/ + 42178y

(t° — t*)z + (15¢° — 11)z — 24z
= (t° — )4ty — 22t % + 42t %)) +
(15¢° — 11t)(2t %y’ — 6t~ "y) — 24t °y
=4 — t7%)y" + (=22 4+ 22t +30 — 22t )y +
(4272 —42t7° — 90t % + 66t ° — 24t )y
=4 —t?)y" + 8y — 48t %y
=—4t72((1 = tY)y" — 2% +12y) =—4x" (1 — x)y” — 2xy’ + 12y)
So (1 — x?)y” —2xy’ 4+ 12y = 0 is equivalent to

(t® — t?) + (15¢t° — 11)z — 24z = 0. So solutions to
(t° — t3)z + (15t° — 11)z — 24z = 0 are (AP,(t?) + BQ.(t?))/t°.



