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Gallery of functions
This plot show the functions x, x2, x3, x4 and x5.  Note that the higher powers get more and more 
strongly 
curved.  When x! 0, the odd powers of  x (ie x, x3 and x5) are negative, but the even powers (x2 and 

x4)
are positive.  When x>0, all the powers are positive.

plot([seq(x^k,k=1..5)],x=-1..1,scaling=constrained);
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The next picture shows the function
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This has seven roots spread out evenly between x =K1 and x = 1, so it stays quite close to zero in that
interval.  Outside that interval, however, it gets very large very quickly.
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plot(product(x-k/3,k=-3..3),x=-2..2,y=-1..1);
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The next picture shows the function f x =
x8
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This is specially cooked up so that f 0 = 1 and f(-4) = f(-3) = f(-2) = f(-1) = f(1) = f(2) = f(3) = f(4) = 
0.  It is 
in fact the unique polynomial of degree 8 with these properties.

It is a common mistake to think that a function cooked up in this way should stay reasonably close to 
zero
between x =K4 and x =K1, and between x = 1 and x = 4.  You can see from the graph that it actually 
swings
around quite wildly.

f := unapply(expand(product(x^2-k^2,k=1..4)/576),x);
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plot(f(x),x=-4.1..4.1,xtickmarks=9);
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The next graph shows a function of the form y =
a xCb
c xCd

; such functions are called Mobius 

transformations.  

It is an important fact that any such function can be inverted: we have x =
d yKb
Kc yCa

.  Invertibility 

means that
the graph crosses every horizontal line in exactly one place.

plot((2*x+3)/(3*x-4),x=-5..5,y=-5..5,discont=true);
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The next two pictures show the functions y =
x

1Kx2
 and x =

y

1Cy2
 , which are inverse to each

other.  The variable x runs from -1 to +1 (not including the endpoints), and the variable y runs over the
whole real line (although we have only shown the interval from -3 to +3).

plot(x/sqrt(1-x^2),x=-1..1,y=-3..3,scaling=constrained);
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plot(y/sqrt(1+y^2),y=-3..3,x=-1..1,scaling=constrained);
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The next picture shows the functions y = ex (in red) and y = log x  (in green).  Note that log x  is not 
defined when
x! 0, so there is no green curve in the left hand half of the picture.  Note also that the two functions 
are inverse to 
each other, in the sense that log ex = x (for all x) and elog x = x (for all x>0).  This means that the 
green curve
is obtained from the red one by reflecting in the line x = y.

plot([exp(x),log(x)],x=-4..4,y=-4..4);
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The next picture shows an exponential decay function y = eKt.    Functions like this occur often in 
probability.
For example, if you are watching a series of random events (such as thunderstorms, people joining a 
queue, or whatever) then the probability that you have to wait for a time t before the next event is
often given by eKt.  (More precisely, it is given by eKa t for some constant a, but the value of
the constant affects only the size of the graph and not its overall shape.  Many of our examples will
implicitly depend on arbitrary constants like this, and we will generally ignore them.)
 

f := t -> exp(-t):

plot(f(t),t=(-0.5)..5);
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The next example is a decaying oscillation, of the form f t = a eKb t sin c t .  If you pluck a guitar 
string at time 0, 
then the displacement at time t varies according to a function like this. 

f := t -> 2 * exp(-t) * sin(30*t):
plot( f(t), t=0..5);
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The curve below, with equation y = exCeKx, is called a catenary.  It is the shape adopted by a 
length of chain that is attached at the ends, but otherwise hangs freely.  (This is proved by the Calculus
of Variations, which is covered in AMA314 (Optimal Control Theory)).

plot(exp(x) + exp(-x),x=-1..1);
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Functions like xn eKx occur very frequently in statistical physics.  Below we have plotted the graph for  
n = 6, 
but you should really think of n  as being much larger, like the number of molecules of gas in some 
physical system,
which could easily by 1025  or so.

When x is small, the function grows very quickly, like xn does.  However, when we get past x = 10 or 
so, 
the factor eKx gets extremely small, so quickly that the effect of the large xn term is wiped out, and the 
graph soon becomes indistinguishable from zero.

plot(x^6*exp(-x),x=0..50);
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The picture below shows the function y = eKx2, which is of fundamental importance in statistics.

plot(exp(-x^2),x=-3..3,scaling = constrained);
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The next example shows a function of the form eKx2 sin b x .  It oscillates rapidly with amplitude
decaying rapidly to zero as x moves outside an interval of length about 4 centred at the origin.  In 
quantum
mechanics one often sees functions like this, with the position of the bump moving along the x axis 
over
time; they are called wave packets.   

plot(exp(-x^2) * sin(40*x),x=-3..3);
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We now plot the function y = e
K

1
T , which occurs frequently in thermodynamics.   You should think

of  T  as temperature, measured in a suitable scale where T = 0 corresponds to absolute zero 
(approximately
-273 degrees centigrade).  The key point about the graph below is that it is extremely flat at the point 
T = 0,
and it remains extremely flat no matter how much you zoom in and magnify the vertical scale.  This is 
a 
mathematical reflection of the strange and extreme behaviour of absolute zero.

plot(exp(-1/T),T=0..2);
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The picture below shows the function y = cos x2 .  When x is reasonable large, the angle x2 varies very

rapidly, so cos x2  oscillates wildly between +1 and -1.  This mean that in any short interval, the 
positive
values will cancel out the negative values and the average value will be close to zero.  
Near the origin, however, the angle x2 changes quite slowly, so cos x2  will generally not change sign 
in 
a short interval, and the average value over a short interval will be nonzero.

 This is known as the principle of stationary phase; it is very important in quantum mechanics.

plot(cos(x^2),x=-10..10);



> > 

x
K10 K5 0 5 10

K1

K0.5

0.5

1

The next picture shows a function of the form a sin u t Cb sin v t , where the two frequencies u  and 
v 
are very close together.  The result is a very rapid oscillation (of frequency equal to the average of u  
and v)

whose overall size varies much more slowly (at frequency 
uKv

2
).  

This is relevant to the process of tuning up an orchestra.  Two players will play what is nominally the 
same 
note on their violins, generating signals of frequency u  and v, where u  and v are supposed to be the 
same.

If they are not in fact the same, then they will hear a "beat" of frequency 
uKv

2
, and they will adjust 

one or
the other instrument until the beat goes away.

plot(2*sin(10*t) + 3*sin(10.5*t),t=-30..30,numpoints=1000);
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The next graph shows function of the form a tCb sin u t , representing an oscillating signal 
superimposed on a steady drift.  The graph of atmospheric carbon dioxide concentration over the 
last century or so looks very much like this: a yearly oscillation caused by seasonal effects, plus
a steady increase presumably caused by the burning of fossil fuels.
  

plot(.9 * t+.5 * sin(10*t),t=-10..10);
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The next picture shows a function of the form sin uCsin v t  t , where u  is supposed to be much 
larger than v (and also much larger than 1).  This function is essentially an oscillation of frequency u ,
except that this frequency itself changes at the much lower frequency v.  This is the kind of signal 
produced by an FM (= frequency modulated) radio transmitter.  In that context, u  is a radio frequency
(perhaps 108 or so) and v is an audio frequency (perhaps 104).  The picture is not very good, and
is included as a reminder of the limitations of computer graphics.  Pictures can help, but 
you need to understand the formulae as well.

plot(sin((6 + sin(t)) * t),t=-20..20,numpoints=1000);
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The next picture shows a square wave of frequency 2.  This is like the timing signal generated by the
clock circuit of a computer chip (except that in that case the frequency would be more like 2 109,
for a 2 GHz chip).

plot((-1)^floor(2*x),x=-5..5,scaling=constrained);
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The next picture shows that you can build an approximate square wave out of sin waves of different
frequencies.  This is the first inkling of Fourier Theory, which will be studied in PMA212 (Linear 
Mathematics II).
Fourier theory is the mathematical basis for musical synthesisers, among many other things.

plot(sin(x) + sin(3*x)/3 + sin(5*x)/5 + sin(7*x)/7,x=-2*Pi..2*Pi)
;
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plot((1-v^2)^(-1/2),v=-1..1,g=0..4);
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?spline

g := unapply(spline([-4,-3,-2,-1,0,1,2,3,4],[0,0,0,0,1,0,0,0,0],
x,quadratic),x):

g(1.1);
K0.058921568

plot(g(x),x=-4.1..4.1);
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