
MAS290 PROBLEMS

Exercise 1. Consider the following phase portrait:

A

B

C

D

E

F

G

Which of the following statements are true?

(a) Point A is an equilibrium point.
(b) Point B is a saddle.
(c) If a solution has (x, y) = C at t = 0, then (x, y) = E at some time t > 0.
(d) At point D we have ẋ > 0 and ẏ > 0.
(e) Point E lies on the x-nullcline.
(f) If a solution has (x, y) = F at t = 0, then it also has (x, y) = F at some time t > 0.
(f) If a solution has (x, y) = G at t = 0, then it also has (x, y) = G at some time t > 0.

Solution:

(a) This is false. A solution starting at A will move immediately to the left.
(b) This is false. The flow lines near B circulate around B, so it is a centre, not a saddle.
(c) This is false. Point C is the limit of two different flow lines, which means it must be an equilibrium

point (and in fact a saddle). This means that a flow line starting at C just stays there, it does
not move towards E.

(d) This is false. The flow line through D points to the right (so ẋ > 0) and down (so ẏ < 0).
(e) This is true. In fact E is an equilibrium point (just like C), so it lies on both the x-nullcline and

the y-nullcline.
(f) This is true. The flow line through F is a closed curve, so after a finite time the solution starting

at F will travel all the way around the curve and return to F .
(g) This is false (assuming that the flow lines behave in the obvious way outside the box that we

have shown). The solution starting at G will move continually to the right and will never return
to G.
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Exercise 2. Draw the nullclines and equilibrium points for the following phase portrait.

Solution: Each circular flow line has two points (one on the left and one on the right) where the line
is vertical and so ẋ = 0. Joining up these points gives the x-nullcline, which consists of two diagonal
lines. Similarly, at the top and bottom of each circular flow line the line is horizontal, so ẏ = 0. Joining
up these points gives the y-axis, which is part of the y-nullcline. Moreover, the whole of the x-axis is
another flow line which is horizontal and so is part of the y-nullcline. Thus, the y-nullcline is the union
of the two axes.
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Exercise 3. Draw the nullclines and equilibrium points for the following phase portrait.

Hint: the y-nullcline consists of three straight lines, and the x-nullcline consists of three curves. The
whole picture should be very symmetrical.

Solution: The x-axis is a flow line which is horizontal and so is part of the y-nullcline. On each of the
other flow lines, there is a point where the line is horizontal. These points are easy to find on the flow
lines that are highly curved, and the hint tells us that we can just connect them together with straight
lines. This gives the y-nullcline. Similarly, to find the x-nullcline, we look for points where the flow lines
are vertical, and join them together with a smooth curve.
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Exercise 4. Consider the following four systems:

(a) ẋ = x2 − y2, ẏ = x+ 1
(b) ẋ = x2 + y2, ẏ = x+ 1
(c) ẋ = x, ẏ = x2 + y2

(d) ẋ = x2 + 2xy − y2, ẏ = x2 − 2xy − y2

The phase portraits are shown below, in a different order:

(p) (q) (r) (s)

By considering equilibrium points, nullclines and so on, work out which phase portrait belongs to which
system.

Solution: The nullclines and equilibrium points are as follows.

(a) The x-nullcline is given by x2 − y2 = 0, which means that y = ±x, so we have two diagonal
lines through the origin. The y-nullcline is given by x = −1. The equilibrium points are where
x = −1 and y = ±x, so they are (−1,−1) and (−1, 1).

(b) Here the x-nullcline is given by x2 + y2 = 0, which is only satisfied when x = y = 0. Thus, the
x-nullcline is a single point at the origin. At all other points we have ẋ ≥ 0, so the flow lines
move to the right. The y-nullcline is a vertical line given by x = −1. The x-nullcline and the
y-nullcline do not intersect, so there are no equilibrium points.

(c) Here the y-nullcline is just a single point at the origin, and at all other points the flow lines move
upwards. The x-nullcline is given by x = 0. To the left of this line we have ẋ < 0 and so the
flow lines move further to the left. Similarly, to the right of x = 0 we have ẋ > 0 and so the lines
move further to the right.

(d) The x-nullcline is given by x2 + 2xy − y2 = 0. This is a quadratic equation for y, which we can

solve to get y = (−2x ±
√

4x2 + 4x2)/(−2), or y = (1 ±
√

2)x. Thus, the x-nullcline consists of

two straight lines through the origin, with slopes 1−
√

2 ' −0.41 and 1 +
√

2 ' 2.41. Similarly,
the y-nullcline is given by x2 − 2xy − y2 = 0 or y = (−1 ±

√
2)x, so it consists of two more

straight lines through th origin, of slope approximately 0.41 and −2.41

Now consider the pictures. In picture (p) the lines all move upwards, and they move left when x < 0
and right when x > 0; this matches with system (c). In picture (q) there are two equilibrium points: a
saddle near the bottom left, and a focus directly above the saddle near the top left. This matches with
the behaviour of system (a). In picture (r) we can see that the only equilibrium point is at the origin.
We can sketch the x-nullcline by looking for points where the flow lines are vertical. We find that these
points lie on two straight lines through the origin. Similarly, we can sketch that y-nullcline by by looking
for points where the flow lines are horizontal. We find that these points again lie on two straight lines
through the origin. This matches with system (d). Finally, picture (s) shows no equilibrium points at
all, so this must be system (b).

Exercise 5. Find the trace, determinant and eigenvalues of the following matrices.

A =

[
a b
0 c

]
B =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
C =

[
a b
b a

]
D =

[
0 a
b 0

]
.

Solution:

(a) Matrix A has trace τ = a+ c and determinant δ = ac, so the characteristic polynomial is

t2 − τt+ δ = t2 − (a+ c)t+ ac = (t− a)(t− c),
so the eigenvalues are a and c.
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(b) Matrix B has trace τ = 2 cos(θ) = eiθ + e−iθ and determinant δ = cos(θ)2 + sin(θ)2 = 1. It
follows that the characteristic polynomial is

t2 − τt+ δ = t2 − (eiθ + e−iθ)t+ 1 = (t− eiθ)(t− e−iθ),

and the eigenvalues are eiθ and e−iθ.
(c) Matrix C has trace τ = 2a and determinant δ = a2−b2. It follows that τ2−4δ = 4a2−4a2+4b2 =

4b2, so the eigenvalues are

1
2 (τ ±

√
τ2 − 4δ) = 1

2 (2a± 2b) = a+ b, a− b.

(d) Matrix D has trace τ = 0 and determinant δ = −ab, so the characteristic polynomial is t2 − ab,
and the eigenvalues are ±

√
ab.

Exercise 6. Solve the system u̇ = 13v, v̇ = −13u− 10v with u = a and v = b at t = 0.

Solution: The problem can be written as

[
u̇
v̇

]
= A

[
u
v

]
, where A =

[
0 13
−13 −10

]
. The trace is τ =

−10 and the determinant is δ = 132 = 169, so τ2 − 4δ = −576 < 0. Thus, the eigenvalues are
(−10 ±

√
576i)/2 = −5 ± 12i. We therefore have a stable focus with λ = −5 and ω = 12. The

corresponding matrix P is

P = eλt(cos(ωt)I + ω−1 sin(ωt)(A− λI)) = e−5t(cos(12t)I +
1

12
sin(12t)(A+ 5I)).

Here

A+ 5I

12
=

1

12

[
5 13
−13 −5

]
=

[
5/12 13/12
−13/12 −5/12

]
,

so

P = e−5t
[
cos(12t) + 5

12 sin(12t) 13
12 sin(12t)

− 13
12 sin(12t) cos(12t)− 5

12 sin(12t)

]
.

Thus, the solution starting at

[
a
b

]
is

[
u
v

]
= P

[
a
b

]
= e−5t

[
a cos(12t) + 5a+13b

12 sin(12t)
b cos(12t)− 13a+5b

12 sin(12t)

]
.

Exercise 7. For each of the following linear systems, classify the equilibrium point at the origin.

(a) ẋ = 2x+ y, ẏ = x+ 2y
(b) ẋ = 2x+ y, ẏ = x− 3y
(c) ẋ = x− 4y, ẏ = 2x− y
(d) ẋ = 2y, ẏ = −3x− y
(e) ẋ = 8y − x, ẏ = 7y − 2x
(f) ẋ = 3y − 7x, ẏ = 3y − 8x.
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Solution:

system A τ δ τ2 − 4δ λ1, λ2 type

(a)

2 1

1 2

 4 3 4 1, 3 unstable node

(b)

2 1

1 −3

 −1 −7 29 −1±
√
29

2 saddle

(c)

1 −4

2 −1

 0 7 −28 ±
√

7i centre

(d)

 0 2

−3 −1

 −1 6 −23 −1±
√
23i

2 stable focus

(e)

−1 8

−2 7

 6 9 0 3, 3 unstable node

(f)

−7 3

−8 3

 −4 3 4 −3,−1 stable node

Exercise 8. Suppose we have five different linear differential equations with properties described below.
In each case, find the type of equilibrium point at the origin.

• The matrix for system A has eigenvalues −2 and 3.
• The matrix for system B has τ = 0 and δ = 16.

• One of the solutions for system C is

[
x
y

]
=

[
3e−2t + 2e−3t

3e−3t + 2e−2t

]
.

• System D has the following phase portrait:

• System E corresponds to the following point in the (τ, δ) plane:

δ

τ

Solution:

A This system has one negative eigenvalue and one positive eigenvalue, so it must be a saddle.
B This system has τ = 0 and δ > 0 so it is a centre. The eigenvalues are ±

√
−4× 16 = ±8i, so the

angular frequency is ω = 8. We do not have enough information to decide whether the rotation
is clockwise or anticlockwise.

C As e−2t and e−3t appear in the solution, the eigenvalues must be −2 and −3. As these are both
negative real numbers, we have a stable node.

D As the flow lines spiral outwards, this is an unstable focus.
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E The given point is in the top right quadrant where τ > 0 and δ > 0. It lies below the parabola with
equation δ = τ2/4, so δ < τ2/4, so τ2−4δ > 0. This means that the eigenvalues (τ±

√
τ2 − 4δ)/2

are both positive, so we have an unstable node.

Exercise 9. Give examples of linear differential equations of the following types. Try to make your
examples as simple as possible.

(a) A stable node.
(b) A saddle.
(c) A clockwise centre.
(d) An anticlockwise unstable focus.

Solution:

(a) We need a system with two distinct, negative eigenvalues. The simplest example is the matrix[
−1 0
0 −2

]
, or the corresponding system ẋ = −x, ẏ = −2y.

(b) We need a system with one positive eigenvalue and one negative eigenvalue. The simplest example

is the matrix

[
1 0
0 −1

]
, or the corresponding system ẋ = x, ẏ = −y.

(c) We need a system with τ = 0 and δ > 0. The two simplest examples are

[
0 −1
1 0

]
and

[
0 1
−1 0

]
.

The first of these gives an anticlockwise rotation, so we use the second one. The corresponding
equations are ẋ = y and ẏ = −x.

(d) We need a system with τ2 − 4δ < 0 (for a focus) and τ > 0 (to make it unstable). The bottom
left entry in the matrix should also be positive, to ensure that the rotation is anticlockwise. A

simple example is

[
0 −1
1 1

]
, which has τ = δ = 1. The corresponding equations are ẋ = −y and

ẏ = x+ y.

Exercise 10. Consider the matrix A =

[
−4 3
−10 7

]
.

(a) Find the trace, determinant, eigenvalues and eigenvectors of A.
(b) Hence find a diagonal matrix D and an invertible matrix V such that A = V DV −1.

(c) Find a matrix P depending on t such that P = I when t = 0, and Ṗ = AP .

(d) Find a vector u depending on t such that u =

[
1
1

]
at t = 0, and u̇ = Au.

Solution:

(a) The trace is τ = −4 + 7 = 3, and the determinant is δ = (−4)× 7− 3× (−10) = 2. This means

that τ2 − 4δ = 9− 8 = 1. The eigenvalues are (τ ±
√
τ2 − 4δ)/2, which gives λ1 = 1 and λ2 = 2.

An eigenvector v1 of eigenvalue 1 must satisfy (A− I)v1 = 0, but A− I =

[
−5 3
−10 6

]
, so we can

take v1 =

[
3
5

]
. Similarly, an eigenvector v2 of eigenvalue 2 must satisfy (A − 2I)v2 = 0, but

A− 2I =

[
−6 3
−10 5

]
, so we can take v2 =

[
1
2

]
.

(b) The general method here is to take

V =

[
v1 v2

]
=

[
3 1
5 2

]
D =

[
λ1 0
0 λ2

]
=

[
1 0
0 2

]
.

Note here that det(V ) = 3× 2− 1× 5 = 1 and so

V −1 =

[
2 −1
−5 3

]
.

(c) In the lectures we gave two different methods for this. The first method says that P = V EV −1,
where

E =

[
eλ1t 0

0 eλ2t

]
=

[
et 0
0 e2t

]
.
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This works out as

P =

[
3 1
5 2

] [
et 0
0 e2t

] [
2 −1
−5 3

]
=

[
3 1
5 2

] [
2et −et
−5e2t 3e2t

]
=

[
6et − 5e2t −3et + 3e2t

10et − 10e2t −5et + 6e2t

]
.

The second approach uses the formula

P = (λ2 − λ1)−1((λ2e
λ1t − λ1eλ2t)I + (eλ2t − eλ1t)A).

In our case this becomes

P = (2et − e2t)I + (e2t − et)A

=

[
2et − e2t 0

0 2et − e2t
]

+ (e2t − et)
[
−4 3
−10 7

]
=

[
6et − 5e2t −3et + 3e2t

10et − 10e2t −5et + 6e2t

]
.

(d) The relevant vector is u = P

[
1
1

]
=

[
3et − 2e2t

5et − 4e2t

]
Exercise 11. For each of the following matrices Ak, find a matrix Pk (depending on t) such that

Ṗk = APk, and Pk = I when t = 0.

A0 =

[
1 1
1 1

]
A1 =

[
1 1
0 1

]
A2 =

[
1 1
−1 1

]
.

Solution: All three matrices Ak have trace τ = 2, and the determinants are 0, 1 and 2. The correspond-
ing values of τ2 − 4δ are 4, 0 and −4.

(a) For A0, the eigenvalues are (2±
√

4)/2, which gives λ1 = 0 and λ2 = 2 (both real). The standard
formula in this context is

P =
1

λ2 − λ1
(
(λ2e

λ1t − λ1eλ2t)I + (eλ2t − eλ1t)A
)
.

In the present case, this becomes

P0 =
1

2

(
(2e0 − 0e2t)I + (e2t − e0)A0

)
=

1

2

([
2 0
0 2

]
+ (e2t − 1)

[
1 1
1 1

])
=

1

2

[
e2t + 1 e2t − 1
e2t − 1 e2t + 1

]
.

(b) For A1, the eigenvalues are (2±
√

0)/2, so λ = 1 is a repeated eigenvalue. The standard formula
in this context is

P = eλt(I + t(A− λI)).

In the present case, this becomes

P1 = et
([

1 0
0 1

]
+ t

[
0 1
0 0

])
=

[
et t et

0 et

]
.

(c) For A2, the eigenvalues are (2±
√
−4)/2, which gives 1± i. The standard formula in this context

is

P = eλt
(
cos(ωt)I + ω−1 sin(ωt)(A− λI)

)
.

In the present case we have λ = ω = 1, giving

P = et
(

cos(t)

[
1 0
0 1

]
+ sin(t)

[
0 1
−1 0

])
= et

[
cos(t) sin(t)
− sin(t) cos(t)

]
.

Exercise 12. Consider the matrix

P = e2t
[
7 cos(3t) + sin(3t) 4 cos(3t)− 3 sin(3t)
cos(3t) + sin(3t) cos(3t)

]
.

Find a matrix A such that Ṗ = AP . Is P the fundamental solution for A?
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Solution: Write s = sin(3t) and c = cos(3t) and A =

[
m n
p q

]
. We then have

Ṗ = 2e2t
[
7c+ s 4c− 3s
c+ s c

]
+ e2t

[
−21s+ 3c −12s− 9c
−3s+ 3c −3s

]
= e2t

[
17c− 19s −c− 18s

5c− s 2c− 3s

]
AP = e2t

[
m n
p q

] [
7c+ s 4c− 3s
c+ s c

]
= e2t

[
(7m+ n)c+ (m+ n)s (4m+ n)c− 3ms
(7p+ q)c+ (p+ q)s (4p+ q)c− 3ps

]
We therefore want

7m+ n = 17 m+ n = −19

4m+ n = −1 −3m = −18

7p+ q = 5 p+ q = −1

4p+ q = 2 −3p = −3.

These are easily solved to give m = 6 and n = −25 and p = 1 and q = −2, so A =

[
6 −25
1 −2

]
. If P was

the fundamental solution for A then we would not only have Ṗ = AP , but also P = I when t = 0. In

fact we have P =

[
7 4
1 1

]
when t = 0, so P is not the fundamental solution.

Exercise 13. Give examples as follows. The numbers in every matrix should be real numbers.

(a) Give an example of a linear system with an anticlockwise centre at the origin.
(b) Give an example of a matrix B where τ = 3 and δ = 0.
(c) Give an example of a matrix C where the eigenvalues are 1 + i and 1− i.
(d) Give an example of a linear system for which the function U = xy is a conserved quantity.
(e) Give an example of a linear system with solution (x, y) = (et, tet).

Solution:

(a) We need ẋ = ax+ by and ẏ = cx+ dy with τ = a+ d = 0 and δ = ad− bc > 0 and c > 0. The
simplest way to do this is with a = d = 0 and b = −1 and c = 1, giving ẋ = −y and ẏ = x.

(b) We need B =

[
a b
c d

]
with a+ d = 3 and ad− bc = 0. The simplest way to do this is with a = 3

and b = c = d = 0 giving B =

[
3 0
0 0

]
. Another possibility is B =

[
1 2
1 2

]
.

(c) We need

τ = λ1 + λ2 = (1− i) + (1 + i) = 2

δ = λ1λ2 = (1− i)(1 + i) = 1− i2 = 2.

The simplest way to do this is with D =

[
1 1
−1 1

]
.

(d) The simplest way to do this is with ẋ = x and ẏ = −y. (This gives U̇ = ẋy + xẏ = xy − xy = 0.
Alternatively, the solutions have the form (x, y) = (x0e

t, y0e
−t), giving U = x0y0 for all t.)

(e) These functions satisfy ẋ = x and ẏ = x + y. (This is easy to see, because ẋ = et = x and
ẏ = et + tet = x+ y.)

Exercise 14. For each of the following (essentially linear) systems, find the equilibrium points.

(a) ẋ = 10x− 100, ẏ = y − 11x
(b) ẋ = 10x− 100y, ẏ = y − 11x
(c) u̇ = 100u+ v − 506, v̇ = u+ 10v − 65
(d) ṗ = p+ q + 1, q̇ = p+ q + 1
(e) ẋ = x− y + 1, ẏ = y − x+ 1.

Solution:
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(a) The equilibrium points are the points where ẋ = 0 and ẏ = 0, so 10x− 100 = 0 and y− 11x = 0.
The first equation gives x = 10, and we can put x = 10 in the second equation to get y = 110.
Thus, the only equilibrium point is (10, 110).

(b) Here we need to solve 10x − 100y = 0 and y − 11x = 0. The first equation gives x = 10y, and
the second gives y = 11x, so x = 110x, so x = 0, so y = 0. Thus, the only equilibrium point is
(0, 0).

(c) Here we need to solve 100u + v = 506 and u + 10v = 65. You can see by inspection that u = 5
and v = 6. Alternatively, you can multiply the first equation by 10 and subtract the second
equation to get 999u = 5060− 65 = 4995, so u = 4995/999 = 5. The second equation then gives
v = (65− u)/10 = 6. Thus, the only equilibrium point is (5, 6).

(d) Here both of the equations ṗ = 0 and q̇ = 0 give p+ q + 1 = 0, so q = −1− p with p arbitrary.
This means that all points of the form (p,−1− p) are equilibrium points.

(e) Here we must solve x− y + 1 = 0 and y − x+ 1 = 0. Adding these equations gives 2 = 0, which
is impossible. Thus, this system does not have any equilibrium points.

Exercise 15. Consider the matrix A =

[
1 −3
3 a

]
. Analyse how the equilibrium type of A depends on

the parameter a.

Solution: We have τ = 1 + a and δ = a+ 9 = τ + 8 and

∆ = τ2 − 4δ = (a+ 1)2 − 4a− 36 = (a− 1)2 − 36.

In particular, we have τ < 0 iff a < −1 and δ < 0 iff a < −9 and ∆ < 0 iff (a− 1)2 < 36 iff −5 < a < 7.
Thus:

• For a < −9 we have δ < 0, so the equilibrium point is a saddle.
• For −9 < a < −5 we have δ > 0 and ∆ > 0 and τ < 0, so the equilibrium point is a stable node.
• For −5 < a < −1 we have δ > 0 and ∆ < 0 and τ < 0, so the equilibrium point is a stable focus.
• For −1 < a < 7 we have δ > 0 and ∆ < 0 and τ > 0, so the equilibrium point is an unstable

focus.
• For 7 < a we have δ > 0 and ∆ > 0 and τ > 0, so the equilibrium point is an unstable node.

δ τ2 − 4δ = 0

τ
−8 −4 0 6

a=−9

a=−5

a=−1

a=7

Exercise 16. Consider the equations

ẋ = (a+ b)x+ 2by ẏ = −bx+ (a− b)y,

where a and b are nonzero real constants. Show that the system always has a focus at (0, 0). Give
examples to show that the focus can be stable or unstable, and clockwise or anticlockwise, depending on
the values of a and b.

Solution: The corresponding matrix is A =

[
a+ b 2b
−b a− b

]
, with trace τ = 2a and determinant

δ = (a+ b)(a− b)− 2b.(−b) = a2 − b2 + 2b2 = a2 + b2.
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This gives

τ2 − 4δ = 4a2 − 4(a2 + b2) = −4b2 < 0,

so we have a focus or centre . However, we have τ = 2a and a 6= 0 by assumption so we cannot have a
centre, and we must instead have a focus . If a < 0 then τ < 0 so the focus is stable; similarly, if a > 0
then the focus is unstable . The direction of rotation is controlled by the bottom left entry in A, which
is −b. If b < 0 then −b > 0 so the rotation is anticlockwise, but if b > 0 then the rotation is clockwise.

Exercise 17. Which of the following matrices corresponds to a system with a clockwise centre at the
origin?

[
1 2
2 1

] [
1 −2
2 −1

] [
2 −1
1 −2

] [
1 2
−2 −1

] [
2 1
−1 −2

] [
−1 2
2 −1

]

Solution: Consider a matrix A =

[
a b
c d

]
with τ = a+ b and δ = ad− bc. This corresponds to a centre

if τ = 0 and δ > 0; if so, then the rotation is clockwise if c < 0 < b and anticlockwise if b < 0 < c.
Only the 4th and 5th matrices in the list have c < 0. The 4th one has δ = 3, and the 5th has δ = −3,

and both have τ = 0. It follows that the 4th matrix

[
1 2
−2 −1

]
is the only one that gives an clockwise

centre.

Exercise 18. For each of the following nonlinear systems, find the equilibrium points:

(a) ẋ = y2 − 5y + 6, ẏ = x2 − 9x+ 20
(b) ẋ = x2 + y2 + 1, ẏ = x2 − y2 + 1
(c) ẋ = x2 + y2 − 1, ẏ = x2 + y2 − 1
(d) ẋ = x2 + y2 − 1, ẏ = x2 − y2

Solution:

(a) At an equilibrium point we must have ẋ = y2−5y+6 = 0, but this factorises as (y−2)(y−3) = 0,
so y = 2 or y = 3. We must also have ẏ = x2−9x+20 = 0, but this factorises as (x−4)(x−5) = 0,
so x = 4 or x = 5. It follows that there are four equilibrium points: (4, 2), (4, 3), (5, 2) and (5, 3).

(b) At an equilibrium point we must have ẋ = x2 + y2 + 1 = 0, but this is impossible because x2 ≥ 0
and y2 ≥ 0 so x2 + y2 + 1 ≥ 1. Thus, there are no equilibrium points.

(c) At an equilibrium point we must have ẋ = x2 + y2 − 1 = 0, which means that (x, y) lies on the
unit circle, so it can be written in the form (x, t) = (cos(θ), sin(θ)) for some angle θ. Moreover,
ẏ is the same as ẋ, so the equation ẏ = 0 does not give anything new. Thus, all the points on
the unit circle are equilibrium points, and there are no other equilibrium points.

(d) Here again the equation ẋ = x2 + y2 − 1 = 0 means that all equilibrium points lie on the unit
circle. However, we now have ẏ = x2 − y2 = 0, so x2 = y2, so x = ±y. Putting this in the
equation x2 + y2− 1 = 0 gives 2x2 = 1, so x = ±

√
2/2. It follows that there are four equilibrium

points: (
√
2
2 ,
√
2
2 ), (

√
2
2 ,−

√
2
2 ), (−

√
2
2 ,
√
2
2 ) and (−

√
2
2 ,−

√
2
2 ).

Exercise 19. Find and classify the equilibrium points for the system

ẋ = f(x, y) = 1 + y

ẏ = g(x, y) = 1− 2x.

Solution: For an equilibrium point, we need 1 + y = 0 and 1− 2x = 0, so x = 1/2 and y = −1. Thus,

there is a unique equilibrium point at (1/2,−1). The Jacobian is

[
0 1
−2 0

]
, which has trace τ = 0 and

determinant δ = 2. As τ = 0 and δ > 0, this is a centre. The bottom left entry in J is −2 < 0, so the
rotation is clockwise. In this case the functions f and g are just linear + constant, so there is no error in
linearization, and the whole phase diagram is exactly the same as the usual phase diagram for a centre,
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except that it has been shifted away from the origin. The picture is as follows:

Exercise 20. Find and classify the equilibrium points for the system

ẋ = f(x, y) = y − 1

ẏ = g(x, y) = x− 1.

Solution: For an equilibrium point, we need y − 1 = x − 1 = 0. Thus, there is a unique equilibrium

point at (1, 1). The Jacobian is

[
0 1
1 0

]
, which has trace τ = 0 and determinant δ = −1. As δ < 0,

this is a saddle. In this case the functions f and g are just linear + constant, so there is no error in
linearization, and the whole phase diagram is exactly the same as the usual phase diagram for a saddle,
except that it has been shifted away from the origin. The picture is as follows:

Exercise 21. Find and classify the equilibrium points for the system

ẋ = f(x, y) = 25− 16x2 − 9y2

ẏ = g(x, y) = 9x2 + 16y2 − 25.

12



Sketch the nullclines.

Solution: If we divide the equation ẋ = 0 by 16 and divide the equation ẏ = 0 by 9 and add them
together we get

25

16
− x2 − 9

16
y2 + x2 +

16

9
y2 − 25

9
= 0.

This simplifies to ( 16
9 −

9
16 )y2 = 25

9 −
25
16 , but 16

9 −
9
16 = 175

144 = 25
9 −

25
16 so we get y2 = 1. We can substitute

y2 = 1 in the equation ẋ = 25− 16x2− 9y2 = 0 to get 16− 16x2 = 0, so x2 = 1 as well. We now see that
x = ±1 and y = ±1, so there are four equilibrium points:

a1 = (1, 1) a2 = (−1,−1) a3 = (1,−1) a4 = (−1, 1).

To classify these, we use the Jacobian:

J =

[
∂f/∂x ∂f/∂y
∂g/∂x ∂g/∂y

]
=

[
−32x −18y
18x 32y

]
.

so the trace is τ = 32(y − x) and the determinant is δ = (−322 + 182)xy = −700xy. We therefore have
the following table:

a1 a2 a3 a4

τ 0 0 −64 64

δ −700 −700 700 700

τ2 − 4δ 2800 2800 1296 1296

At a1 and a2 we have δ < 0, so these points are saddles. At a2 and a3 we have τ2 − 4δ > 0, so these
points are nodes. At a2 we have τ < 0, so this is a stable node. At a3 we have τ > 0, so this is an
unstable node.

The x-nullcline has equation 16x2 + 9y2 = 25, which describes an ellipse. In more detail, we have
16
25x

2 + 9
25y

2 = 1, or in other words ( 4
5x)2 + ( 3

5y)2 = 1. This means that the point ( 4
5x,

3
5y) lies on the

unit circle, so it is (cos(θ), sin(θ)) for some θ. This gives x = 5
4 cos(θ) and y = 5

3 sin(θ), which is an

ellipse. As 5
3 >

5
4 , the height of this ellipse is larger than the width. Similarly, the y-nullcline is given

by 9x2 + 16y2 = 25, or (x, y) = ( 5
3 cos(θ), 54 sin(θ)). This is another ellipse, but in this case the width is

larger than the height. The phase portrait is as follows:

Exercise 22. Consider the system

ẋ = y3 − y = y(y + 1)(y − 1)

ẏ = x− x3 = x(1 + x)(1− x).

(a) Show that the function U = (x2 − 1)2/4 + (y2 − 1)2/4 is a conserved quantity.
13



(b) Find and classify the equilibrium points.

Solution:

(a) We have

Ux =
∂U

∂x
= 2(x2 − 1)× 2x/4 = (x2 − 1)x = x3 − x

Uy =
∂U

∂y
= 2(y2 − 1)× 2y/4 = (y2 − 1)y = y3 − y

U̇ = Uxf + Uyg = (x3 − x)(y3 − y) + (y3 − y)(x− x3) = 0.

Thus, U is conserved.
(b) The x-nullcline consists of three horizontal lines, with equations y = 0, y = 1 and y = −1.

Similarly, the y-nullcline consists of three vertical lines, with equations x = 0, x = 1 and x = −1.
This means that there are nine equilibrium points (n,m) with n,m ∈ {−1, 0, 1}. The Jacobian
is

J =

[
∂f/∂x ∂f/∂y
∂g/∂x ∂g/∂y

]
=

[
0 3y2 − 1

1− 3x2 0

]
,

so the trace is τ = 0 and the determinant is δ = (1 − 3x2)(1 − 3y2). As τ = 0 we see that
the equilibrium points are centres if δ > 0, and saddles if δ < 0. If x and y are both zero then
δ = 1, corresponding to a centre. We have seen other examples where the linearised system has
a centre but the original nonlinear system has a slow spiral. However, that cannot happen here
because we have a conserved quantity, which forces the flow lines to close up as circles. The
bottom left entry in J is 1− 3x2 = 1 > 0, so the rotation is anticlockwise. If x = 0 and y = ±1
then δ = −2 < 0, corresponding to a saddle. The same applies if x = ±1 and y = 0. Finally, if
both x and y are ±1 then δ > 0, which means we have another centre. The bottom left entry is
−2 < 0, so the rotation is clockwise.

The phase portrait for this system was shown in lectures:

Exercise 23. Consider the system

ẋ = f(x, y) = sin(πy)

ẏ = g(x, y) = sin(πx).

(a) Show that the function U = cos(πx)− cos(πy) is a conserved quantity.
(b) Find and classify the equilibrium points.
(c) Sketch the phase portrait.

Solution:
14



(a) We have

U̇ = Uxf + Uyg = −π sin(πx). sin(πy) + π sin(πy) sin(πx) = 0,

so U is conserved.
(b) The x-nullcline is given by sin(πy) = 0, which means that y must be an integer. Similarly, the

y-nullcline is given by sin(πx) = 0, which means that x must be an integer. Thus, the equilibrium
points are of the form (n,m), where n and m are both integers. The Jacobian is

J =

[
∂f/∂x ∂f/∂y
∂g/∂x ∂g/∂y

]
=

[
0 π cos(πy)

π cos(πx) 0

]
,

so the trace is τ = 0 and the determinant is δ = −π2 cos(πx) cos(πy). At an equilibrium point
(n,m) we have cos(πx) = (−1)n and cos(πy) = (−1)m, so δ = (−1)n+m+1π2. If n and m are
both odd, or both even, then we have δ = −π2 < 0, so (n,m) is a saddle. If n is odd and m is
even then δ = π2 > 0 and τ = 0 so we have a centre, at least for the linearised system. We have
seen other examples where the linearised system has a centre but the original nonlinear system
has a slow spiral. However, that cannot happen here because we have a conserved quantity, which
forces the flow lines to close up as circles. The bottom left entry in J is cos(πx) = (−1)n = −1,
so the rotation is clockwise. Similarly, if n is even and m is odd then we again have a centre,
but in this case the rotation is anticlockwise.

(c) The phase portrait is as follows:

Exercise 24. Sketch the phase portrait of the system ẋ = y, ẏ = −x − x2 − y in a neighbourhood of
the origin.

Solution:
15



Exercise 25. Let a, b, c, d, p and q be constants with a 6= 0 and d 6= 0 and ad − bc 6= 0. Consider the
system

ẋ = f(x, y) = x(ax+ by − p)
ẏ = g(x, y) = y(cx+ dy − q).

Find the four equilibrium points, and give a formula for the Jacobian matrix at each of these points.

Solution: For an equilibrium point, we must have either x = 0 or ax + by = p, and also y = 0 or
cx + dy = q. If x = 0 then the equation cx + dy = q becomes y = q/d, and if y = 0 then the equation
ax + by = p becomes x = p/a. If x and y are both nonzero then we must have ax + by = p and
cx + dy = q. If we multiply the first equation by d and the second equation by b and subtract, we get
(ad − bc)x = dp − bq, so x = dp−bq

ad−bc . Similarly, we can multiply the first equation by c and the second

equation by a and subtract to get (bc − ad)y = cp − aq, so y = aq−cp
ad−bc . We thus have four equilibrium

points:

a1 =

[
0
0

]
a2 =

[
0
q/d

]
a3 =

[
p/a
0

]
a4 =

1

ad− bc

[
dp− bq
aq − cp

]
.

The Jacobian matrix is

J =

[
∂f/∂x ∂f/∂y
∂g/∂x ∂g/∂y

]
=

[
2ax+ by − p bx

cy cx+ 2dy − q

]
.

Evaluating this at the equilibrium points a1, . . . , a4 gives

J1 =

[
−p 0
0 −q

]
J2 =

[
(bq − dp)/d 0

cq/d q

]
J3 =

[
p bp/a
0 (cp− aq)/a

]
and

J4 =
1

ad− bc

[
a(dp− bq) b(dp− bq)
c(aq − cp) d(aq − cp)

]
.

Exercise 26. In lectures we considered the system

ẋ = x− x3 ẏ = y − y3.

Suppose that x0, y0 > 0. Show that the formulae

x = (1 + (x−20 − 1)e−2t)−1/2 y = (1 + (y−20 − 1)e−2t)−1/2

give an explicit solution for this system, with (x, y) = (x0, y0) at t = 0.
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Solution: It will be convenient to put C = x−20 − 1, so x = (1 + Ce−2t)−1/2. This gives

ẋ = − 1
2 (1 + Ce−2t)−3/2 × (−2)× Ce−2t = (1 + Ce−2t)−3/2Ce−2t

x− x3 = x3(x−2 − 1) = (1 + Ce−2t)−3/2(1 + Ce−2t − 1) = (1 + Ce−2t)−3/2Ce−2t = ẋ,

as required. Also, at t = 0 we have e−2t = 1 so x = (1 +C)−1/2 = (x−20 )−1/2 = x0. Essentially the same
argument gives ẏ = y − y3 and y = y0 at t = 0.

Exercise 27. Consider the system ẋ = ẏ = xy.

(a) Find a conserved quantity. (There is a very simple one.)
(b) Show that for any x0, y0 > 0 we have a solution

x =
x0(x0 − y0)

x0 − y0et(x0−y0)
y =

y0(y0 − x0)

y0 − x0et(y0−x0)
.

(c) Check that the solution in (b) becomes infinite when t = (ln(x0)− ln(y0))/(x0 − y0).
(d) What is the value of the conserved quantity on the solution in (b)?

Solution:

(a) As ẋ = ẏ we see that the function U = x− y has U̇ = 0, so U is a conserved quantity.
(b) It will be convenient to put a = x0 − y0 and u = eat. In terms of these, we have

x =
x0a

x0 − y0u
y =

−y0a
y0 − x0/u

=
y0au

x0 − y0u
.

Note also that a is constant and u̇ = aeat = au. This gives

ẋ = − x0a

(x0 − y0u)2
(−y0u̇) = − x0a

(x0 − y0u)2
(−y0au) =

x0y0a
2u

(x0 − y0u)2
= xy.

A similar argument also gives ẏ = xy.
(c) Put t∗ = (ln(x0) − ln(y0))/(x0 − y0). We then have at∗ = ln(x0) − ln(y0) = ln(x0/y0), so when

t = t∗ we have u = eat
∗

= x0/y0. This means that the denominator x0 − y0u is zero, so the
solution goes to infinity.

(d) At t = 0 we have u = 1 and so x = x0 and y = y0 and U = x− y = x0 − y0. As U is conserved,
we must have U = x0 − y0 for all t. This can also be seen explicitly:

U = x− y =
x0a

x0 − y0u
− y0au

x0 − y0u
=

(x0 − y0u)a

x0 − y0u
= a = x0 − y0.

Exercise 28. Consider the system

ẋ = x2 − y2 ẏ = 2xy.

(a) Show that the origin is the only equilibrium point, and that the Jacobian is zero at the origin.
(b) Show that the formulae

A = x20 + y20

u = x0 − tA v = 1− 2tx0 + t2A

x = u/v y = y0/v

give an explicit solution with (x, y) = (x0, y0) when t = 0.
(c) Let R be a large positive number. Show that the solution starting at (R3/(R4 + 1), R/(R4 + 1))

(very close to the origin) reaches the point (0, R) (very far from the origin) at t = R. This shows
that the origin is unstable.

Solution:

(a) At an equilibrium point we must have x2 − y2 = 0 (so x = ±y) and 2xy = 0 (so either x or
y is zero). The only way to satisfy both conditions is if x = y = 0, so the origin is the only
equilibrium point. The Jacobian is

J =

[
2x −2y
2y 2x

]
,

which becomes zero when x = y = 0.
17



(b) First note that when t = 0 we have u = x0 and v = 1 so x = u/v = x0 and y = y0/v = y0 as
expected. We also have

u̇ = −A
v̇ = −2x0 + 2tA

ẋ =
u̇v − uv̇
v2

= (−A(1− 2tx0 + t2A2)− (x0 − tA)(−2x0 + 2tA))/v2

= (−A+ 2tAx0 − t2A3 + x20 − 2tAx0 − 2tAx0 + 2t2A2)/v2

= (−A+ 2x20 − 2tAx0 + t2A2)/v2

= (x20 − y20 − 2tAx0 + t2A2)/v2

ẏ = −y0v̇
v2

= 2y0(x0 − tA)/v2

x2 − y2 =
u2 − y20
v2

= (x20 − 2tAx0 + t2A2 − y20)/v2

2xy = 2uy0/v
2 = 2(x0 − tA)y0/v

2.

From this it is clear that ẋ = x2 − y2 and ẏ = 2xy, as required.
(c) Now take x0 = R3/(R4 + 1) and y0 = R/(R4 + 1) and t = R. This gives

A = x20 + y20 =
R6 +R2

(R4 + 1)2
=
R2(R4 + 1)

(R4 + 1)2
=

R2

R4 + 1

u = x0 − tA =
R3

R4 + 1
−R R2

R4 + 1
= 0

v = 1− 2tx0 + t2A = 1− 2R
R3

R4 + 1
+R2 R2

R4 + 1
= 1− R4

R4 + 1
=

1

R4 + 1
x = u/v = 0

y = y0/v =
R

R4 + 1
/

1

R4 + 1
= R.

Exercise 29. Consider the system

ẋ = f(x, y) = x2 − y2 − 1/4

ẏ = g(x, y) = 2xy.

(a) Show that the x-nullcline consists of all points of the form (± cosh(s)/2, sinh(s)/2).
(b) Find the y-nullcline.
(c) Find and classify the equilibrium points.
(d) Sketch the phase portrait.

Solution:

(a) If (x, y) lies on the x-nullcline we must have x2 − y2 − 1/4 = 0, which can be rearranged as
(2x − 2y)(2x + 2y) = 1. Put u = 2x + 2y so u−1 = 2x − 2y. Adding these equations gives
x = (u + u−1)/4, and subtracting them gives y = (u − u−1)/4. If u > 0 we can put s = ln(u)
and we find that x = (es + e−s)/4 = cosh(s)/2 and y = (es − e−s)/4 = sinh(s)/2. On the other
hand, if u < 0 we can put s = − ln(−u) and we find that x = (−e−s − es)/4 = − cosh(s)/2 and
y = (−e−s + es)/4 = sinh(s)/2.

(b) The y-nullcline is given by 2xy = 0, so x = 0 or y = 0.
(c) At an equilibrium point, we must have x2 − y2 − 1/4 = 0 and also xy = 0, so either x = 0 or

y = 0. If x = 0 then the equation x2 − y2 − 1/4 = 0 becomes y2 + 1/4 = 0, which is impossible
because y2 ≥ 0. If y = 0 then the equation x2− y2− 1/4 = 0 becomes x2− 1/4 = 0, which gives
x = ± 1

2 . Thus, the equilibrium points are a1 = (−1/2, 0) and a2 = (1/2, 0).

The Jacobian is J =

[
2x −2y
2y 2x

]
, which is −I at a1 and +I at a2. This means that a1 is

an improper stable node and a2 is an improper unstable node.
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(d) The phase portrait is as follows:

Exercise 30. The system

ẋ = x2 − y2 + 2xy ẏ = x2 − y2 − 2xy

has some solutions of the form (x, y) = (a/t, b/t). Find the relevant values of a and b.

Solution: If x = a/t and y = b/t then

ẋ = −a/t2

ẏ = −b/t2

x2 − y2 + 2xy = (a2 − b2 + 2ab)/t2

x2 − y2 − 2xy = (a2 − b2 − 2ab)/t2.

Thus, we have a solution to the given system if

−a = a2 − b2 + 2ab(A)

−b = a2 − b2 − 2ab.(B)

If we add and subtract these equations, we get

−a− b = 2(a2 − b2) = 2(a+ b)(a− b)(C)

b− a = 4ab.(D)

Equation (C) can be rearranged as (a+ b)(2a− 2b+ 1) = 0, so either b = −a or b = a+ 1
2 .

(a) If b = −a then equation (D) becomes −2a = −4a2, so 2a2 = a, so a(1 − 2a) = 0, so a = 0 or
a = 1

2 . If a = 0 then b = 0, and if a = 1
2 then b = − 1

2 . We thus have two solutions to the original
system: the constant solution (x, y) = (0, 0), and the solution (x, y) = (1/(2t),−1/(2t)).

(b) Suppose instead that b = a + 1
2 . Then equation (D) becomes 1

2 = 4a(a + 1
2 ), and this can be

rearranged as 4a2 + 2a− 1
2 = 0, or a2 + 1

2a−
1
8 = 0. This has solutions

a = (− 1
2 ±

√
1
4 + 1

2 )/2 = (−1±
√

3)/4.

The corresponding values of b = a+ 1
2 are (+1±

√
3)/4. We therefore have two solutions to the

original system:

(x, y) =

(
−1 +

√
3

4t
,

1 +
√

3

4t

)
or (x, y) =

(
−1−

√
3

4t
,

1−
√

3

4t

)
.

In the following picture, the above solutions are the straight blue lines. Some other flow lines are shown
in red.
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Exercise 31. The system

ẋ = −x+ (x2 − y2)/4

ẏ = y − (x2 − y2)/4.

has the following phase portrait:

(a) Find and classify the equilibrium points.
(b) Add some arrows to the diagram to indicate the direction of flow.
(c) There are nonzero constants a, b, c such that (x, y) = (at, bt + c) is a solution. Find these

constants.
(d) Where does your solution to (c) appear in the phase portrait?

Solution:

(a) At an equilibrium point we must have ẋ = −x + (x2 − y2)/4 = 0 and ẏ = y − (x2 − y2)/4 =
0. Adding these equations gives y − x = 0, so y = x. Substituting y = x in the relation
−x + (x2 − y2)/4 = 0 gives x = 0. Thus, the only equilibrium point is at the origin. The

20



Jacobian is

J =

[
∂f/∂x ∂f/∂y
∂g/∂x ∂g/∂y

]
=

[
−1 + x/2 −y/2
−x/2 1 + y/2

]
.

At the origin this becomes J =

[
−1 0
0 1

]
. As this is a diagonal matrix, the eigenvalues are just

the diagonal entries, which are 1 and −1. As one eigenvalue is positive and the other is negative,
we have a saddle.

(b) – At a point (x, y) = (u, u) with u > 0 we have ẋ = −u+(u2−u2)/4 = −u < 0 and ẏ = u > 0
so the flow line points up and to the left.

– At a point (x, y) = (u,−u) with u > 0 we have ẋ = −u = −u < 0 and ẏ = −u < 0 so the
flow line points down and to the left.

– At a point (x, y) = (−u, u) with u > 0 we have ẋ = u > 0 and ẏ = u > 0 so the flow line
points up and to the right.

– At a point (x, y) = (−u,−u) with u > 0 we have ẋ = u > 0 and ẏ = −u < 0 so the flow line
points down and to the right.

For the actual picture, see part (d).
(c) If x = at and y = bt+ c then

ẋ = a

ẏ = b

−x+ (x2 − y2)/4 = −at+ (a2t2 − b2t2 − 2bct− c2)/4

= 1
4 (a2 − b2)t2 − ( 1

2bc+ a)t− 1
4c

2

y − (x2 − y2)/4 = bt+ c− (a2t2 − b2t2 − 2bct− c2)/4

= 1
4 (b2 − a2)t2 + ( 1

2bc+ b)t+ (c+ 1
4c

2).

Thus, we have a solution if the following equations hold for all t:

a = 1
4 (a2 − b2)t2 − ( 1

2bc+ a)t− 1
4c

2

b = 1
4 (b2 − a2)t2 + ( 1

2bc+ b)t+ (c− 1
4c

2).

We can equate the coefficients of 1, t and t2 to get

a = − 1
4c

2 1
2bc+ a = 0 a2 − b2 = 0

b = c− 1
4c

2 1
2bc+ b = 0 b2 − a2 = 0.

As 1
2bc+ a and 1

2bc+ b are both zero, we must have b = a. We can substitute this in 1
2bc+ a = 0

to get a(c + 2) = 0 but a 6= 0 by assumption, so c = −2. We now have a = − 1
4c

2 = −1 and
b = a = −1. Thus, the relevant solution is (x, y) = (−t,−t − 2). This covers the line where
x− y = 2.
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(d) This picture shows the direction arrows from (a) as well as the solution from (c) (in blue).

Exercise 32. Consider the system

ẋ = f(x, y) = x− y − x3 − xy2

ẏ = g(x, y) = x+ y − x2y − y3.

Put U = x2 + y2 and V = 1/U − 1 and W = arctan(y/x). Show that U̇ = 2(U −U2) and V̇ = −2V and

Ẇ = 1. Using this, solve the equations, and show that there is a limit cycle.

Solution: First, we have

U̇ = Uxf + Uyg = 2x(x− y − x3 − xy2) + 2y(x+ y − x2y − y3)

= 2x2 − 2xy − 2x4 − 2x2y2 + 2xy + 2y2 − 2x2y2 − 2y4

= 2x2 + 2y2 − 2x4 − 4x2y2 − 2y4 = 2U − 2U2.

This gives

V̇ = −U−2U̇ = −2U−2(U − U2) = −2(U−1 − 1) = −2V.

It follows that V = V0e
−2t for some constant V0, and so U = 1/(1 + V ) = 1/(1 + V0e

−2t).
Next, remember that arctan′(t) = 1/(1 + t2). This gives

Ẇ =
d(y/x)/dt

1 + (y/x)2
=

(ẏx− y ẋ)/x2

1 + (y/x)2
=
gx− yf
x2 + y2

gx− yf = (x+ y − x2y − y3)x− y(x− y − x3 − xy2)

= x2 + xy − x3y − xy3 − xy + y2 + x3y + xy3 = x2 + y2

Ẇ = 1.

This means that W = W0 + t for some constant t. Now, the polar coordinates of (x, y) are r =
√
U =

(1 + V0e
−2t)−1/2 and θ = W = W0 + t, so we have

x = (1 + V0e
−2t)−1/2 cos(W0 + t)

y = (1 + V0e
−2t)−1/2 sin(W0 + t).

As t→∞ we have e−2t → 0 and so U → 1, which means that[
x
y

]
'
[
cos(W0 + t)
sin(W0 + t)

]
,

so the solution curve approaches the unit circle, which is a limit cycle for the system.
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Exercise 33. Find and classify the equilibrium points for the system

ẋ = f(x, y) = x2 + 2y2 − y
ẏ = g(x, y) = 2x+ 2y.

Solution: For an equilibrium point we must have x2+2y2−y = 0 and 2x+2y = 0. The second equation
gives y = −x, and substituting this into the first equation gives 3x2 + x = 0 or x(3x+ 1) = 0. We thus
have x = 0 or x = −1/3, so the two equilibria are a1 = (0, 0) and a2 = (−1/3, 1/3). The Jacobian is

J =

[
∂f/∂x ∂f/∂y
∂g/∂x ∂g/∂y

]
=

[
2x 4y − 1
2 2

]
.

Evaluating this at the equilibrium points gives

J1 =

[
0 −1
2 2

]
J2 =

[
−2/3 1/3

2 2

]
.

For J1 we have τ = 2 and δ = 2 so τ2 − 4δ = −4 < 0. As τ > 0 and τ2 − 4δ < 0 we see that the point
a1 is an unstable focus. As the bottom left entry in J is positive, it is an anticlockwise focus.

For J2 we have τ = 4/3 and δ = −2. As δ < 0, this is a saddle.

Exercise 34. Analyse the following system (which describes the populations of two species that compete
for food):

ẋ = 2x(1− x− y) ẏ = y(1− 2y − 2x).

Solution: On the x-nullcline we have 2x(1−x− y) = 0, so either x = 0 or y = 1−x. On the y-nullcline
we have y(1− 2y− 2x) = 0, so either y = 0 or y = 1

2 − x. In principle there are now four possibilities for

(x, y), but the equations y = 1− x and y = 1
2 − x are incompatible, so in fact there are only three:

• The origin is an equilibrium point a1 = (0, 0).
• There is another equilibrium point with x = 0 and y = 1

2−x, so y = 1
2 , so the point is a2 = (0, 12 ).

• There is another equilibrium point with y = 1−x and y = 0, so x = 1, so the point is a3 = (1, 0).

Recall that

f = 2x(1− x− y) = 2x− 2x2 − 2xy

g = y(1− 2y − 2x) = y − 2y2 − 2xy.

The Jacobian is

J =

[
∂f/∂x ∂f/∂y
∂g/∂x ∂g/∂y

]
=

[
2− 4x− 2y −2x
−2y 1− 4y − 2x

]
.
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Evaluating this at the equilibrium points gives

J1 =

[
2 0
0 1

]
J2 =

[
1 0
−1 −1

]
J3 =

[
−2 −2
0 −1

]
.

Recall that for a matrix of the form

[
a 0
c d

]
or

[
a b
0 d

]
, the eigenvalues are just the same as the diagonal

entries a and d. Thus, the eigenvalues for J1 are 1 and 2 (so a1 is an unstable node), the eigenvalues for
J2 are 1 and −1 (so a2 is a saddle), and the eigenvalues for J3 are −2 and −1 (so a3 is a stable node).

The phase portrait is as follows:

The variables x and y represent populations of competing species, so they cannot be negative, so we
have shown only the region where x ≥ 0 and y ≥ 0. All the flow lines converge to a3, where x = 1 and
y = 0. This means that the y species will become extinct and will be replaced by the x species.

Exercise 35. Consider a system of the form ẋ = ẏ = f(x, y). What can you say about the phase
portrait?

Solution: As ẏ = ẋ, the difference y−x is constant, so each flow line is (part of) a straight line y = x+c.
This means that the exact form of the function f is mostly irrelevant, the phase portrait just looks like
this:

Exercise 36. Consider a system of the form ẋ = 1, ẏ = f ′(x), for some given function f with f(0) = 0.
What can you say about the solutions and the phase portrait?

Solution: Consider a solution that starts at a point (0, y0) on the y-axis. We have ẋ = 1 so x = t+ c for
some constant c, but x = 0 when t = 0, so x = t. We also have ẏ = f ′(x) = f ′(t), so y− f(t) is constant,
say y = f(t) + d. At t = 0 we have y = y0 and f(0) = 0 so d = y0. This means that the solution is just
y = f(t) + y0. In particular, all the solutions are the same except for the vertical shift by y0. Thus, the
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phase portrait might look something like this:

Exercise 37. For each of the following quadratic functions, decide whether it is positive definite, negative
definite or indefinite.

Q1 = xy Q2 = x2 − y2 Q3 = (x+ y)2

Q4 = x2 + xy + y2 Q5 = 3x2 − 4xy + 5y2 Q6 = 8xy − 3x2 − 5y2.

Solution:

• Q1 is indefinite because Q1 = 0 at (x, y) = (0, 1).
• Q2 is indefinite because Q2 = 0 at (x, y) = (1, 1).
• Q3 is indefinite because Q3 = 0 at (x, y) = (1,−1).
• Q4 is positive definite. To see this, note that Q4 = ax2 + 2bxy + cy2 with a = c = 1 and b = 1

2 .

Here ac− b2 = 3
4 > 0 and a, c > 0, so the standard method tells us that Q4 is positive definite.

Alternatively, one can check that

Q4 =
3

4
(x+ y)2 +

1

4
(x− y)2.

From this it is clear that Q4 ≥ 0, and that Q4 can only be equal to 0 if x+ y = 0 and x− y = 0,
which means that x = y = 0.

• Q5 is again positive definite. Indeed, here we have a = 3 and b = −2 and c = 5 so a, c > 0 and
ac− b2 = 11 > 0.

• Q6 is indefinite. Indeed, here we have a = −3 and b = 4 and c = −5 so ac − b2 = −1 < 0.
Alternatively, we can just note that Q6 = 0 when (x, y) = (1, 1).

Exercise 38. For each of the following functions, discuss whether it is positive definite, negative definite
or indefinite about the origin, either on the whole plane or on some smaller domain.

V1 = e−x
2−y2 V2 = e−x

2−y2 − 1 V3 = 2− cos(x)− cos(y)

V4 = x3 + x2y + xy2 + y3 V5 =
x2 + y2

1 + x2 + y2
V6 =

x2 + y2

1− x2 − y2

Solution:

• As et > 0 for all t, we have V1 > 0 at all points (x, y). In particular, V1 = 1 at (0, 0), but we
only say that a function is positive definite around the origin if it takes the value 0 at the origin.
Thus, V1 is not positive definite.

• At (x, y) = (0, 0) we have x2 +y2 = 0 so V2 = e0−1 = 0. At all other points, we have x2 +y2 > 0

so e−x
2−y2 < 1 so V2 < 0. Thus, V2 is negative definite.

• For all x and y we have −1 ≤ cos(x), cos(y) ≤ 1 and so V3 = (1 − cos(x)) + (1 − cos(y)) ≥ 0.
From this it is also clear that V3 can only be zero if cos(x) = 1 and cos(y) = 1, which means
that x and y are both multiples of 2π. In particular, V3 is zero at the point (2π, 0), which means
that V3 is not positive definite on the whole plane. However, we can instead put

R = {(x, y) | − 2π < x, y < 2π}.

We find that the only point in R where V3 = 0 is (0, 0), so V3 is positive definite about the origin
on R.

• The function V4 is zero at (x, y) = (1,−1), so V4 is neither positive definite nor negative definite
on the whole plane. In fact, for any small ε > 0 we have a point (ε,−ε) (very close to the origin)
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where V4 = 0. This means that V4 is not positive or negative definite on any neighbourhood of
the origin.

• As x2 + y2 ≥ 0 and 1 + x2 + y2 > 0 for all x, y we find that V5 ≥ 0 everywhere. Moreover, V5
can only be zero if x2 + y2 = 0 which means that x = y = 0. Thus, V5 is positive definite on the
whole plane.

• The function V6 is undefined if x2 + y2 = 1, and is negative if x2 + y2 > 1. Thus, we should
consider only the domain

R = {(x, y) | x2 + y2 < 1},
which is an open disc centred at the origin. In this region we have x2+y2 ≥ 0 and 1−x2−y2 > 0
so V6 ≥ 0. Moreover, V6 can only be zero if x2 + y2 = 0 which means that x = y = 0. Thus, V6
is positive definite on the region R.

Exercise 39. Consider a function of the form V = ax5 + bx4y + cxy4 + dy5, where a, b, c and d are
constants. Show that V is neither positive definite nor negative definite around the origin.

Solution: At (1, 0) we have V = a, and at (−1, 0) we have V = −a. These cannot both be strictly
positive, so V is not positive definite. Similarly, a and −a cannot both be strictly negative, so V is not
negative definite.

Exercise 40. Suppose we have a linear system u̇ = Au with a stable node or a stable focus at the origin,
and that U is a conserved quantity that is defined and continuous over the whole plane. Show that U is
just a constant.

Solution: Put C = U(0, 0) (the value of the conserved quantity at the origin). Consider an arbitrary
point (x0, y0). Let (x, y) be the solution that starts at (x0, y0) at time t = 0. As the system is a stable
node or focus, we have (x, y) → (0, 0) as t → ∞. As U is continuous, we have U(x, y) → U(0, 0) = C
as t → ∞. However, U is a conserved quantity, so U(x, y) is independent of t. The only way it can be
independent of t and converge to C is if it is equal to C all the time. We thus have U(x, y) = C for all
t, so in particular this holds when t = 0, which means that U(x0, y0) = C. This holds for all x0 and y0,
so U is constant.

Exercise 41. Consider the system

ẋ = −2y3 ẏ = x− 3y3.

Find a Lyapunov function V of the form V = ax2 + by4 (for some constants a and b). Deduce that the
origin is a stable equilibrium point.

Solution: Consider a function V = ax2 + by4. We want V to be positive definite, so we must have
a, b > 0. Note that

V̇ = Vxẋ+ Vy ẏ = 2ax(−2y3) + 4by3(x− 3y3) = (4b− 4a)xy3 − 12by6.

The term xy3 can be positive or negative depending on the signs of x and y. It is simplest to make this
term go away by choosing a = b = 1. Out function is then V = x2 +y4, with V̇ = −12y6. This means we
always have V̇ ≤ 0, but V̇ = 0 everywhere on the x-axis, so V̇ is negative semidefinite but not negative
definite. Thus, V is a weak Lyapunov function but not a strong Lyapunov function, and the origin is
stable but not necessarily asymptotically stable. (In fact the origin is asymptotically stable, but we need
a different argument to prove it.)

Exercise 42. Consider the system

ẋ = −3x3 − y ẏ = x5 − 2y3.

Find a Lyapunov function of the form V = αx2n + βy2m (for certain constants α, β, n,m), and deduce
that the origin is a stable equilibrium point. Can we conclude that it is asymptotically stable?

Solution: Consider a function V = αx2n+βy2m. If we take n and m to be positive integers and α, β > 0
then V will be positive definite. We also have

V̇ = Vxẋ+ Vy ẏ = 2nαx2n−1(−3x3 − y) + 2mβy2m−1(x5 − 2y3)

= −6nαx2n+2 − 2nαx2n−1y + 2mβx5y2m−1 − 4mβy2m+2.

The middle two terms have odd exponents, so they can be either positive or negative. It is best to make
them cancel out. For that, we need 2nα = 2mβ and 2n− 1 = 5 and 2m− 1 = 1. This gives m = 1 and
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n = 3 and 6α = 2β. We can choose α = 1 and then β = 3. With these choices, the function becomes
V = x6 + 3y2, and

V̇ = −6nαx2n+2 − 4mβy2m+2 = −18x8 − 12y4.

It is clear from this that V̇ is negative definite, so V is a strong Lyapunov function, and the origin is an
asymptotically stable equilibrium.

Exercise 43. Consider the system

ẋ = y ẏ = −x+ y(x2 + y2 − 1).

Find a Lyapunov function of the form V = αx2n + βy2m (for certain constants α, β, n,m), and deduce
that the origin is a stable equilibrium point. Can we conclude that it is asymptotically stable?

Solution: Consider a function V = αx2n+βy2m. If we take n and m to be positive integers and α, β > 0
then V will be positive definite. We also have

V̇ = Vxẋ+ Vy ẏ = 2nαx2n−1y + 2mβy2m−1(−x+ y(x2 + y2 − 1))

= 2nαx2n−1y − 2mβxy2m−1 − 2mβy2m(1− x2 − y2).

The first two terms have odd exponents, so they can be either positive or negative. It is best to make
them cancel out. For that, we need 2n − 1 = 1 and 2m − 1 = 1 and 2nα = 2mβ, so n = m = 1 and
α = β. We choose α = 1, so V = x2 + y2 and

V̇ = −2mβy2(1− x2 − y2) = −2y2(1− x2 − y2).

If we restrict attention to the unit disc

R = {(x, y) | x2 + y2 < 1},

then we have V̇ ≤ 0. This means that V is a weak Lyapunov function, so the origin is a stable equilibrium
point. However, we have V̇ = 0 at all points where y = 0, so V is not a strong Lyapunov function, and
we cannot immediately conclude that the origin is asymptotically stable.

Exercise 44. Consider a linear system ẋ = py− qx, ẏ = rx− sy where p, q, r, s > 0 and 4qs > (p+ r)2.

(a) Show that the function x2 + y2 is a strong Lyapunov function.
(b) Show that qs− pr > 0.
(c) Classify the equilibrium point at the origin.

Solution:

(a) It is clear that V is positive definite. First, we have

V̇ = 2xẋ+ 2yẏ = 2pxy − 2qx2 + 2rxy − 2sy2 = −2qx2 + 2(p+ r)xy − 2sy2.

In other words, we have V̇ = ax2 + 2bxy + cy2, where a = −2q and b = p+ r and c = −2s. The
standard criterion says that V̇ is negative definite if a, c < 0 and ac > b2, or equivalently q, s > 0
and 4qs > (p+r)2. These are precisely the assumptions in the question, so V̇ is negative definite.
This means that V is a strong Lyapunov function, and that the origin is an asymptotically stable
equilibrium point.

(b) We are given that 4qs > (p+ r)2, so

4qs− 4pr > (p+ r)2 − 4pr = p2 + 2pr + r2 − 4pr = p2 − 2pr + r2 = (p− r)2 ≥ 0.

This shows that 4qs− 4pr > 0, so qs− pr > 0.

(c) The system can be written as

[
ẋ
ẏ

]
= A

[
x
y

]
, where A =

[
−q p
r −s

]
. This has trace τ = −(q+s) <

0 and determinant δ = qs− pr > 0 (by part (b)). We also have

τ2 − 4δ = (q + s)2 − 4qs+ 4pr = q2 + 2qs+ s2 − 4qs+ 4pr

= q2 − 2qs+ s2 + 4pr = (q − s)2 + 4pr.

Now p, r > 0 by assumption, so 4pr > 0, and (q − s)2 ≥ 0 automatically, so τ2 − 4δ > 0. As
δ > 0 and τ < 0 and τ2 − 4δ > 0, we have a stable node at the origin.
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δ

τ
stable node

Exercise 45. Let α, β, γ, δ be positive constants, and let m,n, p, q be nonnegative integers. Put

f(x, y) = −αx2p+1 − (m+ 1)βy2m+1

g(x, y) = (n+ 1)γx2n+1 − δy2q+1

V (x, y) = γx2n+2 + βy2m+2.

Show that if ẋ = f and ẏ = g then

V̇ = −2(n+ 1)αγx2(n+p+1) − 2(m+ 1)βδy2(m+q+1),

and so V is a strong Lyapunov function for this system.

Solution: Write this.

Exercise 46. Find a Lyapunov function of the form ax2 + by2 for the system ẋ = xy2 − x3, ẏ =
−(2x2y + y3). What can we conclude about the nature of the equilibrium at the origin?

Solution: If V = ax2 + by2 then

V̇ = 2ax(xy2−x3) + 2by(−2x2y− y3) = 2ax2y2− 2ax4− 4bx2y2− 2by4 = −2ax4 + (2a− 4b)x2y2− 2by4.

The simplest thing to do is to choose a = 2 and b = 1, so V = 2x2 + y2, which is positive definite. The
equation above then becomes V̇ = −4x4− 2y4, which is negative definite. This means that V is a strong
Lyapunov function, and the origin is asymptotically stable.

Exercise 47. Find a Lyapunov function of the form ax2+by2 for the system ẋ = − 1
2x

3+2xy2, ẏ = −y3.
What can we conclude about the nature of the equilibrium at the origin?

Solution: It will work out that ax2 + by2 is a strong Lyapunov function provided that a, b > 0 and
b > 2a. To be definite, we will take a = 1 and b = 3, so V = x2 + 3y2. This is clearly positive definite.
We also have

V̇ = 2x(− 1
2x

3 + 2xy2) + 6y(−y3) = −x4 + 4x2y2 − 6y4 = −(x2 − 2y2)2 − 2y4.

From this representation it is clear that V̇ ≤ 0, and that V̇ can only equal zero if x2 − 2y2 = 0 and
y = 0, which gives (x, y) = (0, 0). Thus, V̇ is negative definite, so V is a strong Lyapunov function, so
the origin is asymptotically stable.

Exercise 48. Use quadratic Lyapunov functions to determine the stability of the origin for the following
systems:

(a) ẋ = −x− 2y2, ẏ = xy − y3.
(b) ẋ = 2y2 − x3, ẏ = −4xy.

Solution:

(a) Consider the function V = x2 + 2y2, which is positive definite. We then have

V̇ = 2x(−x− 2y2) + 2y(xy − y3) = −2x2 − 4xy2 + 4xy2 − 2y4 = −2(x2 + y4),

which is negative definite. This means that V is a strong Lyapunov function, so the origin is
asymptotically stable.

(b) Consider the function V = 2x2 + y2, which is positive definite. We then have

V̇ = 4x(2y2 − x3) + 2y(−4xy) = 8xy2 − 4x4 − 8xy2 = −4x4.

This is negative semidefinite, but not negative definite (because V̇ = 0 at all points of the form
(0, y)). It follows that the origin is stable, but not necessarily asymptotically stable.

Exercise 49. Consider a system of the form ẋ = px − qy, ẏ = rx − py. Show that the function
U = rx2 − 2pxy + qy2 is a conserved quantity. When is it positive definite?
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Solution: First, we have

U̇ = Uxẋ+ Uy ẏ = (2rx− 2py)(px− qy) + (−2px+ 2qy)(rx− py)

= 2(rx− py)(px− qy)− 2(px− qy)(rx− py) = 0.

This shows that U is conserved. Moreover, U is a quadratic function so we can use the standard test for
definiteness. This says that U is positive definite if q, r > 0 and qr > p2.

Exercise 50. Consider the system ẋ = x(1+y2), ẏ = −y(1+x2). Use Lyapunov’s method to show that
the origin is an unstable equilibrium.

Solution: Put V = x2 − y2. Then

V̇ = Vxẋ+ Vy ẏ = 2xẋ− 2yẏ = 2x2(1 + y2) + 2y2(1 + x2) = 2x2 + 2y2 + 4x2y2.

This is clearly positive definite. Moreover, for any small ε > 0 we have a point (ε, 0) (very close to the
origin) where V = ε2 > 0. Thus, V has the conditions required for Lyapunov’s method, and we conclude
that the origin is unstable.

Exercise 51. Consider the linear system where ẋ = −x− y and ẏ = x− y, and the function

U = arctan(y/x) + 1
2 ln(x2 + y2).

(a) Show that there is a stable focus at the origin.
(b) Find the solution starting at (r, 0) at t = 0.

(c) Use the rule U̇ = Uxf + Uyg to show that U is conserved.
(d) Use the solution from (b) to give another proof that U is conserved.
(e) In the lectures we explained that a focus cannot have a conserved quantity. How can this be

correct?

Solution:

(a) The system has matrix A =

[
−1 −1
1 −1

]
, with τ = −2 and δ = 2 so τ2 − 4δ = −4 < 0. This

means that the eigenvalues are λ± iω where λ = −1 and ω = 1. As the eigenvalues are complex
with negative real part, we must have a stable focus.

(b) We use the formula

P = eλt
(
cos(ωt)I + ω−1 sin(ωt)(A− λI)

)
= e−t

(
cos(t)

[
1 0
0 1

]
+ sin(t)

[
0 −1
1 0

])
= e−t

[
cos(t) − sin(t)
sin(t) cos(t)

]
[
x
y

]
= P

[
r
0

]
=

[
re−t cos(t)
re−t sin(t)

]
.

(c) Put V = arctan(y/x) and W = 1
2 ln(x2 +y2) so U = V +W . Recall that arctan′(z) = 1/(1+z2).

Using this, we get

U̇ = arctan′(y/x)
d

dt
(y/x) =

1

1 + y2/x2
ẏx− yẋ
x2

=
(x− y)x− y(−x− y)

x2 + y2
=
x2 + y2

x2 + y2
= 1

V̇ =
1

2

1

x2 + y2
d

dt
(x2 + y2) =

2xẋ+ 2yẏ

2(x2 + y2)

=
x(−x− y) + y(x− y)

x2 + y2
=
−x2 − y2

x2 + y2
= −1

U̇ = V̇ + Ẇ = 1− 1 = 0.
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(d) If x = re−t cos(t) and y = re−t sin(t) as in (b), then we have

y/x =
re−t sin(t)

re−t cos(t)
=

sin(t)

cos(t)
= tan(t)

arctan(y/x) = arctan(tan(t)) = t

x2 + y2 = r2e−2t(cos2(t) + sin2(t)) = r2e−2t

1
2 ln(x2 + y2) = ln(r)− t

U = arctan(y/x) + 1
2 ln(x2 + y2) = t+ (ln(r)− t) = ln(r).

As expected, this does not depend on t.
(e) The point is that U is not really well-defined (because you can add multiples of π to the arctan

term). We can make try to make it well-defined by always taking the value of arctan that lies in
(−π/2, π/2]. However, with this convention, U is discontinuous when y = 0. Also, U will always
be discontinuous at the point (0, 0), whatever convention we make. The theorem in the lectures
only covers the case where U is well-defined and continuous, so there is no contradiction.

Exercise 52. Find the general solution for the equation y′′ + 3py′ + 2p2y = 0 (where p is constant).

Solution: Here the coefficients are constant so we do not need power series methods. The auxiliary
polynomial is λ2 + 3pλ + 2p2 = (λ + p)(λ + 2p), with roots −p and −2p. If p 6= 0 then these roots are
distinct and so the general solution is y = Ae−px + Be−2px. If p = 0 then the equation is just y′′ = 0
and the solutions are y = Ax+B.

Exercise 53. Find the general solution for the equation y′′ + 2py′ + p2y = 0 (where p is constant).

Solution: Here the coefficients are constant so we do not need power series methods. The auxiliary
polynomial is λ2+2pλ+p2 = (λ+p)2, so −p is the only root. The general solution is y = (A+Bx)e−px.

Exercise 54. Solve the following boundary value problems (or prove that there is no solution).

(a) y′′ − y = 0 with y(0) = 0 and y(ln(2)) = 1.
(b) y′′ + y = 0 with y(0) = 1 and y(π/2) = 2.
(c) y′′ + y = 0 with y(0) = 1 and y(2π) = 1.
(d) y′′ + y = 0 with y(0) = 1 and y(π) = 1.
(e) y′′ + π2y = 0 with y(0) + y(1) = 0 and y′(0) + y′(1) = 0.

Solution:

(a) The equation y′′− y = 0 has auxiliary polynomial t2− 1 = 0, with roots ±1, so the solutions are
y = Aex + Be−x with A and B constant. The boundary condition y(0) = 0 gives A + B = 0.
The boundary condition y(ln(2)) = 1 gives Aeln(2) +Be− ln(2) = 1, but eln(2) = 2 and e− ln(2) = 1

2

so 2A+ 1
2B = 1. The equations A+ B = 0 and 2A+ 1

2B = 1 can be solved to give A = 2
3 and

B = − 2
3 . Thus, the solution is y = 2

3 (ex − e−x).
(b) The equation y′′ + y = 0 has solutions y = A cos(x) + B sin(x) with A and B constant. When

x = 0 we have y = A, and when x = π/2 we have y = B. Thus, the boundary condition y(0) = 1
and y(π/2) = 2 give A = 1 and B = 2. It follows that the solution is y = cos(x) + 2 sin(x).

(c) We again have y = A cos(x) +B sin(x). When x = 0 we have y = A, and when x = 2π we again
have y = A. The boundary conditions y(0) = y(2π) = 1 therefore just give A = 1, and B is
arbitrary. Thus, the boundary value problem has solutions y = cos(x) + B sin(x), where B can
be any constant.

(d) We again have y = A cos(x) +B sin(x). As sin(0) = sin(π) = 0 and cos(0) = 1 and cos(π) = −1
we see that y(0) = A and y(π) = −A. Thus, it is impossible to satisfy the given boundary
conditions y(0) = y(π) = 1; there are no solutions.

(e) The equation y′′ + π2y = 0 has solutions y = A cos(πx) +B sin(πx). This means that

y′ = −πA sin(πx) + πB cos(πx)

y(0) + y(1) = A cos(0) +B sin(0) +A cos(π) +B sin(π)

= A+ 0−A+ 0 = 0

y′(0) + y′(1) = −πA sin(0) + πB cos(0)− πA sin(π) + πB cos(π)

= 0 + πB − 0− πB = 0.
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Thus, the boundary conditions are satisfied automatically, so every function of the formA cos(πx)+
B sin(πx) is a solution for the boundary value problem.

Exercise 55. For each of the following problems, find the values of λ for which a nonzero solution exists,
and then find y.

(a) y′′ + λy = 0 with y(0) = y′(π) = 0.
(b) y′′ − 2y′ + λy = 0 with y(0) = y(1) = 0.
(c) (xy′)′ + λx−1y = 0 with y(1) = y(eπ) = 0.

Hint for (c): first look for solutions of the form y = xp, remembering that xiu = eiu ln(x) = cos(u ln(x)) +
i sin(u ln(x)).

Solution:

(a) First consider the case where λ = 0, so y′′ = 0. The solutions have the form y = A+Bx, where
A and B are constant. The condition y(0) = 0 gives A = 0, so y = Bx, so y′ = B. The condition
y′(π) = 0 therefore gives B = 0 and so y = 0. Thus, there are no nontrivial solutions for y when
λ = 0.

Now consider the case where λ < 0, say λ = −µ2 with µ > 0. The solutions for y′′ + λy =
y′′ − µ2y = 0 have the form Aeµt + Be−µt with A and B constant. The condition y(0) = 0
gives A + B = 0, so y = A(eµt − e−µt). It follows that y′ = Aµ(eµt + e−µt), and so y′(π) =
Aµ(eµπ + e−µπ). Now µ and eµπ + e−µπ are both strictly positive, but y′(π) is required to be
zero, so A = 0, so y = 0. Thus, there are again no nontrivial solutions.

Finally, consider the case where λ > 0, say λ = µ2 with µ > 0. The solutions for y′′ + λy =
y′′+µ2y = 0 are y = A cos(µx)+B sin(µx). The condition y(0) = 0 gives A = 0, so y = B sin(µx)
and y′ = Bµ cos(µx). We are asked to find nonzero solutions, so we must have B 6= 0. We also
have y′(π) = 0, so cos(µπ) = 0, which means that µ = m+ 1

2 for some integer m.

In conclusion, If λ = (m+ 1
2 )2 for some integer m then we have solutions y = B sin((m+ 1

2 )x),
but for all other λ the only solution is y = 0.

(b) The equation y′′−2y′+λy = 0 has auxiliary polynomial t2−2t+λ, with roots (2±
√

4− 4λ)/2 =
1±
√

1− λ. If λ = 1 then the roots are both 1, so the solutions have the form (A+Bx)ex. The
boundary conditions y(0) = y(1) = 0 give A = (A + B)e = 0, so A = B = 0, so y = 0, so there
are no nontrivial solutions.

Consider instead the case where λ 6= 1, and write α = 1−
√

1− λ and β = 1 +
√

1− λ (which
will be complex if λ > 1). Then the solutions must have the form y = Aeαt + Beβt. The first
boundary condition gives A+B = 0, so

y = A(eαt − eβt) = Aet(e
√
1−λt − e−

√
1−λt).

The second boundary condition therefore gives

Ae(e
√
1−λ − e−

√
1−λ) = 0.

For a nontrivial solution we must have A 6= 0 and so e
√
1−λ = e−

√
1−λ, which means that

e2
√
1−λ = 1, so 2

√
1− λ = 2nπi for some integer n. After squaring both sides and rearranging

we get λ = 1 + n2π2. To get a real solution, A must be imaginary, say A = C/(2i) for some real
number C. This gives y = Cex sin(nπx).

(c) Now consider the operator Ly = (xy′)′ + λx−1y. If y = xp then xy′ = pxp so (xy′)′ = p2xp−1

and Ly = (p2 + λ)xp−1.
Suppose that λ < 0, so λ = −µ2 for some µ > 0. We then find that the functions L(xµ) =

L(x−µ) = 0. This gives two linearly independent solutions, so all functions with Ly = 0 have
y = Axµ +Bx−µ for some constants A and B. The boundary condition y(1) = 0 gives B = −A,
so y = A(xµ − x−µ). The boundary condition y(eπ) = 0 then gives A(eµπ − e−µπ) = 0 but
eµπ − e−µπ > 0 so A = 0 so y = 0.

Consider instead the case where λ > 0, so λ = µ2 for some µ > 0. In the same way, we find
that y = A(xiµ − x−iµ) for some constant A, and we must have

A(eµπ − e−µπ) = 0.

For a nontrivial solution we must have A 6= 0 so eµπi = e−µπi so e2µπi = 1, which means that µ
must be an integer. Note also that

xiµ − x−iµ = cos(µ ln(x)) + i sin(µ ln(x))− (cos(µ ln(x))− i sin(µ ln(x))) = 2i sin(µ ln(x)).
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We conclude that y = C sin(µ ln(x)), where C = A/(2i) is a real constant.
Finally, consider the case λ = 0. Here the equation is (xy′)′ = 0, so xy′ is constant, say

xy′ = A. This gives y′ = A/x so y =
∫
A/xdx = A ln(x) + B for some constant B. The

boundary condition y(1) = 0 gives B = 0, and the condition y(eπ) = 0 gives Aπ + B = 0, so
A = B = 0. Thus, we only have the trivial solution in this case.

Exercise 56. Consider the differential equation

(6x2 − 5x+ 1)y′′ + (24x− 10)y′ + 12y = 0.

Suppose we have a function y =
∑
k akx

k (with ak = 0 for k < 0). Show that the above equation is
satisfied if and only if

ak+2 − 5ak+1 + 6ak = 0

for all k ≥ 0. Show that this holds if ak = 2k or if ak = 3k. Using this, find the general solution for the
differential equation.

Solution:

(6x2 − 5x+ 1)y′′ =
∑
k

6k(k − 1)akx
k −

∑
k

5k(k − 1)akx
k−1 +

∑
k

k(k − 1)akx
k−2

=
∑
j

6j(j − 1)ajx
j −

∑
j

5(j + 1)jaj+1x
j +

∑
j

(j + 2)(j + 1)aj+2x
j

(24x− 10)y′ =
∑
k

24kakx
k −

∑
k

10kakx
k−1

=
∑
j

24jajx
j −

∑
j

10(j + 1)aj+1x
j

12y =
∑
j

12ajx
j .

It follows that the coefficient of xj in (6x2 − 5x+ 1)y′′ + (24x− 10)y′ + 12y is

6j(j − 1)aj − 5(j + 1)jaj+1 + (j + 2)(j + 1)aj+2 + 24jaj − 10(j + 1)aj+1 + 12aj

=(6j2 − 6j + 24j + 12)aj + (−5j2 − 5j − 10j − 10)aj+1 + (j2 + 3j + 2)aj+2

=(j2 + 3j + 2)(aj+2 − 5aj+1 + 6aj).

For j ≥ 0 we have j2 + 3j + 2 > 0 so the above coefficient can only vanish if aj+2 − 5aj+1 + 6aj = 0, as
claimed.

Now take ak = 2k. We then have

ak+2 − 5ak+1 + 6ak = 2k+2 − 5.2k+1 + 6.2k = 2k(4− 10 + 6) = 0.

It follows that the function y =
∑
k 2kxk is a solution to the original differential equation. This is just a

geometric progression, so the sum is y = 1/(1− 2x).
Similarly, if ak = 3k then

ak+2 − 5ak+1 + 6ak = 3k+2 − 5.3k+1 + 6.3k = 3k(9− 15 + 6) = 0,

so the function y =
∑
k 3kxk = 1/(1 − 3x) is another solution. This gives two linearly independent

solutions, so any other solution has the form

y =
A

1− 2x
+

B

1− 3x

for some constants A and B.

Exercise 57. Find a power series solutions for the equation y′′−x9y′− 9x8y = 0 with y = 1 and y′ = 0
at x = 0.
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Solution: We take y =
∑
k akx

k with ak = 0 for k < 0. We are given that y = 1 and y′ = 0 when x = 0,
which means that a0 = 1 and a1 = 0. We also have

y′′ =
∑
k

k(k − 1)akx
k−2 =

∑
j

(j + 2)(j + 1)aj+2x
j

−x9y′ = −x9
∑
k

kakx
k−1 =

∑
k

−kakxk+8 =
∑
j

−(j − 8)aj−8x
j

−9x8y =
∑
k

−9akx
k+8 =

∑
j

−9aj−8x
j ,

so we need (j+2)(j+1)aj+2−(j−8)aj−8−9aj−8 = 0. This simplifies to (j+2)(j+1)aj+2 = (j+1)aj−8.
If we put m = j + 2, this becomes m(m − 1)am = (m − 1)am−10. If m > 1 we can divide both
sides by m(m − 1) to get am = am−10/m. In particular, if am−10 = 0 then am = 0. For example,
a−8 = 0 (because ak = 0 whenever k < 0), so a2 = 0, so a12 = 0, so a22 = 0 and so on; in general
a10i+2 = 0 for all i. Similarly a−7 = 0, so a3 = 0, so a13 = 0 and so on. By this argument we see that
a10k+2, a10k+3, . . . , a10k+9 are all zero. Moreover, we are given that a1 = 0, so a10k+1 = 0 for all k. Thus,
only the coefficients a10k can be nonzero. Using the relation am = am−10/m (for m > 1) we get

a0 = 1

a10 =
1

10

a20 =
1

10.20
=

1

102 × 2

a30 =
1

10.20.30
=

1

103 × 2.3
=

1

103 × 3!

a40 =
1

10.20.30.40
=

1

104 × 4!

and in general a10k = 10−ka0/k!. This means that

y =
∑
k

a10kx
10k =

∑
k

x10k

10kk!
=
∑
k

1

k!

(
x10

10

)k
= exp

(
x10

10

)
.

Exercise 58. Find a power series solution about x = 0 for the equation y′′ − x2y′ + xy = 0.

Solution: Suppose that y =
∑∞
k=0 akx

k (and we take ak = 0 for k < 0). We then have

y′′ =
∑
k

k(k − 1)akx
k−2 =

∑
j

(j + 2)(j + 1)aj+2x
j

−x2y′ = −x2
∑
k

kakx
k−1 =

∑
k

−kakxk+1 =
∑
j

−(j − 1)aj−1x
j

xy =
∑
k

akx
k+1 =

∑
j

aj−1x
j ,

so we must have (j+2)(j+1)aj+2−(j−1)aj−1+aj−1 = 0. This simplifies to (j+2)(j+1)aj+2 = (j−2)aj−1.
If we put m = j + 2, this becomes m(m − 1)am = (m − 4)am−3. For m > 1 this can be rearranged
as am = m−4

m(m−1)am−3. As a−1 = 0, it follows that a2 = 0, then a5 = 0, then a8 = 0, and in general

a3k+2 = 0 for all k. The coefficient a1 can be nonzero, but then a4 = 4−4
4×3a1 = 0, and then a7 = 0, then

a10 = 0 and so on; so a3k+1 = 0 whenever k > 0. Next, we have

a3 = −1

6
a0

a6 =
2

6× 5
a3 =

1

15
× −1

6
a0 = − 1

90
a0

a9 =
5

9× 8
a6 = − 1

1296
a0

and so on. The solution is therefore

y = a1x+ a0(1− 1

6
x3 − 1

90
x6 − 1

1296
x9 − · · · ).

In fact, it works out that a3k = − 1
3kk!(3k−1)a0; this can easily be checked by induction.
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Exercise 59. Let m be a natural number, and consider the Hermite equation y′′ − 2xy′ + 2my = 0.

(a) If m is even, show that there is a solution y = hm(x) where hm is a polynomial (not an infinite
power series) satisfying h(0) = 1 and h′(0) = 0. For example, we have h0(x) = 1 and h2(x) =
1− 2x2.

(b) If m is odd, show that there is a solution y = hm(x) where hm is a polynomial (not an infinite
power series) satisfying h(0) = 0 and h′(0) = 1.

Solution: Put y = hm(x) =
∑
k akx

k (with ak = 0 for k < 0). We then have

y′′ =
∑
k

k(k − 1)akx
k−2 =

∑
j

(j + 2)(j + 1)aj+2x
j

−2xy′ = −2x
∑
k

kakx
k−1 =

∑
j

−2jajx
j

2my =
∑
j

2majx
j ,

so we need (j + 2)(j + 1)aj+2 + 2(m − j)aj = 0. If we put k = j + 2, this becomes k(k − 1)ak =
2(k − 2 −m)ak−2. For k > 1 we can rewrite this as ak = 2(k − 2 −m)/(k(k − 1))ak−2. In particular,
this gives am+2 = 0, and then am+4 = 0 and am+6 = 0 and so on.

Now suppose that m is even. We look for the solution where hm(0) = 1 and h′m(0) = 0, or equivalently
a0 = 1 and a1 = 0. As a1 = 0 we have a3 = 0, then a5 = 0 and so on, so ak = 0 whenever k is odd. We
also have am+2 = am+4 = · · · = 0, so ak = 0 whenever k is even and greater than m. This means that
only finitely many of the coefficients are nonzero, so hm(x) is a polynomial.

The case where m is odd is similar. Here we look for the solution where a0 = 0 and a1 = 1. As a0 = 0
we have a2 = 0, then a4 = 0 and so on, so ak = 0 for all even k. We also have am+2 = am+4 = · · · = 0,
so ak = 0 for all odd k > m. It follows again that only finitely many coefficients are nonzero, so hm(x)
is polynomial.

Exercise 60. Suppose that y and z are nonzero functions with y′′ + λ2y = 0 and z′′ + µ2z = 0, where
λ, µ > 0 and λ 6= µ. Suppose also that y(0) = y(π/2) = z(0) = z(π/2) = 0.

(a) Integrate
∫ π/2
0

y′z′ dx by parts in two different ways, and use this to show that
∫ π/2
0

yz dx = 0.

(b) Solve the equations explicitly to find λ, µ, y and z. Use this to prove again that
∫ π/2
0

yz dx = 0.

Solution:

(a) First, we have∫ π/2

0

y′z′ dx = [yz′]
π/2
0 −

∫ π/2

0

yz′′ dx = y(π/2)z′(π/2)− y(0)z(0) + µ2

∫ π/2

0

yz dx = µ2

∫ π/2

0

yz dx.

(We have used the fact that y(π/2) = y(0) = 0 and that z′′ = −µ2z.) Similarly, we have∫ π/2

0

y′z′ dx = [y′z]
π/2
0 −

∫ π/2

0

y′′z dx = y′(π/2)z(π/2)− y′(0)z(0) + λ2
∫ π/2

0

yz dx = λ2
∫ π/2

0

yz dx.

These two answers must be the same, so (µ2 − λ2)
∫ π/2
0

yz dx = 0. Moreover, as λ, µ > 0 with

λ 6= µ, we have µ2 − λ2 6= 0, so
∫ π/2
0

yz dx = 0.

(b) As y′′+λ2y = 0 we have y = A cos(λx) +B sin(λx) for some constants A and B. As y(0) = 0 we
have A = 0, so y = B sin(λx), and B 6= 0 because y is assumed to be nonzero. As y(π/2) = 0 we
also have B sin(λπ/2) = 0, so sin(λπ/2) = 0, so λ = 2n for some integer n > 0. In conclusion,
y = B sin(2nx) for some integer n > 0 and some constant B 6= 0. Similarly z = C sin(2mx) for
some integer m > 0 and some constant C 6= 0. This gives∫ π/2

0

yz dx = BC

∫ π/2

0

sin(2nx) sin(2mx) dx = 1
2BC

∫ π/2

0

cos(2(n−m)x)− cos(2(n+m)x) dx

= 1
2BC

[
sin(2(n−m)x)

2(n−m)
− sin(2(n+m)x)

2(n+m)

]π/2
0

.

Here the functions sin(2(n−m)x) and sin(2(n+m)x) are both zero when x = 0 or x = π/2, so

we conclude that
∫ π/2
0

yz dx = 0 as expected.
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Exercise 61. Consider the equation

3xy′′ + (1− 2x)y′ − 2y = 0.

(a) Show that the roots of the indicial polynomial are 0 and 2/3.
(b) Find two linearly independent solutions. In each case, you should give the first four nonzero

terms of the series.
(c) Find the solution where y = 7 and y′ is finite when x = 0.
(d) For which values of x will your series in (c) converge?

Solution:

(a) First, the equation is equivalent to y′′ + ( 1
3x
−1 − 2

3 )y′ − 2
3x
−1y = 0, so P = 1

3x
−1 − 2

3 and

Q = − 2
3x
−1. Recall that p0 is the coefficient of x−1 in P , which is 1

3 , and q0 is the coefficient of

x−2 in Q, which is 0. The indicial polynomial is

α(α− 1) + p0α+ q0 = α2 − α+ 1
3α = α(α− 2

3 ),

so the roots are α = 0 and α = 2/3, as required.
(b) We first consider the root α = 0 and so look for a solution of the form y =

∑∞
k=0 akx

k with
a0 = 1 (and take ak = 0 for k < 0 as usual). We have

3xy′′ =
∑
k

3k(k − 1)akx
k−1 =

∑
j

3(j + 1)jaj+1x
j

y′ =
∑
k

kakx
k−1 =

∑
j

(j + 1)aj+1x
j

−2xy′ = −
∑
k

2kakx
k = −

∑
j

2jaja
j

−2y = −
∑
j

2ajx
j .

Thus, the coefficient of xj in the relation 3xy′′ + (1− 2x)y′ − 2y = 0 gives

3(j + 1)jaj+1 + (j + 1)aj+1 = 2jaj + 2aj ,

or equivalently (3j+ 1)(j+ 1)aj+1 = 2(j+ 1)aj . If we put m = j+ 1 and assume that m > 0 we
get am = 2am−1/(3m− 2). By assumption we have a0 = 1, so we get

a1 = 2a0/1 = 2

a2 = 2a1/4 = 1

a3 = 2a2/7 = 2/7,

giving

y = 1 + 2x+ x2 + 2
7x

3 + · · · .

We now look for a second solution of the form z =
∑
k bkz

2/3+k with b0 = 1 and bk = 0 for
k < 0. We have

3xz′′ =
∑
k

3(k + 2
3 )(k − 1

3 )bkx
−1/3+k =

∑
j

3(j + 5
3 )(j + 2

3 )bj+1x
2/3+k

z′ =
∑
k

(k + 2
3 )bkx

−1/3+k =
∑
j

(j + 5
3 )bj+1x

2/3+j

−2xz′ = −
∑
k

2(k + 2
3 )bkx

2/3+k = −
∑
j

2(j + 2
3 )bjx

2/3+j

−2z = −
∑
j

2bjx
2/3+j .

Thus, the coefficient of z2/3+j in the relation 3xz′′ + (1− 2x)z′ − 2z = 0 gives

3(j + 5
3 )(j + 2

3 )bj+1 + (j + 5
3 )bj+1 = 2(j + 2

3 )bj + 2bj ,

or equivalently

(3j + 3)(j + 5
3 )bj+1 = 2(j + 5

3 )bj .
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Here j is an integer so j + 5
3 is never zero so we can divide by it to get 3(j + 1)bj+1 = 2bj , or

equivalently 3mbm = 2bm−1. If m > 0 then we can divide by 3m to get bm = 2
3bm−1/m. This

gives

b1 = 2
3b0/1 = 2

3

b2 = 2
3b1/2 =

(
2
3

)2 × 1

2
=

2

9

b3 = 2
3b2/3 =

(
2
3

)3 × 1

2× 3
=

4

81
,

giving

z = x2/3 +
2

3
x5/3 +

2

9
x8/3 +

4

81
x11/3 + · · · .

In fact, in this case it is easy to see that bk = (2/3)k/k! and so we have

z = x2/3
∑
k

bkx
k = x2/3

∑(
2x

3

)k
× 1

k!
= x2/3e2x/3.

(c) We now see that all solutions have the form u = Ay + Bz, where A and B are constant, and y
and z are as in part (b). This gives u′ = Ay′ +Bz′, where

y′ = 2 + 2x+ 6
7x

2 + · · ·

z′ = 2
3x
−2/3 + 10

9 x
2/3 +

16

27
x5/3 + · · · .

Now y′ stays finite as x→ 0 but z′ →∞. Thus, for u′ to stay finite we must have B = 0 and so
u = Ay. At x = 0 we have y = 1 but we are asked to find a solution with u = 7 so we must take
A = 7 and so

u = 7y = 7 + 14x+ 7x2 + 2x3 + · · · .
(d) For the coefficients am in y, we saw in (b) that am = 2am−1/(3m−2), so am−1/am = (3m−2)/2,

which tends to infinity. Thus, the series has infinite radius of convergence, so it converges for all
x. Similarly, in the series for z we have bm−1/bm = 3m/2, which again tends to infinity. Thus,
this series also converges for all x.

Exercise 62. Consider the equation

x2y′′ + xy′ + (x2 − 1
4 )y = 0.

(a) Show that the function y = x−1/2 sin(x) is one solution.
(b) Use reduction of order to find another solution.

(Hint:
∫

dx
sin(x)2 = − cot(x) + c.)

Solution:

(a) If y = x−1/2 sin(x) then

y′ = − 1
2x
−3/2 sin(x) + x−1/2 cos(x) = x−3/2(− 1

2 sin(x) + x cos(x))

y′′ = 3
4x
−5/2 sin(x) + 2× (− 1

2x
−3/2 cos(x))− x−1/2 sin(x)

= x−5/2(( 3
4 − x

2) sin(x)− x cos(x))

so

x2y′′ + xy′ + (x2 − 1
4 )y

=x−1/2(( 3
4 − x

2) sin(x)− x cos(x) + (− 1
2 sin(x) + x cos(x)) + (x2 − 1

4 ) sin(x))

=x−1/2(( 3
4 − x

2 − 1
2 + x2 − 1

4 ) sin(x) + (−x+ x) cos(x)) = 0.

(b) Our equation can be written as

y′′ + x−1y′ + (1− 1
4x
−2)y = 0,

so P = x−1 and Q = 1− 1
4x
−2. Our first solution is y = x−1/2 sin(x). In the reduction of order

method we therefore have v =
∫
P dx = ln(x), so

y−2e−v = x sin(x)−2x−1 = sin(x)−2.
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We thus have

u =

∫
y−2e−v dx =

∫
sin(x)−2 dx = − cot(x) = −cos(x)

sin(x)
,

and

z = uy = −cos(x)

sin(x)
x−1/2 sin(x) = −x−1/2 cos(x).

Exercise 63. Show that the function

y = cosh(
√

2x)− sinh(
√

2x)/
√

2x

satisfies 2x2y′′ + xy′ − (x+ 1)y = 0.

Solution: Put t =
√

2x, so x = 1
2 t

2, so dx/dt = t, so dt/dx = t−1. Write u̇ = du/dt and u′ = du/dx, so

u′ =
du

dx
=
dt

dx

du

dt
= t−1u̇.

Thus

u′′ = (u′)′ = (t−1u̇)′ = t−1(t−1u̇)̇

= t−1(−t−2u̇+ t−1ü) = t−2ü− t−3u̇.

This gives

2x2y′′ + xy′ − (x+ 1)y

=2× ( 1
2 t

2)2 × (t−2ÿ − t−3ẏ) + 1
2 t

2 × (t−1ẏ)− ( 1
2 t

2 + 1)y

= 1
2 t

2ÿ− 1
2 tẏ + 1

2 tẏ − ( 1
2 t

2 + 1)y

= 1
2 t

2ÿ − ( 1
2 t

2 + 1)y.

Now

y = cosh(t)− sinh(t)t−1

ẏ = sinh(t)− cosh(t)t−1 + sinh(t)t−2

= sinh(t)(1 + t−2)− cosh(t)t−1

ÿ = cosh(t)(1 + t−2) + sinh(t)(−2t−3)− sinh(t)t−1 + cosh(t)t−2

= cosh(t)(1 + 2t−2) + sinh(t)(−t−1 − 2t−3)

= (cosh(t)− sinh(t)t−1)(1 + 2t−2) = y(1 + 2t−2).

This gives
1
2 t

2ÿ − ( 1
2 t

2 + 1)y = 1
2 t

2(1 + 2t−2)y − ( 1
2 t

2 + 1)y = 0

as required.

Exercise 64. Show that the function y = (1− x)e−x satisfies y′′ + (x−1 + 1)y′ + 2x−1y = 0.

Solution:

y = (1− x)e−x

y′ = −e−x + (1− x)(−e−x) = (x− 2)e−x

y′′ = e−x + (x− 2)(−e−x) = (3− x)e−x

so

y′′ + (x−1 + 1)y′ + 2x−1y = e−x((3− x) + (x−1 + 1)(x− 2) + 2x−1(1− x))

= e−x(3− x+ 1− 2x−1 + x− 2 + 2x−1 − 2) = 0.

Exercise 65. Solve Ly = 0, where Lu = x2(1− x)u′′ + x(1− 3x)u′ − u.
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Solution: This is equivalent to y′′ + Py′ +Qy = 0, where

P =
x(1− 3x)

x2(1− x)
= x−1

1− 3x

1− x
= x−1(1− 3x)(1 + x+ x2 + · · · ) = x−1 +O(1)

Q =
−1

x2(1− x)
= −x−2(1 + x+ x2 + · · · ) = −x−2 +O(x−1).

We therefore have a regular singular point with p0 = 1 and q0 = −1. The indicial polynomial is

χ(t) = t(t− 1) + p0t+ q0 = t2 − t+ t− 1 = t2 − 1 = (t− 1)(t+ 1),

so the roots are α = 1 and β = −1. There is a solution y =
∑
k akx

α+k =
∑
k akx

k+1 with a0 = 1. This
has

x2y′′ =
∑

(1 + k)k akx
1+k

−x3y′′ =
∑
−(1 + k)k akx

2+k =
∑
−j(j − 1) aj−1x

1+j

xy′ =
∑

(1 + k)akx
1+k

−3x2y′ =
∑
−3(1 + k)akx

2+k =
∑
−3j aj−1x

1+j

−y =
∑
−akx1+k.

It follows that the coefficient of x1+j in Ly is

(1 + j)j aj − j(j − 1)aj−1 + (1 + j)aj − 3j aj−1 − aj
=(j + j2 + 1 + j − 1)aj − (j2 − j + 3j)aj−1 = (j2 + 2j)aj − (j2 + 2j)aj−1

=j(j + 2)(aj − aj−1).

For Ly = 0 we must have j(j + 2)(aj − aj−1) = 0, so for j > 0 we have aj = aj−1. As a0 = 1 we have
aj = 1 for all j ≥ 0, giving

y =
∑
j≥0

xj+1 =
x

1− x
.

To find a second solution, we use reduction of order. We have P = (3x− 1)/(x(x− 1)). The method of
partial fractions says that P = A/x+B/(x− 1) for some constants A and B. This gives

3x− 1

x(x− 1)
=
A

x
+

B

x− 1
=
A(x− 1) +Bx

x(x− 1)
=

(A+B)x−A
x(x− 1)

,

so we need A+B = 3 and A = 1, so B = 2. This means that P = 1/x+ 2/(x− 1). Next, we have

v =

∫
P dx =

∫
1

x
+

2

x− 1
dx = ln(x) + 2 ln(x− 1) = ln(x (x− 1)2),

so e−v = x−1(x− 1)−2. Recall also that y = x/(1− x), so

u =

∫
y−2e−v dx =

∫
(1− x)2

x2
x−1(x− 1)−2 dx =

∫
x−3 dx = − 1

2x
−2.

Finally, our second solution is

z = uy = − 1
2x
−2 x

1− x
=

1

2x(x− 1)
.

Exercise 66. Solve Ly = 0, where Lu = x2(x2 − 2)u′′ − (x2 + 2)xu′ + (x2 + 2)u = 0.

Solution: This is equivalent to y′′ + Py′ +Qy = 0, where

P = − (x2 + 2)x

x2(x2 − 2)
= x−1

1 + x2/2

1− x2/2
= x−1 +O(1)

Q =
x2 + 2

x2(x2 − 2)
= −x−2 1 + x2/2

1− x2/2
= −x−2 +O(x−1).

We therefore have a regular singular point at x = 0, with p0 = 1 and q0 = −1. The indicial polynomial
is

χ(t) = t(t− 1) + p0t+ q0 = t2 − t+ t− 1 = t2 − 1 = (t− 1)(t+ 1),
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so the roots are α = 1 and β = −1. There is a solution y =
∑
k akx

α+k =
∑
k akx

k+1 with a0 = 1. This
has

x4y′′ =
∑
k

(1 + k)k akx
3+k =

∑
j

(j − 1)(j − 2)aj−2x
1+j

−2x2y′′ =
∑
k

−2(1 + k)k akx
1+k

−x3y′ =
∑
k

−(1 + k)akx
3+k =

∑
j

−(j − 1)aj−2x
1+j

−2xy′ =
∑
k

−2(1 + k)akx
1+k

x2y =
∑
k

akx
3+k =

∑
j

aj−2x
1+j

2y =
∑
k

2akx
1+k.

Thus, the coefficient of x1+j in our differential equation is

(j − 1)(j − 2)aj−2 − 2(1 + j)jaj − (j − 1)aj−2 − 2(1 + j)aj + aj−2 + 2aj

=(j2 − 3j + 2− j + 1 + 1)aj−2 + (−2j − 2j2 − 2− 2j + 2)aj

=(j2 − 4j + 4)aj−2 − (2j2 + 4j)aj

=(j − 2)2aj−2 − 2j(j + 2)aj .

For j > 0 we therefore have

aj =
(j − 2)2

2j(j + 2)
aj−2.

As a−1 = 0 we see that a1 = 0 then a3 = 0 and so on, so aj = 0 whenever j is odd. We can also put
j = 2 in the above formula to get a2 = 0, and then a4 = 0 and a6 = 0 and so on. It follows that all the
coefficients aj are zero except for a0 = 1, so we just have y = x.

We could find a second solution by reduction of order, but we will use a different method instead.
The main theorem says that there is a second solution of the form

z = c y ln(x) +
∑
k

bkx
−1−k

with b0 = 1 and bk = 0 for k < 0. Here y = x. Put u = x ln(x) and v =
∑
bkx

k−1 so that z = cu + v.
Now u′ = ln(x) + 1 and u′′ = x−1 so

Lu = x2(x2 − 2)u′′ − (x2 + 2)xu′ + (x2 + 2)u

= (x4 − 2x2)x−1 − (x3 + 2x)(ln(x) + 1) + (x2 + 2)(x ln(x))

= x3 − 2x− x3 − 2x+ (−x3 − 2x+ x3 + 2x) ln(x)

= −4x,

so Ly = cLu+ Lv = (Lv)− 4cx. We therefore want to have Lv = 4cx. On the other hand, we have

x4v′′ =
∑
k

(k − 1)(k − 2) bkx
1+k =

∑
j

(j − 2)(j − 3)bj−1x
j

−2x2v′′ =
∑
k

−2(k − 1)(k − 2) bkx
k−1 =

∑
j

−2j(j − 1)bj+1x
j

−x3v′ =
∑
k

−(k − 1)bkx
k+1 =

∑
j

−(j − 2)bj−1x
j

−2xv′ =
∑
k

−2(k − 1)bkx
k−1 =

∑
j

−2jbj+1x
j

x2v =
∑
k

bkx
k+1 =

∑
j

bj−1x
j

2v =
∑
k

2bkx
k−1 =

∑
j

2bj+1x
j .
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It follows that the coefficient of xj in Lv is

((j − 2)(j − 3)− (j − 2) + 1)bj−1 + (−2j(j − 1)− 2j + 2)bj+1

=(j2 − 6j + 9)bj−1 + (2− 2j2)bj

=(j − 3)2bj−1 + 2(1− j2)bj+1.

We want Lv = 4cx, so the above coefficient should be zero for j 6= 1. Taking j = 0 gives b1 = 0, then
taking j = 2 gives b3 = 0 and so on, so bj = 0 whenever j is odd. For j = 0 we instead get 4b0 = 4c, but
b0 = 1 so c = 1. For j = 3 we get b4 = 0, and then it follows that b6 = 0, then b8 = 0 and so on. We
thus have v = x−1 + b2x. We can choose b2 arbitrarily. It is simplest to take b2 = 0, giving v = x−1 and
z = x ln(x) + x−1.

Exercise 67. Consider the equation y′′ + y = 0. One solution is y = cos(x). Use reduction of order to
find another solution. (Of course you know already what is the second solution, but it is nice to see how
reduction of order works in this simple case.)

Solution: Our equation is y′′ + Py′ +Qy = 0, where P = 0 and Q = 1. We put v =
∫
P dx = 0, so

y−2e−v = cos(x)−2 = sec(x)2 =
d

dx
tan(x),

so

u =

∫
y−2e−v dx =

∫
sec(x)2 dx = tan(x),

so

z = uy = tan(x) cos(x) =
sin(x)

cos(x)
cos(x) = sin(x).

Thus, the second solution is sin(x), as expected.

Exercise 68. Put
Lu = x2u′′ − (x2 + 20x)u′ + (110 + 10x)u.

The equation Ly = 0 has a solution of the form y = xα. Find α, then use reduction of order to find
another solution.

Solution: If y = xα then

x2y′′ = α(α− 1)xα

−x2y′ = −αxα+1

−20xy′ = −20αxα

110y = 110xα

10xy = 10xα+1,

so

Ly = (α2 − α− 20α+ 110)xα + (−α+ 10)xα+1

= (α2 − 21α+ 110)xα − (α− 10)xα+1

= (α− 10)(α− 11)xα − (α− 10)xα+1.

We can make this zero by taking α = 10, so y = x10. Next, our equation can be written as y′′+Py′+Qy =
0, where P = −1− 20x−1 and Q = 110x−2 + 10x−1. We put

v =

∫
P dx = −x− 20 ln(x)

y−2e−v = x−20exp(x+ 20 ln(x)) = x−20exx20 = ex

u =

∫
y−2e−v dx =

∫
ex dx = ex

z = uy = x10ex.

Exercise 69. Find the normal form of the equation x2y′′ + (1 + 2α)xy′ + α2y = 0. You should see
that the normal form is the same as an example that was discussed in the lectures. Use this to find the
general solution for the original equations.
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Solution: We first divide by x2 to get y′′ + (1 + 2α)x−1y′ + α2x−2y = 0. This is y′′ + Py′ + Qy = 0,
where P = (1 + 2α)x−1 and Q = α2x−2. To normalise it, we put

m = exp(− 1
2

∫
P ) = exp(− 1

2 (1 + 2α) ln(x)) = x−α−
1
2

R = Q− 1
2P
′ − 1

4P
2 = α2x−2 − 1

2 (1 + 2α)(−x−2)− 1
4 (1 + 2α)2x−2)

= α2x−2 + 1
2x
−2 + αx−2 − 1

4x
−2 − αx−2 − α2x−2

= 1
4x
−2.

We conclude that the solutions are of the form y = x−α−
1
2 z, where z satisfies z′′ + 1

4x
−2z = 0. This

is the first example that we discussed of an equation with a regular singular point at the origin. The
solution was given there but we will do it again for completeness. We first look for solutions of the form
z = xµ. This gives

z′′ + 1
4x
−2z = µ(µ− 1)xµ−2 + 1

4x
µ−2 = (µ2 − µ+ 1

4 )xµ−2 = (µ− 1
2 )2xµ−2.

We can thus take µ = 1
2 , and we see that z = x1/2 is one solution for the normalised equation. We can

find another solution by the reduction of order method, which means we look for a solution of the form
z = ux1/2. We then have

z′′ + 1
4x2 z = u′′x1/2 + 2u′ × ( 1

2x
−1/2) + u× (− 1

4x
−3/2) + 1

4x
−3/2u

= (u′′ + x−1u′)x1/2.

We therefore need u′′ + x−1u′ = 0. One solution is u′ = x−1 and u = ln(x). Thus, we have a second
solution z = ln(x)x1/2 for the equation z′′+ 1

4x2 z = 0, giving the general solution z = (A ln(x) +B)x1/2.
We saw above that the function

y = mz = x−α−
1
2 (A ln(x) +B)x1/2 = (A ln(x) +B)x−α

is the general solution for the original equation x2y′′ + (1 + 2α)xy′ + α2y = 0.

Exercise 70. Recall the Bessel equation x2y′′+xy′+ (x2−n2)y = 0. The normal form of this equation
was given in lectures. Use it to solve the Bessel equation when n = 1/2.

Solution: We saw in lectures that the normal form is z′′ +
(

1 + 1−4n2

4x2

)
z = 0, and that y = x−1/2z.

When n = 1/2 the differential equation is just z′′ + z = 0, so z = A cos(x) +B sin(x) for some constants
A and B. It follows that y = (A cos(x) +B sin(x))x−1/2.

Exercise 71. Find the normal form of the equation x2y′′ − 2nxy′ + (n2 + n+ x2)y = 0. Hence find the
general solution.

Solution: The equation is equivalent to y′′ − 2nx−1y′ + ((n2 + n)x−2 + 1)y = 0, so P = −2nx−1 and
Q = 1 + (n2 + n)x−2. This gives − 1

2

∫
P dx = n ln(x), so m = exp(− 1

2

∫
P dx) = xn. Next, we have

P ′ = 2nx−2

R = Q− 1
2P
′ − 1

4P
2 = 1 + (n2 + n)x−2 − nx−2 − n2x−2 = 1.

This means that the normal form is z′′ + z = 0, with solutions z = A cos(x) + B sin(x). It follows that
y = mz = xn(A cos(x) +B sin(x)).

Exercise 72. Consider the operator Lu = u′′/(1 + 2x)2 − 2u′/(1 + 2x)3, and the eigenvalue problem
Lu = λu with the Dirichlet boundary condition that u = 0 when x = 0 or x = 1.

(a) Convert L to Sturm-Liouville form.
(b) Suppose that Lu = λu and Lv = µv with λ 6= µ (and that u and v satisfy the boundary

conditions). Write down the orthogonality relation for u and v.
(c) Put t = x + x2 and u̇ = du/dt. What is the relationship between u′ and u̇? What are the

boundary conditions in terms of t?
(d) Rewrite L in terms of t and thus find the values of λ such that Lu = λu has a nontrivial solution.

Solution:
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(a) We have A = (1 + 2x)−2 and B = −2(1 + 2x)−3 and C = 0 so B/A = −2/(1 + 2x). It follows
that

∫
B/Adx = − ln(1+2x), so p = exp

(∫
B/Adx

)
= (1+2x)−1. We then have q = pC/A = 0

and r = p/A = 1 + 2x. This gives

Lu = (u′/(1 + 2x))′/(1 + 2x).

(b) The standard orthogonality relation is
∫ b
a
ruv = 0. Our boundary conditions are at a = 0 and

b = 1, and we have r = 1 + 2x, so the orthogonality relation is∫ 1

x=0

(1 + 2x)u(x)v(x) dx = 0.

(c) We have dt/dx = 1 + 2x and so

u̇ =
du

dt
=
du

dx
/
dx

dt
u′/(1 + 2x).

The boundary conditions are at x = 0 and x = 1, which corresponds to t = 0 + 02 = 0 and
t = 1 + 12 = 2.

(d) Note that (c) can be used twice to get

ü = (u̇)′/(1 + 2x) = (u′/(1 + 2x))′/(1 + 2x) = Lu.

Thus, our problem is to find λ and u with u 6= 0, but with ü = λu, and u = 0 when t = 0 or
t = 2. For this we can take

u = sin( 1
2nπt) = sin( 1

2nπ(x+ x2))

and λ = −n2π2/4. The method used in Exercise 55 shows that there are no other possibilities.

Exercise 73. Consider the operator

Lu = cos(x)4u′′ − 2 sin(x) cos(x)(1 + cos(x)2)u′ + 8u.

(a) Rewrite L in Sturm-Liouville form.
(b) Put t = tan(x) and u̇ = du/dt. What is the relationship between u′ and u̇?
(d) Rewrite L in terms of t, and show that it becomes one of the standard equations discussed in

the notes. Find a solution that is a polynomial function of t.

Solution:

(a) We have A = cos(x)4 and B = −2 sin(x) cos(x)(1 + cos(x)2) and C = 8. This gives

B/A = −2
sin(x)

cos(x)3
− 2

sin(x)

cos(x)∫
B

A
dx = − cos(x)−2 + 2 ln(cos(x))

p = exp

(∫
B/Adx

)
= exp(− cos(x)−2) cos(x)2

q = pC/A = 8 exp(− cos(x)−2) cos(x)−2

r = p/A = exp(− cos(x)−2) cos(x)−2,

so

Lu =
(
(exp(− cos(x)−2) cos(x)2u′)′ + 8 exp(− cos(x)−2) cos(x)−2u

)
exp(cos(x)−2) cos(x)2.

(b) We have We have dt/dx = tan′(x) = cos(x)−2, so

u̇ =
du

dt
=
du

dx
/
dt

dx
= cos(x)2u′.

(c) We now have

ü = cos(x)2(u̇)′ = cos(x)2(cos(x)2u′)′

= cos(x)4u′′ − 2 cos(x)3 sin(x)u′

Lu− ü = −2 sin(x) cos(x)u′ + 8u = −2 tan(x) cos(x)2u′ + 8u

= −2 tan(x)u̇+ 8u = −2tu̇+ 8u

Lu = ü− 2tu̇+ 8u.
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This means that the equation Lu = 0 is equivalent to the Hermite equation (for u as a function
of t) with n = 4. We saw in Exercise 59 that there is a solution which is a polynomial of degree
4, involving only even powers of t. This means that u = a0 + a2t

2 + a4t
4 say. This gives

ü = 2a2 + 12a4t
2

−2tu̇ = −4a2t
2 − 8a4t

4

8u = 8a0 + 8a2t
2 + 8a4t

4

ü− 2tu̇+ 8u = (8a0 + 2a2) + (4a2 + 12a4)t2

Thus, to have Lu = 0 we need a2 = −4a0 and a4 = −a2/3. We can choose a0 = 3 and then we
get a2 = −12 and a4 = 4, giving

u = 3− 12t2 + 4t4 = 3− 12 tan(x)2 + 4 tan(x)4.

Exercise 74. Consider the operator Lu = x−2u′′ − x−3u′, and the eigenvalue problem Lu = λu with
the Dirichlet boundary condition that u = 0 when x = 0 or x = 1.

(a) Convert L to Sturm-Liouville form.
(b) Suppose that Lu = λu and Lv = µv with λ 6= µ (and that u and v satisfy the boundary

conditions). Write down the orthogonality relation for u and v.
(c) Use power series to find a function y = f(x) with Ly = −4π2y, where y = πx2 +O(x4). Find a

simple formula for x in terms of standard functions, and thus check that y satisfies the boundary
conditions.

(d) For the function f(x) in (c), show that the function zn = f(
√
nx) also satisfies the boundary

conditions and is an eigenfunction of L, for any integer n > 0.
(e) Check the orthogonality relation for zn and zm (where n 6= m) by direct calculation.

Solution:

(a) We have A = x−2 and B = −x−3 and C = 0 so B/A = −1/x. It follows that
∫
B/Adx = − ln(x),

so p = exp
(∫
B/Adx

)
= x−1. We then have q = pC/A = 0 and r = p/A = x−1/x−2 = x. This

gives

Lu = (u′/x)′/x.

(b) The standard orthogonality relation is
∫ b
a
ruv = 0. Our boundary conditions are at a = 0 and

b = 1, and we have r = x, so the orthogonality relation is∫ 1

x=0

xu(x)v(x) dx = 0.

(c) We want y =
∑
k akx

k with a0 = a1 = a3 = 0 and a2 = π and Ly = −4π2y. This gives

y′/x =
∑
k

kakx
k−2

(y′/x)′/x =
∑
k

(k − 2)kakx
k−4 =

∑
j

(j + 2)(j + 4)aj+4x
j

−4π2y =
∑
j

−4π2ajx
j .

Thus, we need aj+4 = −4π2aj/((j + 2)(j + 4)). In particular, if aj = 0 then aj+4 = 0. As a0 =
a1 = a3 = 0 we see that aj = 0 unless j has the form j = 4i+2 for some i ≥ 0. If we put bi = a4i+2

then we have b0 = π and y =
∑
i bix

4i+2, and the relation aj+4 = −4π2aj/((j+2)(j+4)) becomes

bi+1 =
−4π2bi

(4i+ 4)(4i+ 6)
=

−π2bi
(2i+ 2)(2i+ 3)

.

Using this we can show by induction that bi = (−1)iπ2i+1/(2i+ 1)!. This gives

f(x) = y =
∑
i

bix
4i+2 =

∑
i

(−1)i
(πx2)2i+1

(2i+ 1)!
= sin(πx2).

In particular, we have f(0) = sin(0) = 0 and f(1) = sin(π) = 0, so the boundary conditions are
satisfied.
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(d) Now put zn = f(
√
nx) = sin(nπx2). This is again zero when x = 0 or x = 1. We also have

z′n/x = 2nπx cos(nπx2)/x = 2nπ cos(nπx2)

(z′n/x)′/x = 2nπ × (−2nπx sin(nπx2))/x

= −4n2π2 sin(nπx2) = −4n2π2zn.

Thus, zn is an eigenfunction, with eigenvalue −4n2π2.
(e) The orthogonality relation for zn and zm says that the integral

I =

∫ 1

x=0

x sin(nπx2) sin(mπx2) dx

is zero. To check this directly, just substitute t = x2, so x dx = 1
2dt, and the endpoints x = 0, 1

are just the same as t = 0, 1. This gives

I =
1

2

∫ 1

t=0

sin(nπt) sin(mπt) dt =
1

4

∫ 1

t=0

cos((n−m)πt)− cos((n+m)πt) dt

=

[
sin((n−m)πt)

4(n−m)
− sin((n−m)πt)

4(n+m)

]1
0

= 0.

Exercise 75. Consider the equations

y′′ + x2y = 0(A)

x2z′′ + xz′ + (x4 − 1
4 )z = 0(B)

t2
d2z

dt2
+ t

dz

dt
+ (t2 − 1

16 )z = 0(C)

Note that (C) is just a Bessel equation.

(a) Show that if we put y = x1/2z then A is equivalent to B.
(b) Show that if we put t = x2/2 then B is equivalent to C.
(c) Hence give the general solution to A in terms of Bessel functions.

Solution:

(a) If y = x1/2z then

y′ = 1
2x
−1/2z + x1/2z′

y′′ = − 1
4x
−3/2z + x−1/2z′ + x1/2z′′

y′′ + x2y = − 1
4x
−3/2z + x−1/2z′ + x1/2z′′ + x5/2z

= x−3/2
(
x2z′′ + xz′ + (x4 − 1

4 )z
)
.

This makes it clear that A is equivalent to B.
(b) Now put t = x2/2, so x =

√
2t and dt

dx = x. This gives

dz

dt
=

(
dt

dx

)−1
dz

dx
= x−1z′

d2z

dt2
=

(
dt

dx

)−1
d

dx

(
dz

dt

)
= x−1(x−1z′)′

= x−1(−x−2z′ + x−1z′′) = x−2z′′ − x−3z′

so

t2
d2z

dt2
+ t

dz

dt
+ (t2 − 1

16 )z

=
x4

4
(x−2z′′ − x−3z′) +

x2

2
x−1z′ +

x4

4
z − 1

16
z

=
1

4

(
x2z′′ − xz′ + 2xz′ + x4z − 1

4z
)

=
1

4

(
x2z′′ + xz′ + (x4 − 1

4 )z
)
.

This makes it clear that C is equivalent to B.
44



(c) Equation C is the Bessel equation with n = 1/4, so the solutions are z = AJ1/4(t)+BY1/4(t), with

A and B constant. Here t = x2/2, so this can be rewritten as z = AJ1/4(x2/2) + BJ1/4(x2/2).
It follows in turn that

y = x1/2z = Ax1/2J1/4(x2/2) +Bx1/2J1/4(x2/2).

Exercise 76. Consider the equations

y′′ + x4y = 0(A)

x2z′′ + xz′ + (x6 − 1
4 )z = 0(B)

t2
d2z

dt2
+ t

dz

dt
+ (t2 − 1

36 )z = 0(C)

Note that (C) is just a Bessel equation.

(a) Show that if we put y = x1/2z then A is equivalent to B.
(b) Show that if we put t = x3/3 then B is equivalent to C.
(c) Hence give the general solution to A in terms of Bessel functions.

Solution: This is essentially the same as the previous exercise except that the numbers are different.

(a) If y = x1/2z then

y′ = 1
2x
−1/2z + x1/2z′

y′′ = − 1
4x
−3/2z + x−1/2z′ + x1/2z′′

y′′ + x4y = − 1
4x
−3/2z + x−1/2z′ + x1/2z′′ + x9/2z

= x−3/2
(
x2z′′ + xz′ + (x6 − 1

4 )z
)
.

This makes it clear that A is equivalent to B.
(b) Now put t = x3/3, so dt

dx = x2. This gives

dz

dt
=

(
dt

dx

)−1
dz

dx
= x−2z′

d2z

dt2
=

(
dt

dx

)−1
d

dx

(
dz

dt

)
= x−2(x−2z′)′

= x−2(−2x−3z′ + x−2z′′) = x−4z′′ − 2x−5z′

so

t2
d2z

dt2
+ t

dz

dt
+ (t2 − 1

36 )z

=
x6

9
(x−4z′′ − 2x−5z′) +

x3

3
x−2z′ +

x6

9
z − 1

36
z

=
1

9

(
x2z′′ − 2xz′ + 3xz′ + x6z − 1

4z
)

=
1

9

(
x2z′′ + xz′ + (x6 − 1

4 )z
)
.

This makes it clear that C is equivalent to B.
(c) Equation C is the Bessel equation with n = 1/6, so the solutions are z = AJ1/6(t)+BY1/6(t), with

A and B constant. Here t = x3/3, so this can be rewritten as z = AJ1/6(x3/3) + BJ1/6(x3/3).
It follows in turn that

y = x1/2z = Ax1/2J1/6(x3/3) +Bx1/2J1/6(x3/3).

Exercise 77. Consider the Cauchy-Euler equation

r2
d2R

dr2
+ r

dR

dr
− 4R = 0.

Rewrite this in terms of the variable x = ln(r). Hence find the solution that satisfies R = 0 when r = 2
and R = 1 when r = 4.
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Solution: Note that r = ex, so r′ = dr/dx = ex = r and dx/dr = r−1.

dR

dr
=
dx

dr

dR

dx
= r−1R′

d2R

dr2
=

d

dr
(r−1R′) =

dx

dr
(r−1R′)′ = r−1(−r−2r′R′ + r−1R′′)

= r−1(−r−1R′ + r−1R′′) = r−2(R′′ −R′).
This gives

r2
d2R

dr2
+ r

dR

dr
− 4R = (R′′ −R′) +R′ − 4R = R′′ − 4R,

so the original equation is equivalent to R′′ = 4R, which has solutions R = Ae2x +Be−2x. Here ex = r,
so the solution is R = Ar2 +Br−2. When r = 2 we have R = 4A+ 1

4B, but we want R = 0, so we must

have B = −16A and R = A(r2 − 16r−2). Now when r = 4 we have R = A(16 − 16/16) = 15A, but we
want R = 1, so we must have A = 1/15. Thus, the solution is R = (r2 − 16/r2)/15.

Exercise 78. Suppose that y satisfies y′′ + xy = 0 (which is similar to the Airy equation y′′ − xy = 0,
except that the sign is different). Put t = 2

3x
3/2 and u̇ = du/dt. Show that the function z = x−1/2y

satisfies
t2z̈ + tż + (t2 − 1

9 )z = 0

(which is Bessel’s equation with n = 1/3).

Solution: First note that for any function u we have

u′ =
du

dx
=
dt

dx

du

dt
= x1/2u̇.

Note also that x3/2 = 3
2 t, so x−3/2 = 2

3 t
−1. We thus have

y = x1/2z

y′ = x1/2z′ + 1
2x
−1/2z

= x1/2(x1/2ż) + 1
2x
−1/2z = x(ż + 1

2x
−3/2z)

= x(ż + 1
3 t
−1z)

y′′ = (ż + 1
3 t
−1z) + x(ż + 1

3 t
−1z)′

= ż + 1
3 t
−1z + x3/2(ż + 1

3 t
−1z)̇

= ż + 1
3 t
−1z + 3

2 t(z̈ + 1
3 t
−1ż − 1

3 t
−2z)

= 3
2 tz̈ + 3

2 ż −
1
6 t
−1z = 3

2 t
−1(t2z̈ + tż − 1

9z)

y′′ + xy = 3
2 t
−1(t2z̈ + tż − 1

9z) + x3/2z = 3
2 t
−1(t2z̈ + tż − 1

9z) + 3
2 tz

= 3
2 t
−1(t2z̈ + tż + (t2 − 1

9 )z).

The claim is clear from this.
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