Vector spaces and
Fourier Theory

Vector spaces

Predefinition ??: A vector space (over R) is a nonempty set V of things such
that

(a) If uand v are elements of V, then u+ v is an also an element of V.

(b) If uis an element of V and t is a real number, then tu is an element of V.

This definition is not strictly meaningful or rigorous; we will pick holes in it
later. But it will do for the moment.

Example ?7: The set R® of all three-dimensional vectors is a vector space,
3

because the sum of two vectors is a vector (eg [é] + [i] = [%]) and the

. 1 3
product of a real number and a vector is a vector (eg 3 [% = [8]) In the

same way, the set R? of two-dimensional vectors is also a vector space.

Syllabus

Vector spaces and linear maps: Definitions and examples.
Subspaces: Definitions and examples, (direct) sums and intersections.

Independence and spanning sets: Definitions and examples. Bases.
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Linear maps out of R": A linear map R” — V is the same as a list of n
elements of V.
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Matrices for linear maps: Definitions, properties, change of basis.

6 Theorems about bases: Invariance of dimension, rank-nullity formula,
dim(U + V) 4+ dim(U N V) = dim(U) + dim(V).

7 Eigenvalues and eigenvectors: for abstract vector spaces.

8 Inner products: Definitions and examples. The Cauchy-Schwartz
inequality, projections, the Gram-Schmidt procedure.

9 Adjoints of linear maps: Definition, proof of existence and uniqueness.

10 Diagonalisation of self-adjoint operators: Self-adjoint operators have
real eigenvalues, and admit an orthonormal basis of eigenvectors.

11 Fourier theory: in terms of inner product spaces.

Row and column vectors

We generally use column vectors (rather than row vectors), as this makes
formulae with matrix multiplication work better.

However, column vectors often fit awkwardly on the page, so we use the
following notational device:

1
-
[1, 2, 3, 4] means [?ﬂ
Z+b
[a2+b, b+c, c+d, d+e, e+a]T means [213]
+e
e+a

and so on.



The space R”

Example ??: For any natural number n the set R" of vectors of length nis a
vector space. For example, the vectors u=[124816]" and v =[1-24 —816]"
are elements of R®, with u+ v = [208032]". We can even consider the set
R of all infinite sequences of real numbers, which is again a vector space.

Example ??: The set {0} is a trivial example of a vector space (but it is
important in the same way that the number zero is important). This space can
also be thought of as R®. We often write it as 0 rather than {0}.

Another trivial example is that R itself is a vector space (which can be thought
of as RY).

The space of functions

Example ??: The set F(R) of all functions from R to R is a vector space,
because we can add any two functions to get a new function, and we can
multiply a function by a number to get a new function.

For example, we can define functions f, g, h: R — R by

f(x)=¢€" gx)=¢e" h(x) = cosh(x) = %,
so f, g and h are elements of F(R).

Then f + g and 2h are again functions, in other words f + g € F(R) and
2h € F(R). Of course we actually have f 4+ g = 2h in this example.

For this to work properly, we must insist that f(x) is defined for all x, and is a
real number for all x; it cannot be infinite or imaginary. Thus the rules
p(x) = 1/x and g(x) = y/x do not define elements p,q € F(R).

Physical vectors

Example ??: The set U of physical vectors is a vector space.
We can define some elements of U by

» ais the vector from Sheffield to London

» b is the vector from London to Cardiff

» c is the vector from Sheffield to Cardiff

» d is the vector from the centre of the earth to the north pole
» e is the vector from the south pole to the north pole.

We then have a+ b =c and 2d = e.

Once we have agreed on where our axes should point, and what units of length
we should use, we can identify U with R?.

Smaller spaces of functions

Example ??: In practise, we do not generally want to consider the set F(R)
of all functions. Instead we consider
» The set C(R) of continuous functions

» The set C*°(R) of “smooth” functions
(those which can be differentiated arbitrarily often)
> the set R[x] of polynomial functions
(eg p(x) = 1+ x + x* + x* defines an element p € R[x])

If f and g are continuous then f 4+ g and tf are continuous, so C(R) is a
vector space.

If f and g are smooth then f + g and tf are smooth, so C*°(R) is a vector
space.

If f and g are polynomials then f 4+ g and tf are polynomials, so R[x] is a
vector space.



Smaller spaces of functions Spaces of matrices

Example ??: Let [a, b] denote the interval {x € R| a < x < b} Example ??: The set MoR of 2 x 2 matrices (with real entries) is a vector
space. Indeed, if we add two such matrices, we get another 2 x 2 matrix, for

We write C[a, b] for the set of continuous functions f: [a, b] — R. example
a1+ (5351 =[53]
For example, the rule f(x) = 1/x defines a continuous function on the interval Similarly, if we multiply a 2 x 2 matrix by a real number, we get another 2 x 2
[1,2].  (The only potential problem is at the point x = 0, but 0 & [1,2], so we matrix, for example
do not need to worry about it.) 7[42]=[Z 4].

We can identify MoR with R*, by the rule
a

251 ).
d

More generally, for any n the set M,R of n X n square matrices is a vector

We thus have an element f € C[1,2].
We can define another element g € C[1,2] by g(x) = 2/|x|.

We actually have g = 2f, because f and g are defined as functions on [1, 2], 5
and |x| = x for all x € [1,2]. space, which can be identified with R" .

More generally still, for any n and m, the set M, »R of n x m matrices is a
vector space, which can be identified with R"™.

The set of all lists The set of all lists

Example ??: Let L be the set of all finite lists of real numbers.

For example, the lists a = (10, 20,30,40) and b = (5,6,7) and ¢ = (1,7, 7°) L = { all finite lists of real numbers } ~ a = (10,20,30,40) b= (5,6,7)
define three elements a,b,c € L. Is L a vector space?
. . . . . . What does a + b mean? There are at least three possible meanings:
In trying to answer this question, we will reveal some inadequacies of
Predefinition ?77. (1) a+ b could mean (10,20, 30,40,5,6,7)

It seems clear that L is closed under scalar multiplication: for example (the list a followed by the list b).

100b = (500, 600, 700), which is another element of L. (2) a+ b could mean (15,26,37)
. ) .. (chop off a to make the lists the same length, then add them together).
The real issue is closure under addition.
(3) a+ b could mean (15,26, 37, 40)

For example, is a + b an element of L? )
(add zeros to the end of b to make the lists the same length, then add

We cannot answer this unless we know what a + b means. them together.)
The point is that the expression a + b does not have a meaning until we decide
to give it one.

(Strictly speaking, the same is true of the expression 100b, but in that case
there is only one reasonable possibility for what it should mean.)



The set of all lists

To avoid this kind of ambiguity, we should say that a vector space is a set
together with a definition of addition etc.

Suppose we use the 3rd definition of addition, so a + b = (15, 26, 37, 40).
The ordinary rules of algebra would tell us that (a+ (—1).a) + b =b.
However, in fact we have
(a+(—1).a) + b = ((10, 20, 30, 40) + (—10, —20, —30, —40)) + (5,6,7)
=(0,0,0,0) + (5,6,7) = (5,6,7,0)#(5,6,7) = b.
Thus, the ordinary rules of algebra do not hold.

We do not want to deal with this kind of thing; we only want to consider sets
where addition and scalar multiplication work in the usual way. We must
therefore give a more careful definition of a vector space, which will allow us to
say that L is not a vector space, so we need not think about it.

(If we used either of the other definitions of addition then things would still go
wrong; details are left as an exercise.)

The real definition

Definition ??: A vector space over R is a set V, together with an element
0 € V and a definition of what it means to add elements of V' or multiply them
by real numbers, such that

(a) If uand v are elements of V, then u+ v is an also an element of V.
(b) If v is an element of V and t is a real number, then tv is an element of V.

(c) For any elements u, v,w € V and any real numbers s, t, the following
equations hold:

(1) 0+v=v (5) lu=u

2) u+v=v+u (6) (st)u=s(tu)

B3) ut(v+w)=(u+v)+w (7) (s+t)u=su—+tu
(4) Ou=0 (8) s(u+v)=su+sv.

Note that there are many rules that do not appear explicitly in the above list,
such as the fact that t(v+ v — w/t) = tu+ tv — w, but it turns out that all
such rules can be deduced from the ones listed. We will not discuss any such
deductions.

A more precise definition

Our next attempt at a definition is as follows:

Predefinition ??: A vector space over R is a nonempty set V/, together with a
definition of what it means to add elements of V' or multiply them by real
numbers, such that

(a) If uand v are elements of V, then u+ v is an also an element of V.
(b) If uis an element of V and t is a real number, then tu is an element of V.

(c) All the usual algebraic rules for addition and multiplication hold.

In the course we will be content with an informal understanding of the phrase
“all the usual algebraic rules”, but for completeness, we will give an explicit list
of axioms.

Remark ??:  We will usually use the symbol O for the zero element of
whatever vector space we are considering.

Thus 0 could mean

> the vector [g} (if we are working with R?)
> the zero matrix [3 9] (if we are working with M, 3R)
> the zero function (if we are working with C(R))

or whatever.

Occasionally it will be important to distinguish between the zero elements in
different vector spaces. In that case, we write Oy for the zero element of V.

For example:
Og2 = [{] Omye = [§ o]



Vector spaces over other fields

One can also consider vector spaces over fields other than R; the most
important case for us will be the field C of complex numbers. We record the
definitions for completeness.

Definition ??7: A field is a set K together with elements 0,1 € K and a
definition of what it means to add or multiply two elements of K, such that:

(a) The usual rules of algebra are valid. More explicitly, for all a, b, c € K the
following equations hold:
> 0+a=a

> a(bc) = (ab
> a4 (b+c)=(atb)+c i
> atb=b+ta > a(b+c)=ab+ ac

> la=a

(b) For every a € K there is an element —a with a+ (—a) = 0.
(c) For every a € K with a # 0 there is an element a~' € K with aa~' = 1.
(d)1#0 (or equivalently, K # {0}).

Vector spaces over other fields

Definition ??: A vector space over a field K is a set V/, together with an
element 0 € V and a definition of what it means to add elements of V or
multiply them by elements of K , such that

(a) If uand v are elements of V, then u+ v is an also an element of V.
(b) If v is an element of V and t is an element of K, then tv € V.

(c) For any elements u, v,w € V and any elements s, t € K, the following
equations hold:

(1) 0+v=v (5) lu=u

2) u+v=v+u (6) (st)u=s(tu)

B) u+(v+w)=(u+v)+w (7) (s+t)u=su—+tu
(4) Ou=0 (8) s(u+v)=su+sv.

Example ??:  Almost all our examples work over any field K.
MsQ = {4 x 4 matrices with entries in Q} is a vector space over Q.
C[x] = {polynomials with complex coefficients} is a vector space over C.

Examples of fields

Example ??: Recall that

Z={integers } ={...,—2,-1,0,1,2,3,4,...}
Q = { rational numbers } = {a/b|a,beZ, b+# 0}
R = { real numbers }

C = { complex numbers } = {x + iy | x,y € R},

soZCQcCRcCC.
Then R, C and Q are fields.

The ring Z is not a field, because axiom (c) is not satisfied: there is no element
271 in the set Z for which 2.27% = 1.

One can show that the ring Z/nZ is a field if and only if nis a prime number.

Linear maps

Definition ??7: Let V, W be vector spaces. Let ¢p: V — W be a function
(so for each element v € V we have an element ¢(v) € W).
We say that ¢ is linear if

(a) For any v and v/ in V, we have ¢(v + v') = ¢(v) + ¢(v') in W.
(b) Forany t € R and v € V we have ¢(tv) = to(v) in W.
By taking t = v =0 in (b), we see that a linear map must satisfy ¢(0) = 0.

Further simple arguments also show that ¢(v — v') = ¢(v) — &(v').

Remark 7?: The definition can be reformulated slightly as follows. A map
¢: V. — W is linear iff

(c) Forany t,t' € R and any v, v’ € V we have

Bty + V') = to(v) + £ 6(v').
To show that this reformulation is valid, we must show that if (c) holds, then
so do (a) and (b); and conversely, if (a) and (b) hold, then so does (c).

This is left as an exercise.



Linear maps

Definition ??7: Let V, W be vector spaces. Let ¢p: V — W be a function
(so for each element v € V we have an element ¢(v) € W).
We say that ¢ is linear if

(a) For any v and v/ in V, we have ¢(v + v') = ¢(v) + ¢(v') in W.
(b) Forany t € R and v € V we have ¢(tv) = to(v) in W.
By taking t = v = 0 in (b), we see that a linear map must satisfy ¢(0) = 0.

Further simple arguments also show that ¢(v — v') = ¢(v) — &(v').

Remark 7?: The definition can be reformulated slightly as follows. A map
¢: V. — W is linear iff
(c) Forany t,t' € R and any v, v’ € V we have

Oty + V') = ta(v) + £ B(V),
To show that this reformulation is valid, we must show that if (c) holds, then
so do (a) and (b); and conversely, if (a) and (b) hold, then so does (c).

This is left as an exercise. ()

Rotation is linear

Example ?7: For any v € R?, we let p(v) be the vector obtained by rotating v
through 90 degrees anticlockwise around the origin. It is well-known that the
formula for this is p[;] =[]

[V]

[v]

o(Gle ) =e =2 ] = 2]+ [ ] =0 5] 0 5]
p(tp])=rls] =[] =w[]

so pis linear. (O

Linear maps from R to R

Example ??: Consider f,g: R — R given by f(x) = 2x and g(x) = x*.
g(x +x) = x4+ x? 4 2xx" # x> + x* = g(x) + g(x'), so g is not linear.

Similarly, sin(x + x’) # sin(x) + sin(x’) so sin is not linear.

On the other hand: fix+x)=2(x+x") =2x+2x" = f(x) + f(x)
f(tx) = 2tx = tf(x) so f is linear.

Example ??:  For any number m € R, we can define ptm: R — R by
tm(x) = mx (so f in the previous example is u>). We have

pimlx 4 ) = (x4 x) = x4 X = pm(3) + ()
wm(tx) = mtx = tmx = tum(x),

SO Lm is linear. Note also that the graph of un, is a straight line of slope m
through the origin; this is essentially the reason for the word “linear”. (O

More general rotations

More generally, let rotg(v) be the vector obtained by rotating v anticlockwise
by an angle of 8 around the origin.

Then .
roto [3] = [ovanioy

Using this, we see that rotg: R? — R? is a linear map. O



Reflection is linear

Example ??: For any v € R?, we let 7(v) be the vector obtained by reflecting
v across the line y = 0.

It is clear that the formula is 7 [;] = [ 2, ], and using this we see that 7 is linear.

[v]

[]

Some nonlinear examples

Example ??: Define : R — R by (v) = |[v|| so 0[}] = /x*+ y2.

This is not linear, because 0(u + v) # 6(u) + 6(v) in general.

Indeed, if u = [3] and v = [ '] then (u+v) =0 but O(u)+6(v) =1+1=2.
Example ??: Define 0: R - R? by 0[] = [ 1] ].

Then o is not linear, because o [3] # [$].

Example ??: Define a: R? - R* by a[}] = [i’i;g:ﬁ”

(This does not really make sense when x = y = 0, but for that case we make
the separate definition that a[$] = [3].)

This map satisfies a(tv) = ta(v), but it does not satisfy

a(u + v) = a(u) + a(v), so it is not linear.

For example, if u=[}] and v = [9] then a(u) = v and a(v) = u but

a(utv) = (u+v)/2# a(u) +a(v). O

More general reflections

More generally, let refg(v) be the vector obtained by reflecting v across the line
crossing the x-axis at an angle of 6/2.

Then
x 0)x+sin(6
refo [31= [ s ooy |

Using this, we see that refy: R? — R? is a linear map. O

Examples from vector algebra

u 1%
Example ??: Given vectors u = [55] and v = [é] in R3, recall that the
3 3

inner product and cross product are defined by

(u,v) =uv =uwvi + oo + w3vs
uavz—uzva
uxv= [U:mfum]
upvp—up vy
Fix a vector a € R®. Define a: R* — R by a(v) = (a,v) and 3: R® — R® by
B(v) = a x v. Then both a and 3 are linear.

To prove this we must show that a(tv) = ta(v) and a(v + w) = a(v) + a(w)
and B(tv) = tB(v) and B(v +w) = A(v) + A(w).

We will write out only the last of these; the others are similar but easier.

vi+wy ap(v3+ws)—az(va+wa)
Blv+w)=p [Vz+W2] = | as(vi+wi)—a1(vs+ws)
v3+w3 aj(votwa)—ap(vi+wy)

[2a=aia] + [Fm=ai ] = 5(v) +Aw). O

aivp—axvy ajwpy—azxwi



Multiplication by a matrix is linear

Example ?7: Let A be a fixed m x n matrix.

Given a vector v € R”, we can multiply A by v to get a vector Av € R™.

We can thus define ¢a: R" — R"” by ¢a(v) = Av.

It is clear that A(v 4+ v') = Av + Av’ and Atv = tAv, so ¢4 is a linear map.

We will see later that every linear map from R” to R™ has this form.

In particular, if we put R=[? '] and T = [§ % |, we find that
RI=[21=ry]D) THI=[51=7(0D

(where p and 7 are as in Examples ?? and ?7?).

This means that p = ¢r and 7 = ¢7.

More generally, rotg = ¢r, and refsg = ¢1,, where

__ | cos(6) —sin(0) _ | cos(8) sin(0)
R = |:sin(9) cos(0) ] To = |:sin(9) 7605(0)] O

Linear differential operators

Definition ??: For smooth f: R — R put D(f) = f" and L(f) = f" + f.

These are again smooth, so D: C*(R) — C*(R) and L: C*(R) — C>(R).

p(x) = sin(x) D(p)=aq L(p)=0
q(x) = cos(x) D(g)=-»p L(q)=0
r(x) = e D(r)y=r L(r)y=2r

Using the equations (f + g)’ = f' + g’ and (tf)’ = t f’ we see that D is
linear. Similarly, we have
Lf+g)=(f+g)" +(f+g)=f"+g"+f+g
=(f"+1)+(g" +g) = L(f) + L(g)
L(tf) = (tF)" + tf =t " + tf = tL(f).

This shows that L is also linear. (O

Definite integration is linear

Example ??: For any continuous function f: R — R, we write
I(f) = [; f(x)dx € R.

This defines a map /: C(R) — R.

plx) = 5 () = f} = /30 = 1/3
g(x) =2x-1 I(q):f012x71d><:[x27x]é:0
r(x) = e I(r)= [} e“dx =[]t =e—1.

Using the obvious equations

[ () + g(x)dx = [} f(x)dx + [ g(x)dx
fol tf(x)dx = tj;]l f(x)dx

we see that I(f + g) = I(f) + I(g) and I(tf) = tI(f), so | is a linear map.()

Trace and determinant

Example ?7: For any 2 X 2 matrix A = [2 £], the trace and determinant are
defined by trace(A) = a+ d € R and det(A) = ad — bc € R.

We thus have two functions trace, det: M>R — R.

It is easy to see that trace(A + B) = trace(A) + trace(B) and
trace(tA) = ttrace(A), so trace: MbR — R is a linear map.

On the other hand, det(tA) = t*>det(A) and det(A + B) # det(A) + det(B) in
general, so det: MbR — R is not a linear map.

For a specific counterexample, take ~ A=[}3] and B=][3¢

det(A) = det(B) = 0 but det(A+ B) =1, so det(A + B) # det(A) + det(B).

None of this is really restricted to 2 x 2 matrices. For any n we have a map
trace: MR — R given by trace(A) = > | Aji, which is again linear. We also
have a determinant map det: M,R — R which satisfies det(t/) = t"; this shows
that det is not linear, except in the silly case where n=1. (O



Matrix inversion is not linear

Example ?7: “Define” ¢: MoR — MoR by #(A) = A7, so

ol2b] = [ d/(ad—bc) 7b/(ad7bc):|
cdl ™ | —c¢/(ad—bc) a/(ad—bc) .

This is not a linear map, simply because it is not a well-defined map at all: the
“definition” does not make sense when ad — bc = 0.

Even if it were well-defined, it would not be linear, because
d(I+1)=(21)1 =1/2, whereas ¢(I) + (1) = 21, so ¢(I + 1) # ¢(I) + (/).
O

Transposition is linear

Example ??7: We can define a map trans: M,R — M,R by trans(A) = A”.

Here as usual, A7 is the transpose of A, which is obtained by flipping A across
the main diagonal.

For example:
12377 0
045 = 0.
006 6
In general, we have (AT); = A;i.

It is clear that (A+ B)" = A" + B and (tA)T =tA”,

10
24
35

so trans: M,R — M,R is a linear map.

i T / T / / T i T
e.g a b] + | b — | ata btb — | ata ctc —[ab + |2 b O
St cd ' d ctc’ dtd’ b+b" d+d’ cd o d

Row reduction is not linear

Example ??: Define ¢: M3R — MzR by
¢(A) = the row reduced echelon form of A.
For example, we have the following sequence of reductions:
123 12 3 12 3 120
[438] =00 8] =[50 1,] — [381]
7149 00 —12 00 —12 000
which shows that
|

1
4
7
The map is not linear, because ¢(/) = I and also ¢(2/) =1, so ¢(21) # 2¢(1).
O

Isomorphisms

Definition ?77:
A linear map ¢: V — W is an isomorphism if it is a bijection,

so there is an inverse map ¢ ': W — V with ¢(¢~'(w)) = w for all w € W,
and ¢~ (¢(v)) = v forallve V.

( ¢! is automatically a linear map - we leave this as an exercise.)
Say that V and W are isomorphic if there is an isomorphism from V to W.
Example 7??: We can now rephrase part of Example ?? as follows:

There is an isomorphism ¢: MR — R* given by
abl — 2
ot ¢}

so MbR is isomorphic to R

Similarly, the space M, ¢R is isomorphic to R?7. (O



Physical vectors

Example ??: Let U be the space of physical vectors, as in Example 77. A
choice of axes and length units gives rise to an isomorphism from R? to U.

More explicitly, choose a point P on the surface of the earth (for example, the
base of the Eiffel Tower) and put

u = the vector of length 1 km pointing east from P
v = the vector of length 1 km pointing north from P

w = the vector of length 1 km pointing vertically upwards from P.

Define ¢: R® — U by d(x,y,2z) = xu+ yv+ zw. Then ¢ is an isomorphism.

We will be able to give more interesting examples of isomorphisms after we
have learnt about subspaces. (O

Reformulation

Remark ??: W is a subspace iff (a) 0 €¢ W

(b) Whenever u,v € W, the element u + v also lies in W.

(c) Whenever u € W and t € R, the element tu also lies in W.
Reformulation: a subset W C V is a subspace iff (a) 0 € W and
(d) Whenever u,v € W and t,s € R we have tu+sv € W.

To show that this reformulation is valid, we must check that if condition (d)
holds then so do (b) and (c); and that if (b) and (c) hold then so does (d).

In fact, conditions (b) is the special cases of (d) where t =s =1, and
condition (c) is the special case of (d) where v = 0; so if (d) holds then so
do (b) and (c).

Conversely, suppose that (b) and (c) hold, and that u,v € W and t,s € R.
Then condition (c) tells us that tu € W, and similarly that sv € W. Given
these, condition (b) tells us that tu + sv € W; we conclude that condition (d)
holds, as required. (O

Definition ??: Let V be a vector space. A vector subspace (or just subspace)
of V is a subset W C V such that

() oew
(b) Whenever u and v lie in W, the element u + v also lies in W.
(In other words, W is closed under addition.)

(c) Whenever u lies in W and t lies in R, the element tu also lies in W.
(In other words, W is closed under scalar multiplication.)

These conditions mean that W is itself a vector space.

Remark ??: Strictly speaking, a vector space is a set together with a
definition of addition and scalar multiplication such that certain identities hold.

We should therefore specify that addition in W is to be defined using the same
rule as for V, and similarly for scalar multiplication. (O

Examples of subspaces

Example ??: For any vector space V/, there are two silly examplesof subspaces
of V: {0} is always a subspace of V, and V itself is always a subspace of V.

Example ??: Any straight line through the origin is a subspace of R%. These
are the only subspaces of R? (except for the two silly examples).

Example ??: In R, any straight line through the origin is a subspace, and
any plane through the origin is also a subspace. These are the only subspaces
of R® (except for the two silly examples). O



Trace-free matrices Spaces of polynomials

Example ??: The set W = {A € MbR | trace(A) = 0} is a subspace of MR. Example ?7: Recall that R[x] is the set of all polynomial functions of x
, the functi =x+1and = 1)° — (x — 1)° and
To check this, we first note that 0 € W. Suppose that A; A’ € W and Es(c))() :e 1U—EC4>I;n4S-gi);)defi);:ele:]enfs()() r()é_ﬁﬁ[g]) (x )" an
t,t' € R. We then have trace(A) = trace(A’) = 0 (because A, A" € W) P a '
and so It is clear that the sum of two polynomials is another polynomial, and any
. , , , polynomial multiplied by a constant is also a polynomial, so R[x] is a subspace
trace(tA + t'A’) = ttrace(A) + t' trace(A’) = t.0+t.0 =0, of the vector space F(R) of all functions on R.
so tA+t'A e W. We write R[x]<g for the set of polynomials of degree at most d,

so a general element f € R[x]<q has the form
Thus, conditions (a) and (d) in Remark ?7? are satisfied, showing that W is a

d
subspace as claimed. i
P O f(x):ao+alx+..,+adxd:Za;x'
i=0
for some ap,...,as € R. It is easy to see that this is a subspace of R[x].

If we let f correspond to the vector [ - 2]’ € R%*!, we get a one-to-one
correspondence between R[x]<4 and R, (O

Spaces of polynomials Even and odd functions

More precisely, there is an isomorphism ¢: R — R[x]<4 given by Example ??: A function f: R — R is said to be even if f(—x) = f(x) for all
2 ; x, and odd if f(—x) = —f(x) for all x.
o ([ }) =ao+ax+ax® 4+ agx® = Z aix'. eg cos(—x) = cos(x) and sin(—x) = —sin(x), so cos is even and sin is odd.
a4 i=0

(Of course, most functions are neither even nor odd.)

We write EF for the set of even functions, so EF is a subset of the set F(R) of
Remark ?7: It is a common mistake to think that R[x]<4 is isomorphic to R? all functions from R to R, and cos € EF.

(rather than R9*?), but this is not correct. o ] ) ]
If f and g are even, it is clear that f + g is also even. If f is even and t is a

constant, then it is clear that tf is also even; and the zero function is certainly

Note that the list 0,1, 2,3 has four entries (not three), and similarly, the list
even as well.

0,1,2,...,d has d + 1 entries (not d). O
This shows that EF is actually a subspace of F(R).

Similarly, the set OF of odd functions is a subspace of F(R). O



Solutions of differential equations

Example ??: Let V be the vector space of smooth functions u(x, t) in two
variables x and t (to be thought of as position and time).

L 2
» We say that u solves the Wave Equation if % - % =
This equation governs the propagation of small waves in deep water, or of
electromagnetic waves in empty space.

e 8 22
> We say that u solves the Heat Equation if 57 — 25 =

This governs the flow of heat along an iron bar.

» We say that u solves the Korteweg-de Vries Equation if
o a3 Qu _
a*l; '+ 67;31 - 6ua*;l =0. ] )
This governs the propagation of large waves in shallow water.
The set of solutions of the Wave Equation is a subspace of V, as is the set of
solutions to the Heat Equation.

However, the sum of two solutions to the KdV equation does not satisfy the
KdV equation, so the set of solutions is not a subspace of V.

The Wave and Heat equations are /inear, but the KdV equation is not. ()

Subspaces of matrices

Example ??: Consider the following sets of 3 x 3 matrices:
={Ac MsR| AT = A}
={AcMsR|AT = —A}

={A € MsR | trace(A) = 0}
={A € MsR | Aj =0 when i # j}
Us = { strictly upper-triangular matrices } = {A € MsR | A; =0 when i > j}
={A € MsR | det(A) # 0}

={A € MsR | det(A) = 0}

Uo = { symmetric matrices }
Ui = { antisymmetric matrices }
U, = { trace-free matrices }

Us = { diagonal matrices }

Us = { invertible matrices }

Us = { noninvertible matrices }

Then Uy, ..., Us are all subspaces of M3R.

We will prove this for Uy and Us; the other cases are similar. O

Solutions of differential equations

The distinction between linear and nonlinear differential equations is of
fundamental importance in physics.

Linear equations can generally be solved analytically, or by efficient computer
algorithms, but nonlinear equations require far more computing power.

The equations of electromagnetism are linear, which explains why hundreds of
different radio, TV and mobile phone channels can coexist, together with
visible light (which is also a form of electromagnetic radiation), with little or no
interference.

The motion of fluids and gasses is governed by the Navier-Stokes equation,
which is nonlinear; because of this, massive supercomputers are needed for
weather forecasting, climate modelling, and aircraft design. (O

Subspaces of matrices

Uo= { symmetric matrices } ={Ac MsR| AT = A}

It is clear that 07 =0, so 0 € Up.
Suppose that A,B € Uy (so AT = Aand B” = B) and s,t € R. Then

(sA+tB)" =sA” +tBT =sA+tB

so sA+ tB € Up.

So Uy is a subspace. O



Subspaces of matrices

Us = { strictly upper-triangular matrices } = {A € MzR | A;j = 0 when i > j}

The elements of U, are the matrices of the form

0 an a3
A=(0 O a3
0 O 0

The zero matrix is an element of Us (with a12 = a13 = ax = 0).

Suppose that A, B € Us and s, t € R.
0 ajp a3 0 bio b1z 0 sajp+tbyp sajz—+tbiz
sA—|—tB:s[o 0 223:|—|—t|:0 0 b23:| :[o 0 sa23+tb23],
00 0 00 0 0 0 0
which shows that sA + tB is again strictly upper triangular, and so is an
element of U,.

Thus U, is also a subspace. O

Sums of subspaces

Definition ??: Let U be a vector space, and let V and W be subspaces of U.
We put

V4+W={ueU|u=v+wforsomeveVand we W}
Example ??: If U = R® and V:{[g] | x € R} and W:{[g] | z€R}
thenV+W:{[§] | x,z € R}

Example ??: If U= M;R and

V={[3] |a,beR} W={[85] | b,d e R}

then
V+W={[§5] |abdeRO

Subspaces of matrices

Us= { invertible matrices } = {A e M3R | det(A) # 0}
Us= { noninvertible matrices } = {A € MsR | det(A) =0}
Us is not a subspace, because it does not contain the zero matrix.
Us is not a subspace: if we put
A= [é ; 8] B= [8?
000 00

0
0
1

then A,B € Us but A+B=1¢ Us. O

Intersections of subspaces

Proposition ??: Let U be a vector space, and let V and W be subspaces of
U. Then both VN W and V + W are subspaces of U.

Proof for VN W: As V is a subspace we have 0 € V, and as W is a subspace
we have 0 € W,s0 0 € VN W.

Next, suppose we have x,y € VN W and s,t € R. Then x,y € V and V is a
subspace, so sx + ty € V. Similarly, we have x,y € W and W is a subspace so
sx +ty € W. This shows that sx +ty e VN W.

This works for all x, y, s and t, so V N W is a subspace. O



Proposition ??: Let U be a vector space, and let V and W be subspaces of Example 77: Take U = R? and

U. Then both VN W and V 4+ W are subspaces of U. - -
V = {lx,y,2]" | x+2y+3z =0} W = {lx,y,2]" | 3x+2y+2 = 0}.

Proof for V + W: , Claim: VN W = {[x,—2x,x]" [t R} and V+W =R"
We can write 0 as 0+0with0 € Vand0e W,s0o0e V + W.
Indeed, [x,y,2]" € VN W iff x +2y + 3z =0 and also 3x 42y 4+ z = 0.

Now suppose we have x,.x’ €eV+Wandt,t' eR. If we subtract these two equations and divide by two, we find that z = x.
As X,e V + W we can find V.e V/and we W/such that x =v +,W' , , If we feed this back into the first equation, we see that y = —2x.

As x" € V+ W we clan, also find v’ € V ?nd w' € W such that x' = v/ + w'. Conversely, if y = —2x and z = x we see that both equations are satisfied.
We then have tv + t'v' € V (because V is a subspace) It follows that V N W = {[x, —2x,x] | t € R} as claimed.

and tw + t'w’ € W (because W is a subspace).
Next, consider an arbitrary vector u = [x, y, z]T € R3. Put

We also have 1 { 12x+8y+4z } 1 [ —8y—4z }
V= — 3x+2y+z W= — | —3x+10y—z
tx + t/X/ _ t(v+ W) + t/(v/ + Wl) _ (tv+ t/Vl) + (tW+ t/W/) 12 —b6x—4y—2z 12 6x+4y+14z
) . ., L, Thenu=v+wwithve Vandwe W,soue V+ W.
with tv +t'v e Vand tw +t'w' e W ,sotx+t'x € V+ W. This works for any u € R?, so R3 = V + W. (O

As this works for all x, x’, t and t’, we conclude that V 4+ W is a subspace. O

Example ??7: Take U = R[x]<4 and

V = {Bx,y,2] | x+2y +32 = 0} W = {[x,y.2]" | 3x+2y+z =0},
) — R V ={feU|f0)=f(0)=0} W ={f e U|f(—x) = f(x) for all x}.
o= v=m [ BRE] wog otk Then
U={ao+ aix+ axx’ + a3sx* + asx* | a0, ..., a4 € R}

12x +8y +4z) +2(3x +2y +2z)+3(—6x —4y —2z)=0,sove V
( Y ) ( Y ) ( Y ) V= {32x2 + asx® + anx*t | a2, a3, as € R}

3(—8y —4z)+2(—3x+ 10y —z) + (6x +4y + 14z) =0, sow € W W = {a0 + X + asx* | 20, 2, 24 € R}

From this we see that

12

1 12x+8y+4z—8y—4z 1 12x
vV+w=— 3x42y+z—3x+10y —z [IZy] = uO
12 | —6x—4y—2z+6x+4y+14z 12z > 4

VNW ={ax" + asx” | a2, a4 € R}

V4+ W= {ao -+ 32x2 + a3x3 + a4x4 | a0, a2, a3, as € R}

In particular, the polynomial f(x) = x does not lie in V + W, so
V+W#UQO



Kernels and images

Definition ??: Let U and V be vector spaces, and let ¢: U — V be a linear
map. Then we write

ker(¢) = {u € U| ¢(u) = 0}
image(¢) = {v € V | v = ¢(u) for some u € U}.

Example ??: Define 7: R* - R® by 7 [;] = [3] Then

ker(r) = {[8] | x € R}

image(m) = {[ ] ly,z € R}YO

Kernels and images are subspaces

Proposition ??: Let U and V be vector spaces, and let ¢: U — V be a linear
map. Then ker(¢) is a subspace of U, and image(®) is a subspace of V.

Proof for image(¢):
We have ¢(0y) = Oy, which shows that Oy € image(¢)

Now suppose we have v, v’ € image(¢) and t,t' € R.

’

As v, v’ € image(¢), we can find x,x" € U with ¢(x) = v and ¢(x') = v'.
We thus have tx + t'x’ € U, and as ¢ is linear we have

o(tx + t'x") = tp(x) + t'p(x') = tv + t'V/

This shows that tv + t'v’ € image(¢).

As this works for all v, v’ € image(¢) and t,t’ € R, we deduce that image(¢) is
a subspace.()

Kernels and images are subspaces

Proposition ??: Let U and V be vector spaces, and let ¢: U — V be a linear
map. Then ker(¢) is a subspace of U, and image(¢) is a subspace of V.

Proof for ker(¢): We have ¢(0y) = Oy, which shows that Oy € ker(¢)
Next, suppose that u, u’ € ker(¢), which means that ¢(u) = ¢(u') = 0.
Suppose also that t,t' € R

As ¢ is linear this implies that

p(tu+t'v) =td(u) + t'¢p(u') =t.0+t.0=0,

so tu+ t'u’ € ker(¢).

As this works for all u, u’ € ker(¢) and t,t' € R, we deduce that ker(¢) is a
subspace.()

Kernels and images

Definition ??: Let U and V be vector spaces, and let ¢: U — V be a linear
map. Then we write

ker(¢) = {u € U | 6(u) = 0}
image(¢) = {v € V | v = ¢(u) for some u € U}.

Example 72: Define 7: R? — R3 by M - [3] Then

ker(ﬂ)z{[ ] | x € R}

image(m) = {[g] ly,z € R}YO



An example of kernels and images

Example ?7: Define ¢: R®* — R® by ¢([x,y,2]") = [2x — z,2y — 8x,2z—y]".
Then

ker(¢) = {[x,y,2]" € R’ | z=2x, y = 4x, 2z = y)} = {[t,4t,2t]" | t € R}
image(¢) = {[u,v,w]" € R® | 4u+ v +2w =0} = {[u,v, —2u—v/2]" | u,v € R*}.

So ker(¢) is a line through the origin (and thus a one-dimensional subspace)
and image(¢) is a plane through the origin (and thus a two-dimensional
subspace). O

A polynomial example

Example ?7: Define ¢: R[x]<1 — R? by ¢(f) = [f(0), f(1), f(2)]". Explicitly:
¢(ax + b) = [b,a+ b,2a+ b]" = a[0,1,2]" + b[1,1,1]".

If ax + b € ker(¢) then we must have ¢(ax + b) = 0, or in other words
b=a+ b=2a+ b =0, which implies that a= b =0 and so ax + b= 0.
This means that ker(¢) = {0}.

Next, we claim that image(¢) = {[u, v, w]" | u—2v + w = 0}.

Indeed, if [u, v,w]” € image(¢) then we must have

[u,v,w] = ¢(ax + b) = [b, a + b,2a + b] for some a, b € R. This means that
u—2v+w=>b-2(a+b)+2a+ b=0, as required.

Conversely, suppose that we have a vector [u, v, W]T € R® with
u—2v+w =0. We then have w = 2v — u and so

ol(v—upe+u) = [ [ = [0 T=[1].

2(v—u)+u w

so [u,v,w]T is in the image of ¢. O

Antisymmetrisation

Example ??7: Define ¢: M,R — M,R by ¢(A) = A— AT (which is linear).
Then clearly $(A) =0 iff A= AT iff A is a symmetric matrix. Thus
ker(¢) = {n x n symmetric matrices }.
We claim that also
image(®) = {n x n antisymmetric matrices }.

For brevity, we write W for the set of antisymmetric matrices, so we must
show that image(¢) = W. For any A we have

HA)T =(A—ATYT = AT —ATT but ATT = A, s0 ¢(A)T = AT — A= —¢(A).
This shows that ¢(A) is always antisymmetric, so image(¢) C W. Next, if B is
antisymmetric then BT = —B so ¢(B/2) = B/2 - B" /2= B/2+ B/2 = B.
Thus B is ¢(something), so B € image(¢). This shows that W C image(¢), so
W = image(¢) as claimed. O

Another example

Define ¢: R[x]<> — R? by #(f) = [f(1), f'(1)]".

Explicitly: ¢(ax®* + bx +c) =[a+ b+ c,2a+ b]".

It follows that ax? + bx + ¢ lies in ker(¢) iff a4 b+ ¢ = 0 = 2a + b, which
gives b= —2aand c=—-a—b=—-a+2a=a, so

ax® + bx + ¢ = ax’ —2ax+a=a(x® — 2x + 1) = a(x — 1)°.

It follows that ker(¢) = {a(x — 1)? | a € R}. In particular, ker(¢) is nonzero,
so ¢ is not injective. Explicitly, we have x> + 1 # 2x but
d(x*+1) =[2,2]" = ¢(2x).

On the other hand, we claim that ¢ is surjective. Indeed, for any vector
a = [u,v]" € R? we check that

$x+u—v)=[v+u—v,v] =[uv]" =a,

so a is ¢(something) as required.



Another example Injective and surjective maps

Define ¢: R® — R® by ¢: U — V is surjective if every v € V has the form ¢(u) for some u € U.
¢: U — Vs said to be injective if whenever ¢(u) = ¢(u’) we have u = v/,

x x+2y+4z 5 4 1
= 2x+4y+8z =
o[1] = | oo | = vy an) [3]
Then —_— >’
—_ N .
T 3 T —_ —_—
ker(¢) ={[x,y,2z]" €R* [ x+2y +4z=0} ={[-2y —4z,y,7] |y,z€ R} - . —
. 7 T .
image(¢) = {[t,2t,4¢] |t € R} Injective and surjective Surjective, not injective
So ker(¢) is a plane through the origin (and thus a two-dimensional subspace)
and image(¢) is a line through the origin (and thus a one-dimensional .
subspace). O . ”e : ”e
JE— . .
—_ . .S.
Injective, not surjective Neither surjective nor injective

Injective and surjective maps Isomorphisms

¢: U — V is surjective if every v € V has the form ¢(u) for some u € U. Corollary ??: ¢: U — V is an isomorphism iff ker(¢) = 0 and
¢: U — Vs said to be injective if whenever ¢(u) = ¢(u’) we have u = v/, image(¢) = V. n@!

Proposition ??: Let ¢: U — V be a linear map between vector spaces.
Then ¢ is injective iff ker(¢) = {0}, and ¢ is surjective iff image(¢) = V.
Proof:
> Suppose that ¢ is injective, so whenever ¢(u) = ¢(u’) we have u=u'.
Suppose that u € ker(¢). Then ¢(u) = 0 = ¢(0). As ¢ is injective and
o(u) = ¢(0), we must have u = 0. Thus ker(¢) = {0}, as claimed.

> Conversely, suppose that ker(¢) = {0}. Suppose that ¢(u) = ¢(u'). Then
Pplu—u')=¢(u)—d(u')=0,s0 u—u" € ker(¢p) = {0}, sou— v =0, so
u = u’. This means that ¢ is injective.

> Recall that image(¢) is the set of those v € V such that v = ¢(u) for
some u € U. Thus image(¢) = V iff every element v € V has the form
¢(u) for some u € U, which is precisely what it means for ¢ to be
surjective. ()



Direct sums

Definition ??: Let V and W be vector spaces. We define V @& W to be the
set of pairs (v, w) with v € V and w € W. Addition and scalar multiplication
are defined in the obvious way:

(v,w)+ (v, W)= (v+ Vv, ,w+w)
t.(v,w) = (tv, tw).

This makes V @ W into a vector space, called the direct sum of V and W. We
may sometimes use the notation V x W instead of V & W.

Example ?7: An element of R” ® R is a pair (x,y), where x is a list of p real
numbers, and y is a list of g real numbers. Such a pair is essentially the same
thing as a list of p 4 g real numbers, so R° @ R = R°™9. ()

Internal direct sums

Remark ??: If VN W =0 and V+ W = U then o gives an isomorphism
V @& W — U. In this situation it is common to say that U=V & W.

This is not strictly true (because U is only isomorphic to V & W, not equal to
it), but it is a harmless abuse of language.

Sometimes people call V & W the external direct sum of V and W, and they
say that U is the internal direct sum of V and W if U =V + W and
Vnw=0.0O

Two subspaces

Now suppose that V and W are subspaces of a third space U. We then have a
space V @ W as above, and also a subspace V + W < U as in Definition ?77.
We need to understand the relationship between these.

Proposition ??: The rule o(v,w) = v + w defines a linear map

o: V& W — U, whose image is V 4+ W, and whose kernel is the space
X={(x,—x)e Ve W |xeVnNnW} Thus, if VN W =0 then ker(c) =0
and o gives an isomorphism V& W — V + W.

Proof: We leave it as an exercise to check that o is a linear map. The image
is the set of things of the form v + w for some v € V and w € W, which is
precisely the definition of V + W. The kernel is the set of pairs

(x,¥) € V& W for which x + y = 0. This means that x € V and y € W and
y = —x. Note then that x = —y and y € W so x € W. We also have x € V,
so x € VN W. This shows that ker(c) = {(x, —x) | x € V. N W}, as claimed.
If VN W =0 then we get ker(c) = 0, so o is injective (by Proposition ??). If
we regard it as a map to V + W (rather than to U) then it is also surjective, so
it is an isomorphism V@& W — V + W, as claimed. O

Internal direct sums

Remark ??: If VN W =0and V+ W = U then the map o(v,w) =v+w
gives an isomorphism V @& W — U. In this situation it is common to say that
U=VeoWw.

This is not strictly true (because U is only isomorphic to V & W, not equal to
it), but it is a harmless abuse of language.

Sometimes people call V & W the external direct sum of V and W, and they
say that U is the internal direct sum of V and W if U =V 4+ W and
vVnw=0.0O



Odd and even functions

Example ??: Consider the space F of all functions from R to R, and the
subspaces EF and OF of even functions and odd functions.

We claim that F = EF & OF.
To prove this, we must check that EF N OF =0 and EF + OF = F.

Suppose that f € EF N OF. Then for any x we have f(x) = f(—x) (because

f € EF), but f(—x) = —f(x) (because f € OF), so f(x) = —f(x), so

f(x) =0. Thus EF N OF =0, as required. Next, consider an arbitrary function
g€ F. Put

g+(x) = (g(x) + g(—x))/2 g-(x) = (g(x) — g(—x))/2.
Then
g+(—x) = (g(—x)+g(x))/2=g+(x)  g-(—x) = (g(—x)—8(x))/2 = —g-(x),

so g+ € EF and g_ € OF. It is also clear from the formulae that g = g4 + g—,
so g € EF 4+ OF. This shows that EF + OF = F, so F = EF & OF as claimed.
O

Independence and spanning sets

Two randomly-chosen vectors in R? will generally not be parallel; it is an
important special case if they happen to point in the same direction.
Similarly, given three vectors u, v and w in R3, there will usually not be any
plane that contains all three vectors. This means that we can get from the
origin to any point by travelling a certain (possibly negative) distance in the
direction of u, then a certain distance in the direction of v, then a certain
distance in the direction of w. The case where u, v and w all lie in a common
plane will have special geometric significance in any purely mathematical
problem, and will often have special physical significance in applied problems.
Our task in this section is to generalise these ideas, and study the
corresponding special cases in an arbitrary vector space V. The abstract
picture will be illuminating even in the case of R? and R3. (O

Trace free matrices

Example ??: Put U = M;R and
V ={A€e MR | trace(A) =0} = {[2 %] | a,b,c € R}

W={tl|teR}={[{%] |t R}

We claim that U = V @ W. To check this, first suppose that A€ VN W. As
A € W we have A = t/ for some t € R, but trace(A) = 0 (because A € V)
whereas trace(tl) = 2t, so we must have t = 0, which means that A= 0. This
shows that V N W = 0.

Next, consider an arbitrary matrix B = [? 7] € U. We can write this as

B = C + D, where

_ (92
=[P 5y €V
(

pt+s)/2 0 _p+ts
[ 0 (p+s)/2]* 7 eW.

C
D

This shows that U=V + W. O

Linear independence

Definition ??: Let V be a vector space, and let V = v1,..., v, be a list of
elements of V.

A linear relation between the v;'s is a vector [A1,...,A,]” € R" such that
)\1V1+...+)\,,Vn:0.

The vector [0, ... ,O]T is obviously a linear relation, called the trivial relation.

If there is a nontrivial linear relation, we say that the list V is linearly
dependent.

Otherwise, if the only relation is the trivial one, we say that the list V is linearly
independent. ()



Linear independence examples Linear independence of polynomials

Example ??: Consider the following vectors in R*: Example ??: Consider the polynomials p,(x) = (x + n)?, so
1 4 7
vi= [%} V2= [g] Vs = [8] po(x) = x° pi(x) = x> +2x+1

Then v — 2va 4+ v3 =0, so [1,—2,1]7 is a nontrivial linear relation, so the list 2 o
V1, V2, V3 is linearly dependent. pa(x) = x" +4x + 4 ps(x) = x" +6x +9.

Example ?7: Consider the following vectors: | claim that the list po, p1, p2 is linearly independent. Indeed, a linear relation

v = [%} Vo — [(13] Vs = [8] ) bet\{veen them is a vector [/\o,)\l,)\Q]T such that Aopo + A\1ip1 + Aop2 = 0, or
1 1 1 equivalently
A linear relation between these is a vector [A1, A2, As]” such that (Mo 4 A1+ ) + (201 + 4X2)x + (A1 + 4h2) = 0
A1vi + Xava 4+ A3vz = 0, or equivalently
for all x, or equivalently
i | = [8]
)\14—1/\2-{—2)\3 ~ Lol Ao+ A1+ A= 0, 22X +4) = 0, A +4X =0.

From this we see that A1 = 0, then from the equation A\; + A2 = 0 we see that

A =0, then from t.he e_quat|on_ ).\1 + X2 4+ A3 = 0 we see tThat A3 = O.TThUS’ equation gives A2 = 0, and now the first equation gives Ao = 0. Thus, the only
the only linear relation is the trivial one where [A1, A2, 3]’ =[0,0,0]", so our . oo T T . .

X i linear relation is [Ao, A1, A2]" =[0,0,0]", so the list po, p1, p2 is independent.
vectors vi, w2, v3 are linearly independent. () O

Subtracting the last two equations gives A1 = 0, putting this in the last

Linear independence of polynomials Linear dependence of functions

Example ??: Consider the polynomials p,(x) = (x + n)?, so Example ?7: Consider the functions
po(x) = x° pi(x) =x*+2x +1 fi(x)=¢€"
p2(x) =x’+4x+ 4 p3(x) = x>+ 6x+09. h(x)=e"
| next claim, however, that the list po, p1, p2, ps is linearly dependent. fs(x) = sinh(x)
fa(x) = cosh(x)

Indeed, you can check that These are linearly dependent, because sinh(x) is by definition just

p3—3p2+3p1—po=0 (eF—e™)/2, so

so [1,—3,3,—1]" is a nontrivial linear relation. A-—h—-2h=¢e —e"—(ef—e")=0

.. L _ ) ) so [1,—1,—2,0]" is a nontrivial linear relation. Similarly, we have

(The en;:nes |r; this I|§t are the coeffncn.ents in the. expansion of . cosh(x) = (€* + e¥)/2, so fy = %ﬂ 4 %fz. so [%7 %707 ~1]7 is another linear
(T —1)°=T°—=3T" 43T — 1, this is not a coincidence, but the explanation relation. O

would take us too far afield.) O



Linear independence of matrices Linear independence and the map uy

Example ??: Consider the matrices

Remark ??7: Let V be a vector space, and let V = vi,..., v, be a list of
elements of V. We have a linear map uy: R" — V/, given by
E =53] E»=[85] Es=1[28] E=1[3%].
_ (M- A7) = M+ -+ A
A linear relation between these is a vector [A1, A2, A3, /\4]T such that

ME1 + M Ex + A3E3 + M\ Ey is the zero matrix. But
AL A
ME1L+ XEr + A3Es + MEy = [A; Ai] By definition, a linear relation between the v;’s is just a vector
o A=[A1,..., A" €R" such that py(X) = 0, or in other words, an element of
and this is only the zero matrix if A1 = A2 = A3 = Ay = 0. the kernel of p1y.
Thus, the only linear relation is the trivial one, showing that Ei, ..., Es are Thus, V is linearly independent iff ker(uy) = {0} iff 1y is injective (by
linearly independent. O Proposition ??). O

The Wronskian Wronskian example

Definition ??: Let C*°(R) be the vector space of smooth functions Example ??:  Consider the functions exp, sin and cos, so exp’ = exp and

s I 2 2 __
f:R — R. Given fi,...,f, € C®(R), their Wronskian matrix is the matrix sin” = cos and cos” = —sin and sin® + cos” = 1. We have
WM(f, ..., f,) whose entries are the derivatives fim fori=1,...,nand TSR Ko R e IO s SR S
. . exp, sin, cos) = det | ex| sin cos’ = det |ex cos — sin
j=0,...,n—1. For example, in the case n = 4, we have P oo A et oo s o
2 .2 . . .2 2
= exp.(— cos” — sin“) — exp.(— sin . cos + sin . cos) + exp.(— sin® — cos“)
;1/ ;2/ ;3/ ;4/ =exp.(—1) — exp .(0) + exp .(—1)
1 2 3 4 = —2ep.0
WM(fl,f27f3,f4) - f" f” f” f// . e
1 2 3 4

f:'l/// f'2/// f;// f"‘///

The Wronskian of fi,...,f, is the determinant of the Wronskian matrix; it is
written W(f,...,f).

Note that the entries in the Wronskian matrix are all functions, so the
determinant is again a function. O



The Wronskian and linear dependence The Wronskian and linear dependence

r;r;positi?n ??i' \ dependent, then W(h, ... £} =0 Arfi(x) +Aofa(x) + Asfy(x) = 0

1,..., are linearly dependent, then 1y, 1) = 0. / / ey

(The function w = W(f, ..., f,) is the zero function, ie w(x) = 0 for all x.) Afi () + A2ho (%) + Asfi (x) = 0
Af!(x) + Xy (x) + sy (x) = 0

Proof for n = 3:
If fi, i, f3 are linearly dependent, then there are numbers A1, A2, A3 (not all so - 0 560
zero) such that A\ifi + Ao + A3f3 is the zero function, which means that A { fll(x):| + N [ fZ/(X)] s { f;(x)} _ [8}
7' (x) 5'(x) 5'(x) 0
so the columns of the matrix
Afi(x) + Xefa(x) + Asfz(x) =0 (for all x) A oh A
WM(f, f, ) = {ff f fs’] .

We can differentiate to get g

, , / are linearly dependent, so
Afi(x) + A2y (x) + Asfz(x) = 0
W(f, f, ) = det(WM(f, f, 3)) = 0.

and again to get
Corollary ?7:

MA(x) 4+ Xaf' (x) + A6 (x) = 00 If W(fi,...,f,) #0, then fi,...,f, are linearly independent. 0o

Remark ??: Consider a pair of smooth functions like this: Definition ??: Given a list V = vi,..., v, of elements of a vector space V, we
write span(V) for the set of all vectors w € V that can be written in the form
fi(x) f2(x) W = A1vi + ...+ AV, for some A1, ..., A\, € R. Equivalently, span(V) is the
image of the map uy: R" — V (which shows that span()) is a subspace of V).
We say that V spans V if span(V) = V, or equivalently, if y is surjective.
Suppose that fi(x) is zero (not just small) for x > 0, and that f(x) is zero for Remark ?7?: Often V will be a subspace of some larger space U. If you are

x < 0. (It is not easy to write down formulae for such functions, but it can be
done; we will not discuss this further here.) For x < 0, the matrix

fi(x) 0
WM(fi, i)(x) has the form {f{(x) 0

the matrix WM(fi, £)(x) has the form [

asked whether certain vectors vi, ..., v, span V, the first thing that you have
to check is that they are actually elements of V. (O
} , so the determinant is zero. For x > 0,

0 fii(x)
0 F(x)
zero. Thus W(fi, f)(x) = 0 for all x, but i and f> are not linearly dependent.
This shows that the test in Proposition ?? is not reversible: if the functions are
dependent then the Wronskian vanishes, but if the Wronskian vanishes then
the functions need not be dependent. In practice it is rare to find such
counterexamples, however. ()

} , so the determinant is again



The standard basis spans

Definition ??: Let e; be the vector in R" whose i'th entry is 1, with all other
entries being zero. For example, in R® we have

o] es[] e-[f

Example ??: The list ey, ..., e, spans R". Indeed, any vector x € R" can be
written as xie1 + ... + xpen, which is a linear combination of ey, ..., e,, as
required. For example, in R® we have

X1 1 0 0
[XZ] = X1 [8} + X2 [(1)] + X3 [?] = xie1 + xxez + xze3.0)

X3

A spanning set for R*

Example ??: Consider the vectors

1 1 0 0
u; = % uz = % uz = % Uz = é
1 0 1 0

We claim that these span R*. Indeed, consider an arbitrary vector
v=_[abcd]" €R* We have

a—c+d c—d 0 0 a

(@a—c+duy +(c — d)ug + (¢ — a)uz + (b — c)uz = z:zij + {E:Z] + [g::} + |:bEC:| = [?} =v
a—c+d 0 c—a 0 d
which shows that v is a linear combination of uy, ..., us, as required. O

Monomials span R[x]

Example ??: The list 1, x,...,x" spans R[x]<n.

Indeed, any element of R[x]<, is a polynomial of the form
f(x) = ao + aix + - - - + a,x", and so is visibly a linear combination of
Lx,....x". O

A spanning set for R*

1 1 0 0
u; = i uz = % us = % uz = (1)
1 0 1 0

Consider an arbitrary vector v =[abc d]T € R*. We want to find p, g, r, s such
that v = pu; 4+ qua + rus + sug4, or equivalently

AR HEHEHE []

ptqtr
ptr

p+g=a(l) p+tq+tr+s=b(2) pt+gt+r=c(3) ptr=d(4)

Subtracting (3) and (4) gives g = ¢ — d; Subtracting (1) and(3) gives

r = ¢ — a; Subtracting (2) and(3) gives s = b — ¢; putting g =c — d in (1)

givesp=a—c+d.

coro

a—c+d c—d 0 0 a
(@a—c+duy +(c — d)ug + (¢ — a)uz + (b — c)uz = 2:213 + {z_j] + {2::} + |:baC:| = [?} =v
c—a 0 d

O



A spanning set for quadratic polynomials Simple harmonic motion

Example ??: Consider the polynomials p;(x) = (x + i)*. Example 7?7: Put V = {f € C*®(R) | f” 4+ f = 0}. Claim: the functions sin
and cos span V.
We claim that the list p—2, p—1, po, p1, p2 spans Rx]<>. Indeed, we have In other words, if f has f"/(x) = —f(x) for all x, then there are constants a and
po(x) = x° b such that f(x) = asin(x) + bcos(x) for all x.
— 2 2 _
pi(x) = p-1(x) = (x +1)7 = (x = 1)" = 4x Proof: Firstly, we have sin’ = cos and cos’ = — sin, so sin”/ = —sin and
p2(x) 4 p—2(x) = 2po(x) = (x +2)° + (x —2)* —2x* = 8. cos” = — cos, so sin and cos are indeed elements of V.

Consider an arbitrary element f € V. Put a = f’(0) and b = f(0), and put

Thus for an arbitrary quadratic polynomial f(x) = ax? + bx + ¢, we have ) ) -
g(x) = f(x) — asin(x) — bcos(x). We claim that g = 0. First, we have

700 = apn(x) + 3b((x) — p-3() + (P + pax) ~ 2m(x) 0)— F0) 25n(0)  beos(®) — b 20 b1 0
= §P-209) — P10+ (@ = $po() + Epi(x) + §p2(x). O g'(0) = f'(0) — asin’(0) — bcos'(0) = a — acos(0) + bsin(0) =a—a.l — b.0=0.
Now put h(x) = g(x)* + g’(x)?; the above shows that h(0) = 0% 4 0> = 0.

O

Simple harmonic motion Finite-dimensional spaces

g(x) = f(x) — asin(x) — beos(x); g € V so g’ (x) + g(x) = 0; Definition ??: A vector space V is finite-dimensional if there is a (finite) list
g(0) = g'(0) = 0; V =w,...,V, of elements of V that spans V.

_ 2 / 2. _
h(x) = g(x)” + &'(x)" h(0) =0 Example ??: Using our earlier examples of spanning sets, we see that the

spaces R", M, »R and R[x]<, are finite-dimensional.

Next, we have g € V, so g’ = —g, so

R (x) = 2g(x)g’ (x) + 2¢’ (x)g” (x) = 2g’ (x)(g(x) + &" (x)) = 0. Example ??7: The space R[x] is not finite-dimensional. To see this, consider a
list P = pi1,..., pn of polynomials. Let d be the maximum of the degrees of
This means that h is constant, but h(0) =0, so h(x) = 0 for all x. p1,.--,Pn. Then p; lies in R[x]<q for all i, so the span of P is contained in
R[x]<4. In particular, the polynomial x?*! does not lie in span(P), so P does
However, h(x) = g(x)? 4+ g’(x)?, which is the sum of two nonnegative not span all of R[x].O

quantities; the only way we can have h(x) = 0 is if g(x) = 0 = g’(x). This
means that g = 0, so f(x) — asin(x) — bcos(x) = 0, so
f(x) = asin(x) 4+ bcos(x), as required. O



Bases

Definition ??: A basis for a vector space V is a list V of elements of V that
is linearly independent and also spans V. Equivalently, a list V = vq,...,v,is a
basis iff the map uy: R” — V is a bijection. O

Trace-free symmetric matrices

Put V={A€ MsR | AT = A and trace(A) = 0}.
Any matrix X € V has the form
x=[bd ¢ |
ce —a—d

for some a, b, c,d, e € R. In other words, if we put

100 010 001 00 0 000
A:[ooo} B:[IOO] C:[ooo] D:[mo] E_[001]
00 —1 000 100 00 —1 010

then any matrix X € V can be written in the form
X =aA+ bB+ cC+dD + eE.

This means that the matrices A, ..., E span V, and they are also linearly
independent, so they form a basis for V. (O

Antisymmetric matrices

Example ??: We will find a basis for the space V of antisymmetric 3 x 3
matrices. Such a matrix has the form

0 a b
X:|:—30c:|
—b —c 0
In other words, if we put
010 001 000
A:|:—100:| B:[ooo] C:[001]7
000 —100 0-10

then any antisymmetric matrix X can be written in the form
X = aA+ bB + cC. This means that the matrices A, B and C span V, and
they are clearly independent, so they form a basis.()

Bases for the space of quadratic polynomials

Example ??7: There are several interesting bases for the space Q = R[x]<> of
polynomials of degree at most two. A typical element f € Q has
f(x) = ax* + bx + ¢ for some a,b,c € R.

» The list po, p1, p2, where p;(x) = x'. This is the most obvious basis. For f
as above we have

f=cpo+bp+ap=1(0)po+r(0)pr+ 3 (0)pe.

> The list qo, g1, g2, where gi(x) = (x + 1), is another basis. For f as
above, one checks that
ax> + bx+c=a(x+1)%+(b—2a)(x+1)+(a— b+c)

SO
f=(a—b+c)g+(b—2a)q+aq="f(-1)q+f'(—1)aq+ ;" (-1)e.
O



Bases for the space of quadratic polynomials Bases for the space of quadratic polynomials

» The list ro, r1, r2, where ri(x) = (x + )2, is another basis. Indeed, we have » The list
o () = O+ 1) so(x) = (x> — 3x +2)/2

si(x) = —x? 4+ 2x
s(x) = (x> — x)/2.

po(x) = 1 = 3((x +2)° — 20x + 1 + x°)
= 1(ra(x) — 2n(x) + ro(x))
pr(x) = x = —3((x +2)? — 4(x + 1% + 3%)

i ther basis. These functi have th ty that
_ —%(rg(x) — 4n(x) + 3n(x)) gives another basis ese functions have the property tha
p2(x) = X2 = ro(x), SO(O) =1 50(1) =0 50(2) =0
51(0) =0 51(1) =1 51(2) =0
This implies that po, p1, p2 € span(ro, 1, r2) and thus that %(0)=0 £(1)=0 s((2)=1

span(r, 1, ) = Q.

pan(ro, 1, 72) = Q. O Given f € Q we claim that f = f(0).s0 + f(1).51 + f(2).s2. Indeed, if we
put g(x) = f(x) — f(0)so(x) — F(1)s1(x) — f(2).52(x), we find that g € Q
and g(0) = g(1) = g(2) = 0. A quadratic polynomial with three different
roots must be zero, so g =0, so f = f(0).s0 + f(1).51 + f(2).52. O

Bases for the space of quadratic polynomials A space of polynomials

> The list Put V ={f € R[x]<a | f(1) = f(—1) =0 and /(1) = f'(-1)}.
to(x) =1 Consider a polynomial f € R[x]<s, so f(x) = a+ bx + ox® + dx* + ex*
ti(x) = \/5(2x -1) for some constants a,...,e. We then have
t2(x) = V5(6x> — 6x + 1). f(l)=a+b+c+d+e

f(-1)=a—b+c—d+e

gives another basis. These functions have the property that , ,
f'(1)—f(-1)=(b+2c+3d +4e) — (b—2c+3d — 4e) = 4c + 8e

1 P
/ t:(x)tj(x) dx = {1 7= It follows that f € V iffa+ b+c+d+e=a—b+c—d+e=4c+8e=0.
0 0 ifi#j This simplifies to c = —2e and a = e and b = —d, so
)\L,-Jingfoy;l(s)’()\,:,e(:)njxfhg f = Xoto + Aits + Aatz, where f(x)=e—dx— 2ex? + dx® + ex* = d(x3 —x)+ e(x4 —2x% 4+ 1).
Thus, if we put p(x) = x* — x and g(x) = x* —=2x? + 1 = (x* = 1)?, then p, q
is a basis for V. O



Example ??: A magic square is a 3 X 3 matrix in which the sum of every row
is the same, and the sum of every column is the same. More explicitly, a matrix

abc
X = |:d e f:|
ghi
is a magic square iff we have

at+b+c=d+e+f=g+h+i
a+d+g=b+ed+h=c+f+i.

Let V be the set of magic squares, which is easily seen to be a subspace of
M;sR; we will find a basis for V. First, we write

RX)=a+b+c=d+e+f=g+h+i

CX)=a+d+g=b+et+h=c+rF+i
TX)=a+b+c+d+e+f+g+h+i0O

abc .
— |def at+b+tc=d+e+f=g+h+i=0
X |:gh,_:|€W atdtg=bteth=c+f+i=0

For such a square, we certainly have
c=—a-—b>b f=—-d—e g=—-a—d h=—-b—e.

Substituting this back into the equation g + h+ i = 0 (or into the equation
c+f+i=0)gvesi=a+ b+ d+ e. It follows that any element of W can
be written in the form

a b —a—b

X = |: d e —d—e ] .
—a—d —b—e a+b+d+e

Equivalently, if we put
10-1 01 —1 000 00 O
-] e-fpay] e-[ARR] e fA2)
then any element of W can be written in the form X = aA+ bB + dD + eE for

some list a, b, d, e of real numbers. This means that A, B, D, E spans W, and
these matrices are clearly linearly independent, so they form a basis for W. (O

a b c 0
R(X =a+btc=dt+e+f=g+h+i
X=|d e f|leV C(X) —atdtg—bteth—ctf+i
. T(X) =atbtctdtetfrg+hti.
g h |

On the one hand, we have
T(X)=a+b+c+d+e+f+g+h+i=
(a+b+c)+(d+e+f)+(g+h+i)=3R(X). We also have
T(X)=a+d+g+b+e+htc+f+i=
(a+d+g)+(b+e+h)+ (c+f+i)=3C(X).

It follows that R(X) = C(X) = T(X)/3.

It is now convenient to consider the subspace W = {X € V | T(X) = 0},
consisting of squares as above for which

atb+c=d+e+f=g+h+i=0
atd+g=b+et+h=c+f+i=00

Next, the matrix @ = | I11| fies in V/ but not in W (because T(Q) = 9).
We claim that Q, A, B, D, E is a basis for V.

Indeed, given X € V we can put t = T(X)/9 and Y = X — tQ.

We then have Y € Vand T(Y)=T(X) —tT(Q)=0,s0 Y € W.

As A, B, D, E is a basis for W, we see that Y = aA + bB + dD + eE for some
a,b,d,e € R. It follows that X =tQ + Y = tQ + aA+ bB + dD + eE.

This means that Q, A, B, D, E spans V.

Suppose we have a linear relation
gQ+aA+bB+dD+eE =0

for some g, a, b, d,e € R. Applying T gives 9g = 0 (because
T(A)=T(B)=T(D)=T(E)=0and T(Q)=9), and so g = 0. This leaves
aA+ bB+dD + eE =0, and A, B, D and E are linearly independent, so
a=b=d=e=0 as well. This means that Q, A, B, D and E are linearly
independent as well as spanning V/, so they form a basis for V. Thus
dim(V)=5. O



Linear maps out of R”

We next discuss linear maps R” — V (for any vector space V).
We will do the case n = 2 first; the general case is essentially the same, but
with more complicated notation.

Definition ??: Let V be a vector space, and let v and w be elements of V.
We then define jiy,w: R = V by

tvw ([Y]) = xv + yw.

This makes sense because:
» x is a number and v € V and V is a vector space, so xv € V.
» y is a number and w € V and V is a vector space, so yw € V.
» xv and yw lie in the vector space V/, so xv + yw € V.

It is clear that py,w is a linear map. O

Linear maps out of R”

For any list V = w1, ..., v, of elements of V, we can define a linear map

uy: R"— V by

wy([x, .- . ,x,,]T) =D, XiVi=xvi+ ...+ XpVa.

Proposition ??:  Any linear map ¢: R" — V has the form ¢ = py for some
list V =wi,..., v, of elements of V (which are uniquely determined by the
formula v; = ¢(e;), where e is as in Definition ??). Thus, a linear map

R" — V is essentially the same thing as a list of n elements of V.

Proof: Put v; = ¢(e;) € V. For any x € R" we have

X=xi1e1 + ...+ xpe, = E Xxi€j,
i

SO

B(x) = in¢(ei) = ZX:'V:' = Huy,.e v (X)),

Linear maps out of R?

Proposition ??:  Any linear map ¢: R> — V has the form ¢ = p,,,, for some
v,w e V.

Proof: The vector e; = [}] is an element of R?, and ¢ is a map from R? to V,
so we have an element v = ¢(e1) € V. Similarly, the vector e; = [9] is an
element of R?, and ¢ is a map from R? to V, so we have an element

w = ¢(e2) € V. We claim that ¢ = py,w. Indeed, as ¢ is linear, we have

¢(xe1 + yer) = xg(er) + yo(e2) = xv + yw = piv.w ([7])-
On the other hand, it is clear that
xe1 +ye = x[g] +y[1]=[}],
so the previous equation reads

o ([3]) = pvw (G-

This holds for all x and y, so ¢ = pv,w as claimed. O

An example

Consider the map ¢: R® — MsR given by

a a a+b a
d) |:b:| = |:a+b a+b+c a+b:|
c a a+b a

Put A = A1, Az, As, where

ooo
oro

w=ster =[] A=oter=[311] A=otei =

coo
[A—1

a 111 010 000 a a+b El a
palb|l=ali11|+b|111|4+Cc|010| = |atbatbtcath| =¢|b
c 111 010 000 c

a a+b a
so ¢ = pa. O



Another example Linear maps from R” to R™

Consider the map ¢: R® — R[x] given by Corollary ??:  Every linear map a: R" — R™ has the form ¢a (as in
3 Example ??) for some m x n matrix A (which is uniquely determined). Thus, a
0] [ﬂ =(a+b+c)xX*+(a+b)(x+1)° +a(x +2)°. linear map a: R" — R is essentially the same thing as an m x n matrix.
Put P = p1, p2, p3, where Proof: A linear map a: R" — R™ is essentially the same thing as a list

. 2 2 2 o2 Vi,...,V, of elements of R”. If we write each v; as a column vector, then the
PLx) = glen) ="+ (x 1) 4 (x +2)7 = 3+ 6x+5 list can be visualised in an obvious way as an m X n matrix. For example, the
p(x) = de) = x* + (x +1)> =2x" +2x + 1 list

p3(X):¢(E3):X2A [%]’[i]’[g]’[g]

corresponds to the matrix
Then 1357
[235¢]
a a
uwp [lca] = a(3x2 +6x+5)+ b(2x2 +2x+1)+ o’ = 1) [lg] .O Thus, a linear map a: R" — R™ is essentially the same thing as an m x n
matrix. There are some things to check to see that this is compatible with
Example ??, but we shall not go through the details. O

A rotation matrix Matrices for vector products

Consider the linear map p: R®* — R? defined by Example ??: Consider a vector a = [a, b,c]” € R?, and define 8: R® — R3 by
B y B(v) = a x v. This is linear, so it must have the form 3 = ¢ for some 3 x 3
p [g] = [i] matrix B. To find B, we note that
(so p(v) is obtained by rotating v through 27/3 around the line x = y = z). B [;] - {‘;ﬁ:jﬁ} ,
z ay —bx
Then 0 ) 0 so 0 b
ple)=[0] e =[3]  nles)=]i] Blen) = 2] Ble2) = o] Bles) = [ 2]
This means that p = ¢r, where These three vectors are the columns of B, so
010 B=| oy l’a]
R=10 0 11O —b a 0
1 00

(Note incidentally that the matrices arising in this way are precisely the 3 x 3
antisymmetric matrices.) O



Matrices for plane projections

Example ??: Consider a unit vector a = [a, b,c]” € R? (so a° + b*> + c? = 1)
and let P be the plane perpendicular to a. For any v € R?, we let m(v) be the
projection of v onto P. The formula for this is 7(v) = v — (v, a)a.
The map 7 is linear, so it must have the form 7(v) = Av for some 3 x 3 matrix
A. To find A, we observe that

xfazxfabyfacz:|

7[5 =[] - ok by v 3] = [

zfacxfbcyfczz

It follows that

1—22 —ab —ac
ﬂ'(el) = | —ab ﬂ'(ez) = | 1-5% 71'(&3) = | —bc |.
—bc 1—¢c?
1-22 —ab —ac
These three vectors are the columns of A, so A= | —ab 1-6> —bc
—ac —bc 1-c2

It is an exercise to check that A> = AT = A and det(A) =0. O

Matrices for linear maps

Let V and W be finite-dimensional vector spaces, with bases V = vi,..., v,
and W = wi,..., wn say. Let a: V — W be a linear map. Then a(v;) is an
element of W, so it can be expressed (uniquely) in terms of the basis W, say

a(vj) = aywi + - - + amjWm.

These numbers aj; form an n x m matrix A, which we call the matrix of o with
respect toV and W.

O

Matrices for linear maps

Let V and W be finite-dimensional vector spaces, with bases V = vi,..., v,
and W = wi, ..., wn say. Let a: V — W be a linear map. Then a(y;) is an
element of W, so it can be expressed (uniquely) in terms of the basis W, say

a(vy) = ayjwr + -+ - + amjWin.

These numbers aj; form an n x m matrix A, which we call the matrix of o with
respect to V and W.

Remark ??: Often we consider the case where W = V and so we have a map
a: V. — V,and V and W are bases for the same space. It is often natural to
take W =V, but everything still makes sense even if W # V. O

Adapted bases for vector products

Example ??: Let a be a unit vector in R®, and define 3: R® — R by
B(x) =ax x

Choose any unit vector b orthogonal to a, and then putc =a x b, so c is
another unit vector that is orthogonal to both a and b. We then have

B(@) =0 = 0a+ 0b + Oc
B(b) =c =0a+0b+1c
B(c) =-b =0a+(—1)b+Oc.

The columns in the matrix we want are the lists of coefficients in the three
equations above: the first equation gives the first column, the second equation
gives the second column, and the third equation gives the third column. Thus,
the the matrix of 3 with respect to the basis a, b, c is

000
[0071}.0
01 0



Adapted bases for projectors Shifting polynomials

Example ?7: Let a be a unit vector in R?, and define 7: R® — R3 by Example ??7: Define ¢: R[x]<s = R[x]<a by ¢(x*) = (x + 1)*. Let A be the
matrix of ¢ with respect to the basis 1, x, x*, x>. We then have
7(x) = x — (a,x)a.
: _ P(1) =1
Choose any unit vector b orthogonal to a, and then putc=a x b, so c is
6(x) =14 x

another unit vector that is orthogonal to both a and b. We then have
(b(x2) =1+2x+x°

m(a) =0 =0a+ 0b+ Oc
(a) ¢(x3):1+3x+3x2+x3,

w(b) =b =0a+1b+0c

m(c) =c =0a+0b+lc. or in other words
The columns in the matrix we want are the lists of coefficients in the three 8% =10 +0x! +0.x2 +0.63 11
. . . . . . . dd) =10 4+ 1x! 1062 4053 o1 2 3
eguatlons above: the first equation gives the _flrst _column, th_e second equation D02) a0 12l 1 1a2 103 Aa=1lo o 1 3]-O
gives the second column, and the third equation gives the third column. Thus, B(3) = 10 4+ 3ud 4302 4153, o 00

the the matrix of 7 with respect to the basis a, b, c is

000
[010].@
001

Example ?7: Define ¢: R[x]<s — R* by Example ?7: Define ¢: R* — R* by
¢(f) = [f(1). F(2),£(3), F(4)]". & [2} _ F‘é]
X3 xp | -
Then x4 X1
) L 1 ; The associated matrix (with respect to the standard basis) is
ow=[1] eo=|:] =[] ser=| ] o= k]
1 4 16 64 256 [0 01 0] O
0100 "
so the matrix of ¢ with respect to the usual bases is 1000
1111 1
21280
1416 64 256



Shifting waves Matrix examples

Example ??: Let V be the space of solutions of the differential equation Example ??: Define ¢: MoR — MoR by ¢(A) = A”. In terms of the usual
f" +f =0, and define ¢: V — V by ¢(f)(x) = f(x + 7/4). As basis
sin(x 4+ m/4) = sin(x) cos( /4) 4 cos(x) sin(7w/4) = %sin(x)—i— %cos(x)7 E =[§8] E=1[83] Es=199] Es=1[89]
h in) = L sin+-L cos. A we have
we have ¢(sin) = 5 sin+-5 cos. As HE) =E —1E+0.E+0E+0.E
cos(x + 7/4) = cos(x) cos(m/4) — sin(x) sin(7/4) = - cos(x) + (——=) sin(x), ¢(E2) =E =0E+0E+1.E+0.E
( /4) (x) cos(m/4) (x)sin(w/4) = 5 cos(x) + (—5) sin(x) AE) —E —O0E+1E+0E+0E
we have ¢(cos) = —% sin +% cos. It follows that the matrix of ¢ with ¢(Es) =E =0E+0E+0.E+1LE
respect to the basis {sin, cos} is The matrix of ¢ is thus
) ) 1 0 0 O
1 1 0 0 1 0
V2 V2
Llﬁ . } O 010 of©
0 0 0 1

Matrix examples Reminders

Example ??:  Define 1): MoR — MR by 9)(A) = A —trace(A)//2. In terms » Given an n X m matrix A, we define a linear map ¢4: R™ — R” by
of the usual basis da(x) = Ax.
Er =[] E,=[0}] Es=[%9] E.=199] » Every linear map from R™ to R" is ¢4 for some A.
» Given a vector space V and a list V = vi,..., vy of elements of V we
we have define py: R™ = V by puy(A) = 3, Aivi.
1 . . . . .
WE) —E—1/2= {2 Ol} _ %E1 0.6+ 0.5 + (—%)sz » If V is a basis then py is an isomorphism.
0 -3 » Suppose we have a linear map a: V — W, a basisV = w,..., vy, for V
Y(B) =E =0.E+1.E+0.E+0.E and a basis W = wi, ..., w, for W. Then there is a unique matrix
(Es) =6 ) =0E+0.E+1.E+0.E A = (ay) such that a(v;) = >, ajw;. This is called the matrix of « with
W(E) =E—1/2= {‘Oii} :(f§).E1+O.E2+O.E3+%.E4 respect to V and W. (O
2
The matrix is thus
1 1
2 0035
6580 O
~300 3



Matrices for linear maps

Proposition ??:  For any x € R™, we have uw(#a(x)) = a(pv(x)), so the two
routes around the square below are the same:

Rm DA R"

w | |

(This is often expressed by saying that the square commutes.)

Proof: We will do the case where m = 2 and n = 3; the general case is
essentially the same, but with more complicated notation. In our case, v1, v» is
a basis for V, and wi, wa, ws is a basis for W. From the definitions of a; and
A, we have

a(vl) = aywi + axws + az1ws ail a2
A= |a an
a(v2) = anowi + anws + anws 231 a32

Composition and matrices

Proposition ??: Suppose we have linear maps U Svew (which can
therefore be composed to give a linear map af: U — W). Suppose that we
have bases U, V and W for U, V and W. Let A be the matrix of a with
respect to V and W, and let B be the matrix of S with respect to U and V.
Then the matrix of af with respect to U/ and W is AB.

Proof: By the definition of matrix multiplication, the matrix C = AB has
entries ik = ) ; ajibj. By the definitions of A and B, we have

a(v;) = Zagw,- Bluk) = ijkvj

af(uk) = o (Zj bfk"f) =2 bealvy) =32 by 3 aiwi =
> (ZJ aijbjk) Wi =Y. CikWw;.

This means precisely that C is the matrix of a8 with respect to U and
W. 0o

Matrices for linear maps

X1

Now consider a vector x = [31] € R?. We have py(x) = xivi + xov2 (by the
definition of uy). It follows that
a(py (X)) = alxqvy +xvp) = xpa(v) + xa(vy)
= x(a11w1 + 21w + a31w3) + xp(a12wy + 22wy + azow3)

= (a110 + a120)w1 + (221x1 + apx)wa + (33151 + a320)w3

On the other hand, we have

a1 212 a11x + 3122
balx) = Ax = lap1  axp [X ] = |a21x +axx |,

31 332 a31x1 +a32%2
SO
a1x +apxp (a11xq + ajpxp)wy+
pw (@A) = pyy @13 +ax0 | = (3210 + a220)wet = a(py (). O
a31x1 + 232%0 (a31x1 + a32x0)w3

Change of basis

Definition ??: Let V be a finite-dimensional vector space, with two different
bases V =v1,...,v, and V' = v{,..., v.. We then have

le = pyvi+ -+ PnjVa

for some scalars p;j. Let P be the n x n matrix with entries p;;. This is called
the change-of-basis matrix from V to V'. One can check that it is invertible,
and that P! is the change of basis matrix from V' to V.



An example

Consider the following bases of R[x]<s:

3 2
v o=x v o=x 3 o=x vy =1
v =3+ x4+ x+1 v; =x3+x2+x vi =53 4+ x2 vi -3
Then

vll =lwvi+lw+lvwvs+1lv
v2' =1lwvi+lw+1lwvs+0.w
v3/ =1lwvi+1vwvw+0.v3+0.vs
v‘{ =1lvi+0wv+0.vz+0.v

[

so the change of basis matrix is

coor

111
111
110
100

Change of basis

Lemma ??: Let V be a finite-dimensional vector space, with two different
bases V =v1,...,v,and V' = v{,...,v.. Let P be the change of basis matrix,
so

Vi = pyvi+ -+ Pojva.

Then for any x € R" we have py(¢p(x)) = uv(Px) = pys(x), so the following
diagram commutes:

R ———M 3+ R"

Pp
ux A
%

Proof: We have Px =y, where y; = ZJ. piixj- Thus

py (Px) = ny i = _Zp,-jxjv,- = ij (Z pU-V,-) = ij‘/j/ =ty (%)
! 1) J ! J

Another example

Consider the following bases of MxR:

Y S Vi PR £
=171 A =114 Ay =2

Al =2.A1 + (—2).A2 + 0.A3 + 1.A
Ay = 0.A1 + 0.4 + 2. A3 + (—1). A
Ay = 0.A1 + 2.4 + 0.A3 + (—1).Aq
AL =0.A1 + 0.A + 0.As + 1.A4

so the change of basis matrix is

2
o
1

N
l voo

-
| onvo
-

=x=1=)
[

Change of basis

Proposition ??: Let a: V — W be a linear map.

Suppose we have two bases V and V'’ for V, with change-of basis matrix P
and two bases W and W’ for W, with change-of-basis matrix Q.

Let A be the matrix of a with respect to V and W,

and let A’ be the matrix with respect to V' and W’. Then A’ = Q' AP.

Proof: We actually prove that QA’ = AP, which comes to the same thing.
For any x € R", we have

uw (QA'X) = iy (A'x) (Lemma ?7)
= a(uyr(x)) (Proposition 77)
= a(pv(Px)) (Lemma ?7)
= puw(APX) (Proposition 77).

This shows that pw ((QA” — AP)x) = 0. Moreover, W is linearly independent,
so pw is injective and has trivial kernel, so (QA’ — AP)x = 0. This applies for
any vector x, so the matrix QA" — AP must be zero, as claimed.



Change of basis

The upshot is that all parts of the following diagram commute:

¢A/

~ >

Kyt R" — s R™ Mt

PA
% ;m
%4 w

INg R™

An example

Example ??: Let a € R® be a unit vector, and define 8: R® — R by
B(x) = a x x. The matrix B of 8 with respect to the standard basis is found as
follows:

flen =[] Ale)=[T] Ae)=[%] B:{i?f;]

—apy ap 0

We have trace(B) = 0 and dex(s) = 0. det [ 0 *Oal] ~(—a3). det [j32 ‘031] +az.det[ 2 0} -

e a —ap ay

0 — (—a3)(a3.0 — (—ap)(—a1)) + ap(azag — 0.(—a)) =0

We can instead choose a unit vector b orthogonal to a and then put c =a x b.
With respect to the basis a, b, c, the map 3 has matrix B’ = [8 0 91]

It is easy to see that trace(B’) = 0 = det(B’).

Either way we have trace(8) = 0 = det(3).

We also find that char(8)(t) = char(B’)(t) = t> + t.

This is much more complicated using B.

Traces and determinants

Remark ??: Suppose we have a finite-dimensional vector space V and a linear
map « from V to itself. We can now define the trace, determinant and
characteristic polynomial of a. We pick any basis V, let A be the matrix of «
with respect to V and V, and put

trace(a) = trace(A) det(a) = det(A)
char(a)(t) = char(A)(t) = det(tl — A).

This is not obviously well-defined: what if we used a different basis, say 1,
giving a different matrix, say A’? The proposition tells us that P~ AP = A’,
and it follows that P~%(t/ — A)P = tI — A’. Using the rules

trace(MN) = trace(NM) and det(MN) = det(M) det(N) we see that

trace(A’) = trace(P ' (AP)) = trace((AP)P ') = trace(A(PP 1)) = trace(A)
det(A’) = det(P) " det(A) det(P) = det(A)
char(A')(t) = det(P) " det(t/ — A)det(P) = char(A)(t).

This shows that definitions are in fact basis-independent.

Another example

Example ?7: Let a € R® be a unit vector, and define m: R® — R® by
m(x) = x — (x,a)a. The matrix P of 7 with respect to the standard basis is
found as follows:

2
l—a% —agay —azay 1-a] —ajay —aja3
m(ey) = | —agap | wler) = | 1-33 m(e3) = *33322 P=|—aja 1—a3 —aya3
—a133 —a33 1-a3 —aja3 —apaz 1—a3

We have trace(P) =1—al+1—a3+1—a3=3—(al + a3 +a3)=2.

We can instead choose a unit vector b orthogonal to a and then put c = a x b.
With respect to the basis a, b, c, the map 7 has matrix P’ = [§ ((1; g].

It is easy to see that trace(P’) = 2.

Either way we have trace(w) = 2.

We also find that det(7) = det(P’) = 0 and

char(m)(t) = char(P’)(t) = t(t — 1)%.

This is much more complicated using P.



The determinant criterion Height of linear relations

Let V be a vector space, and let V = w1, ..., v, be a list of elements in V.

Remark ??: Suppose again that we have a finite-dimensional vector space V
We put V; = span(vi,..., ;) (with the convention that Vo = 0).

and a linear map « from V to itself. One can show that the following are
equivalent:

(a) « is injective There may or may not be any nontrivial linear relations for V.
If there is a nontrivial relation A, so that \ivi + -+ + Apv, = 0 and A # 0 for

(b) a is surjective
some k, then we define the height of A to be the largest i such that \; # 0.

)
(c) «is an isomorphism
(d) det(a) # 0. ] -
o ) For example, if n =6 and 5v1 — 2v» — 2v3 + 3v4 = 0 then [5,—-2,-2,3,0,0]" is
(It is important here that « goes from V to itself, not to some other space.) a nontrivial linear relation of height 4.

We shall not give proofs, however.

Proposition ??: The following are equivalent (so if any one of them is true, The following are equivalent:

then so are the other two): (a) V has a linear relation of height /; (b) vi € Vi_y; (c) Vi= Vi1
(a) The list V has a nontrivial linear relation of height i Example 77: Consider the following vectors in I°:
(b) vi € Vis
— v 1 2 3 4
(€) Vi=Via. vi= |2 w= 13 vz = |4 vs = |5
3 4 5 6

Then vi —2v> + v3 =0, so [1, -2, 1,O]T is a linear relation of height 3.

The equation can be rearranged as vz = —v; + 2v», showing that
vz € span(vi, v2) = V2. One can check that

Va=Vs={[x,y,2]" | x+z=2y}.

Thus, in this example, with i = 3, we see that (a), (b) and (c) all hold.



Proposition ??7: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i

(b) vi € Vi (c) Vi= V.1
Proof that (a)=(b): Let A = [A1,...,\s]” be a nontrivial linear relation of
height i, so Aivi + ...+ A\pv,, = 0. The fact that the height is / means that
Ai # 0 but Ait1 = Aiy2 = -+ = 0. We can thus rearrange the linear relation as
Aivi = —Avi — -0 = Aim1Vicr — AipaViel — -0 — AaVa
= —Aivi — - —Ai—1vie1 — Ovigg — - - — 0.v,p
= —Av1— = Aji—1vio1
Vi= — M — = XA v € Vi

sov; € Vi_1.

Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i

(b) vie Vi (C) Vi=Vi_1.
Proof that (b)=-(c): Suppose again that v; € Vi_1; = span(w,...,Vvi_1), so
Vi = pavi + - - + pi—1vi—1 for some scalars p1, ..., pui—1. We need to show that

Vi = Vi_1, but it is clear that V;_; < V;, so it will be enough to show that

V; < Vi_;. Consider an element w € V;; we must show that w € V;_;. As

w € V; we have w = A1v1 + - - - + \;jv; for some scalars A1,...,\;. This can be
rewritten as

w=Avi 4o Acavien + Ai(pave - pie1vier)
= (A + Xipa)vi + (A2 + Aip2)va + -+ (Nica + Aipio1)vier.

This is a linear combination of vi,..., vi_1, showing that w € V;_4, as
claimed.

Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vi € Vi (c) Vi= V.1

Proof that (b)=-(a): Suppose that v; € Vi_; = span(vi,...,vi-1), so
Vi = pivi + -+ - + pi—1vi—1 for some scalars p1, ..., ui—1. We can rewrite this
as a nontrivial linear relation

pivi+ -+ picivier + (=1).vi + 0vig1 + - - + 0.v, = 0,

which clearly has height i.

Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Vi (C) Vi=Vi_1.

Proof that (c)=(b): Suppose that V; = Vi_1. It is clear that the element v;
lies in span(vi,...,v;) = Vi, but V; = Vi_1, so v; € V_1.
This completes the proof of the Proposition. O

Corollary ??: |If for all i we have v; € V;_1, then there cannot be a linear
relation of any height, so ¥V must be linearly independent. O
Corollary 7?: The following are equivalent:

(a) The list V has no nontrivial linear relation of height i

(b) vi¢ Vi (c) Vi# Vi1

If these three things are true, we say that i is a jump.



Every spanning set contains a basis

Lemma ??: Let V = vy,..., Vv, be a list that spans a vector space V.
Then some sublist V' C V is a basis for V.

Proof: Put I’ = {jumps} = {i<n|vig€ Vi_1},and V' ={v; | i € I'}.
We first claim that V' is linearly independent.
If not, then there is a nontrivial relation.
If we write only the nontrivial terms, then the relation takes the form
AVip + -+ Avi, =0
with i, € I’ for all k, and Aip 0 forall k, and i < --- < ip.
This can be regarded as a nontrivial linear relation for V, of height i..
Proposition ?? therefore tells us that v; € Vi _1, which is impossible, as i, is a
jump.
This contradiction shows that 1’ must be linearly independent, after all.

Existence of bases

Corollary ??: Every finite-dimensional vector space has a basis.
Proof: By Definition ??, we can find a finite list V that spans V. By
Lemma ??, some sublist V' C V is a basis.

Every spanning set contains a basis

V= span(V) = Span(Vl, ceey Vn); V= span(vl, ey V;);
I"= {jumps} = {i < n|v; & Via1}; Vi={vi|iel}.

Now put V’ = span(V’). We will show by induction that V; < V/ for all i < n.
For the initial step, we note that Vo = 0 so certainly Vo < V’. Suppose that
Vi_1 < V'. There are two cases to consider:

(a) Suppose that i is a jump, so i € I’. Then (by the definition of V') we have
vieV andsovie V. AsV;=V,_; +Ry;and Vi_.; < V' and Ry; < V/,
we conclude that V; < V',

(b) Suppose that i is not a jump, so v; € Vi_; and so V; = Vi_;. By the
induction hypothesis we have V;_; < V/, so V; < V.

Either way we have V; < V', which proves the induction step. We therefore

have V; < V' for all i < n. In particular, we have V, < V’. However, V, is just

span(V), and we assumed that V spans V, so V,, = V. This proves that

V < V', and it is clear that V' < V, so V = V’. This means that V' is a

spanning list as well as being linearly independent, so it is a basis for V. O

Steinitz's lemma

Lemma ??7: Let V be a vector space, and let V = v1,..., v, and

W = wi, ..., Wn be finite lists of elements of V such that V spans V and W is
linearly independent. Then n > m.

(Any spanning list is at least as long as any linearly independent list.)

Proof: As before, we put V; = span(vi,...,v;), so V, =span(V) = V. We will
show by induction that any linearly independent list in V; has length at most /.
In particular, this will show that any linearly independent list in V = V,, has
length at most n, as claimed.

For the initial step, note that Vy, = 0. This means that the only linearly
independent list in V4 is the empy list, which has length 0, as required.

Now suppose (for the induction step) that every linearly independent list in
Vi_1 has length at most i — 1. Suppose we have a linearly independent list
X1, ..., Xp in Vi; we must show that p < i. The elements x; lie in

Vi = span(vy, ..., v;). We can thus find scalars ajx such that

Xj = ajivi + ajpVe + - -+ + @j,i-1Vi-1 + ajiVi.



Steinitz's lemma

Every independent list in V;_1 has length at most / — 1
X1, ..., Xp independent in V; Xj = ajvi + apve + -+ ajivi.

We need to consider two cases:
(a) For each j the last coefficient aji is zero.

(b) For some j the last coefficient aji is nonzero.

Case (a): Suppose that for each j the last coefficient aj; is zero. This means
that

Xj = ajvi + apve + -+ + @j,i-1Vi-1,
so xj € span(vi,...,vi—1) = Vi—1. This means that xi,..., X, is a linearly
independent list in Vi_1, so the induction hypothesis tells us that p < /i —1, so
certainly p < /.

Steinitz's lemma

Every independent list in Vi_; has length at most /i — 1
X1, ..., Xp independent in V/; Xj = ajvi + apve + -+ - + ajivi;
Yk = Xk — QXp = Xk — akidy; Xp € Vi

Next, suppose we have a linear relation A1y1 + -+ - + Ap—1¥p—1 = 0. Put
AP = 7A1a1 — )\2042 — s — )\pflapfl.

By putting yx = Xk — axXp in the relation A\1y1 + -+ + Ap—1yp—1 = 0 and
expanding it out, we get Adix1 + ...+ Ap—1Xp—1 + ApXp = 0. As x1,...,Xp is
independent, this means that we must have A\; =--- = X1 =X, =0. It
follows that our original relation among the y's was trivial. We conclude that
the list y1,..., yp—1 is an independent list in V;_1. As explained before, the
induction hypothesis now tells usthat p—1<i—1, so p <.

This completes the induction step. So any independent list in V; has length at
most /. In particular, any independent list in V = V,, has length at most n.
This completes the proof of Steiniz's lemma.

Steinitz's lemma

Every independent list in V;_1 has length at most / — 1
X1, ..., Xp independent in V; Xj = ajivi + apve + - + ajivi.

Case (b): Suppose that for some x; we have aji # 0.

It is harmless to reorder the x’s, so for notational convenience we move this x;
to the end of the list, which means that ap; # 0.
Now put ay = ak,-a;l and yx = Xk — QkXp.

We will show that y1,...,y,—1 is a linearly independent list in V;_;. Assuming
this, the induction hypothesis gives p — 1 < i — 1, so p < i as required. First,
we have

—1 —1
Yk =Xk — akidy Xp = akivi + -+ aKVi — akia, (apvi + - -+ apivi)

= (a; — akia;,'lapl)vl + (ak2 — akiaglapz)vz + 4 (ak — akiapiilapi)vi‘

In the last term, the coefficient ax — ak,-a;lap,- is zero, so yi is actually a linear
combination of vi,...,vi_1, so yx € Vi_1.

Invariance of dimension

Corollary ??: Let V be a finite-dimensional vector space. Then V has a finite
basis, and any two bases have the same number of elements, say n. This
number is called the dimension of V. Moreover, any spanning list for V has at
least n elements, and any linearly independent list has at most n elements.

Proof: We already saw in Corollary ?? that V has a basis, say V = vi,..., V.
Let X be a linearly independent list in V. As V is a spanning list and X is
linearly independent, Steinitz's Lemma tells us that V is at least as long as X,
so X has at most n elements. Now let ) be a spanning list for V. As ) spans
and V is linearly independent, Steinitz's Lemma tells us that ) is at least as
long as V, so ) has at least n elements. Now let V' be another basis for V.
Then V' has at least n elements (because it spans) and at most n elements
(because it is independent) so it must have exactly n elements.

Corollary 7?: If V is a finite-dimensional vector space over R with dimension
n, then V is isomorphic to R".
Proof: LetV = wi,..., v, be any basis; then py: R” — V is an isomorphism.



Recollections

Proposition ??7: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vi € Vi (c) Vi= V.1

Corollary ??: If for all i we have v; € Vi_1, then there cannot be a linear
relation of any height, so V must be linearly independent.

Corollary 7?: Let V be a finite-dimensional vector space. Then V has a finite
basis, and any two bases have the same number of elements, say n. This
number is called the dimension of V. Moreover, any spanning list for V has at
least n elements, and any linearly independent list has at most n elements.

Extending to a basis

Proposition ??: Let V be an n-dimensional vector space, and let

Y =w,..., Vv, be a linearly independent list of elements of V. Then p < n,
and V can be extended to a list V' = v1, ..., v, such that V' is a basis of V.
Proof: Corollary 77 tells us that p < n. If span(vi,...,v,) = V then we take
Vi=vi,...,v.

Otherwise, we choose some v,11 & span(vi, ..., vp).

If span(vi, ..., Vpr1) = V then we stop and take V' = (v, ..., Vp41).
Otherwise, we choose some v,12 & span(vi, ..., Vy11) and continue in the same
way.

We always have v; & span(vi, ..., vi—1), so the v's are linearly independent (by

Corollary 7?). Any linearly independent list has length at most n (by

Corollary 7?) so our process must stop before we get to vy41. This means that
V' =w,...,vm with m < n, and as the process has stopped, we must have
span(V’) = V. As V' is also linearly independent, we see that it is a basis, and
so m = n (by Corollary 7? again).

Subspaces are finite-dimensional

Proposition ?7?7: Let V be a finite-dimensional vector space, and let W be a
subspace of V. Then W is also finite-dimensional, and dim(W) < dim(V).

Proof: Put n=dim(V). We define a list W = wi, ws, ... as follows.

If W =0 then we take WV to be the empty list.

Otherwise, we let wy be any nonzero vector in W.

If wi spans W we take W = wj.

Otherwise, we can choose an element w> € W that is not in span(wi).

If span(wi, wo) = W then we stop and take W = wi, ws.

Otherwise, we can choose an element ws € W that is not in span(wy, w»).

We continue in this way, so we always have w; & span(wi,...,w;_1), so the
w's are linearly independent (by Corollary ??). However, V has a spanning set
of length n, so Steinitz's Lemma tells us that we cannot have a linearly
independent list of length greater than n, so our list of w's must stop before we
get to wny1. This means that for some p < n we have W = span(wa, ..., w,),
so W is finite-dimensional, with dim(W) = p < n.

Proposition ??: Let V be an n-dimensional vector space.
(a) Any spanning list for V with exactly n elements is linearly independent,
and so is a basis.

(b) Any linearly independent list in V with exactly n elements is a spanning
list, and so is a basis.

Proof:

(a) Let V = (wi,...,Vs) be a spanning list. Lemma ?7? tells us that some
sublist V' C V is a basis for V. As dim(V) = n, we see that V' has length
n, but V also has length n, so V' must be all of V. Thus, V itself must be
a basis.

(b) Let W = (wa,...,w,) be a linearly independent list. Proposition ?? tells
us that W can be extended to a list W D W such that W' is a basis. In
particular, W' must have length n, so it must just be the same as W, so
W itself is a basis.



Proposition ?7: Let V be an n-dimensional vector space. Proposition ??: Let U be a finite-dimensional vector space, and let V and W
be subspaces of U. Then one can find lists (u1,..., up), (v,...,vq) and
(wi, ..., w;) (for some p, q,r > 0) such that

» (u1,...,up) is a basis for VN W

(a) Any spanning list for V with exactly n elements is linearly independent,
and so is a basis.

(b) Any linearly independent list in V with exactly n elements is a spanning

list, and so is a basis. » (u1,...,Up,Vi,...,Vq) is a basis for V
» (ui,...,Up,Wa,...,w,) is a basis for W
Corollary ??: Let V be an finite-dimensional vector space, and let W be a > (u1,...,Up,Vi,..., Vg, W1,..., W) is a basis for V + W.

subspace with dim(W) = dim(V); then W = V. In particular, we have
Proof: Put n=dim(V) =dim(W), and let W = wi, ..., w, be a basis for dm(VAW) =p dim(V)=p+qg dim(W)=p+r dim(V+W) = p+q+r,
W. Then W is a linearly independent list in V with n elements, so part (b) of

the Proposition tells us that W spans V. Thus V = span(W) = W. so dim(V) +dim(W) =2p + g+ r = dim(V N W) +dim(V + W).

Two subspaces Two subspaces

Proof: Choose a basis U = (u1,...,up) for VN W. Now suppose we start with an element x € V + W.
Then U is a linearly independent list in V/, so it can be extended to a basis for We can then find y € V and z € W such that x =y + z.
V,say (ui,...,Up, Vi,...,Vq). As (u1,...,Up,v1,...,Vq) is a basis for V, we have
Similarly U is a linearly independent list in W, so it can be extended to a basis
for W, say (u1,..., Up, Wi,..., W). y=Au+- -+ Xtp+ fivi+ -+ Bovg
. . . for some scalars \;, §;.
All that is left is to prove that the list Similarly, we have
Xo= (UL, ey Upy Viyeeoy Vg, WE, ooy W) Z= pat 4 fiplp + VIV - YW
is a basis for V 4+ W. Consider an element for some scalars ui, V.

X =oqur+ -+ app + fivi + - + BgVg + 1w + - + 7w, € span(X). If we put aj = A + pui we get

Puty => ciui+> . Bjvjand z= 3", vwi, so x = y + z. We have X=y+z=aun+-+appt+fivit--+Pqvgtywit- -+ ywr € span(X).
1 ) '

u,vyeVandwieWsoyeVandze Wsox=y+zc V4 W. Thus It follows that span(X) = V + W.
span(X) <V + W.



Two subspaces

Finally, suppose we have a linear relation
aiun + -+ apUp + fivi + o+ Bevg +awa + - + yew, = 0.

Puty =3 aiui+ 3> ;Bjvjand z =3, vkwk, so y +z =0, so z= —y. Now
y € V,so z also lies in V, because z=—y. Alsoze W,soze VN W. We
know that U is a basis for VN W, so z = A\ju1 + - - - 4+ Apup for some
A1, ..., Ap. This means that

)\1u1—|—---+APup—'71W1 —~~~—’er,:0.
We also know that (u1,..., up, wa,...,w,) is a basis for W, so the above gives
A ==X =7 ="+--=7 = 0. Feeding this back into our original

relation, we get ajuy + - + apup + fr1vi + - - - + Bqvg = 0.

The list (u1, ..., Up, va,...,Vq) is a basis for V, so the above gives
ar=---=ap=p1=---=04=0. As all s, B’s and 7's are zero, we see
that our original linear relation was trivial. This shows that the list X is linearly
independent, so it gives a basis for V 4+ W as claimed.

An example

Now put
00 0 00 0 00 1 00 0
vlz{oo D],VZ:[OO o},wlz[oo 0},W2:[00 1]
10-—-1 01 -1 00—1 00—1

sovi € Vand w; € W. A typical element of V has the form

ab—a—b 0 0
A=|cd—c—d :au1+bu2+cu3+du4+[ 0 0 0 }
ef —e—f e—a—cf—b—datbtctd—e—f

= auy + buy + cuz + dug + (e —a — c)vy + (f — b — d)vy.

Using this, we see that w1, ..., us, vi, v2 is a basis for V. Similarly,
u1,...,Us, w1, ws is a basis for W. It follows that

ui, uz, us, Us, vi, Vo, Wi, W

is a basis for V + W.

An example

Put U = M3R and
V={AcU] all rowssumtoO}:{A€U|AH] = [g]
W={AeU]| all columnssumto 0} ={Aec U|[1,1,1]A=0,0,0]}

Then V N W is the set of all matrices of the form

a b —a—b 10-1 01 —1 000 00 O
A= [—ac—cfifda;b:jcid] :a[_olg ? ]+b[8_01 (1) ]+c[_llg—11]+d[g_11—11]
It follows that the list
1 —1
o [3§7] 0|

is a basis for VN W.

coo
coo

1 -1 000 00 0
0 0 |,u3=|10-1],u={01 -1
-1 1 —10 1 0-11

Another example

Put U = R[x]<3 and

V={feU|f(1)=0}={(x-1)g(x) | g(x) € R[x]<2}
W ={f € U|f(—1) =0} = {(x + 1)h(x) | h(x) € R[x]<>}
so VAW ={f e U|fis divisible by (x + 1)(x — 1) = x> — 1}

Any f(x) € VN W has the form (ax + b)(x* — 1) = a(x® — x) + b(x* —1). It
follows that the list u; = x> — X, Uy = x%> — 1 is a basis for VN W. Now put
vi=x—1€Vand vy = x+ 1€ W. We claim that u1, u2, vi is a basis for V.
Indeed, any element of V has the form

f(x)=(ax* +bx+c)(x—1)=ax’+ (b—a)x*+ (c— b)x — ¢
—am+(b—a)ux+(a— b+ c)w,

so the list spans V. If we have a linear relation au; + bu, + cvi = 0 then

a(x® = x)+b(x* —1) +c(x—1) =0 forall x, so ax® + bx* + (c —a)x —c =0
for all x, which implies that a = b = ¢ = 0. Our list is thus independent as well
as spanning V/, so it is a basis. Similarly u1, uz, wy is a basis for W. It follows
that uy, Uz, vi, wy is a basis for V + W.



Adapted bases Adapted bases

Theorem ??: Let a: U — V be a linear map between finite-dimensional

vector spaces. Then one can choose a basis U = u1, ..., un for U, and a basis U — basis for U V= basis for V
YV =w,...,v, for V, and an integer r < min(m, n) such that a(;)ui .V.'.f,oL;mla< ?s<|sror a(;)vio .f;)\r/nra< ?s;s r:r
(@) a(ui) =vifor1<i<r Urily- .., Un a basis for ker(a) < U wi,..., v a basis for_image(a) <V
(b) auj)=0forr<i<m
() tr41,..., um is a basis for ker(a) < U Corollary ??: If a: U — V is a linear map then
(d) vi,..., v is a basis for image(a) < V.
dim(ker(a)) + dim(image(a)) = dim(U).
Remark ?77: If we use bases as in the theorem, then the matrix of a with
respect to those bases has the form Proof: Choose bases as in the theorem. Then dim(U) = m and
A | O dim(image()) = r and
On—r,r [ On—rom— dim(ker()) = [{trs1, .-, tum}| = m — r.

The claim follows.

Adapted bases Adapted bases

Consider an element x € U. We then have a(x) € image(a), and vi,...,v is a
Y= basis for U v— basis for V/ basis for image(a), so there exist numbers A1,..., A, such that
. ; Um a basis for 7v1""_’ Vn @ basis tor a(x) = vi + ...+ Ave. Now put X' = Aiun + ... + A, and X7 = x — x'.
(a) ( )fv,forlglgr (b) a(ui) =0forr<i<m We have
(¢) trs1,...,um a basis for ker(a) (d) vi,..., v, a basis for image(«)
a(x') = Ma(un) + -+ Ma(u) = v + -+ v = ax),
Proof of Theorem 77: _ _ _ o so a(x") = a(x) — a(x’) =0, so x” € ker(a). We also know that
Let vi,..., v, be any basis for image(a) (so (d) is satisfied). Ur41, .- ., Um is a basis for ker(a), so there exist numbers A\r11, ..., Ay with
" o__ . .
By Proposition 7?7, this can be extended to a list V = w1, ..., v, which is a x" = Arj1Ur41 + - - - + Amum. Putting this together, we get
basis for all of V. Xx=x 4+ x" = tr+ 4+ M) + Crsrtirss + -+ Amiim),
Next, for j < have v; €i , h i € U with - .
a?Z,) _orVJ‘ (_sor (";’; isa:aeti‘s/jfieedl)mage(a) 50 we can choose € T v which is a linear combination of ui, ..., uy,. It follows that the list &/ spans U.
lj) = Vj .
This gives us a list ui, ..., u, of elements of U; to these, we add vectors
Ur41, .- ., Um forming a basis for ker(a) (so that (b) and (c) are satisfied).

Now everything is as claimed except that we have not shown that the list
U=u,...,um is a basis for U.



Adapted bases

Now suppose we have a linear relation Aju1 + - - - + Apum = 0. We apply a to
both sides of this equation to get

0=Xa(um) + -+ Aau) + Arpra(urg) + -+ - + Ana(um)
:)\1V1+"'+ArVr+)\r+1-0+"'+)\m-O
= )\1V1 + - +Arvr~

This is a linear relation between the vectors vi, ..., v,, but these form a basis
for image(a), so this must be the trivial relation, so Ay =--- = A, = 0. This
means that our original relation has the form

)\r+lur+1 4+ 4+ Amum =0

As Uri1,...,Um is a basis for ker(a), these vectors are linearly independent, so
the above relation must be trivial, so A\;+1 = --- = A, = 0. This shows that all
the \'s are zero, so the original relation was trivial. Thus, the vectors
u1, ..., Un are linearly independent. We have already seen that they span U, so
they give a basis for U.

Eigenvalues and eigenvectors

Definition ??: Let V be a finite-dimensional vector space over C, and let

a: V — V be a C-linear map. Let A\ be a complex number. An eigenvector for
a, with eigenvalue X is a nonzero element v € V such that a(v) = Av. If such
a v exists, we say that X is an eigenvalue of a.

Remark ??: Suppose we choose a basis V for V, and let A be the matrix of «
with respect to V and V. Then the eigenvalues of a are the same as the
eigenvalues of the matrix A, which are the roots of the characteristic
polynomial det(t/ — A).

An example

Consider the map ¢: MR — MR given by ¢(A) =[11]A[94], or

equivalently
olzal=1112 51051 =311 21 = [5id 24<]
=(b+d)[io]+(a+)[51].

It follows that if we put
w=[g5] w=I[50] w=I[ig] w=I[3

]

then ¢(u1) = vi, ¢(u2) = w2, and vi, v2 is a basis for image(¢). It can be
extended to a basis for all of M,R by adding vs =[%5] and v = [J9].
Moreover, we have ¢(A) =0iffa+c=b+d=0iffc=—aand d =—b, in
which case

e

A=[28]=a[18]+b[8 4]

This means that the matrices uz = [31 8] and us = [8 31] form a basis for
ker(¢). Putting this together, we see that w1, ..., us and vi,..., vs are bases

for MbR such that ¢(u;) = v; for i <2, and ¢(u;) =0 for i > 2.

Eigenvalue examples

Example 77: Put V = C[x]<4, and define ¢: V — V by ¢(f)(x) = f(x + 1)
so ¢(x¥) = (x 4+ 1) for all k < 4. We claim that 1 is the only eigenvalue.
Indeed, the corresponding matrix P (with respect to the basis 1, x,...,x*) is

11111
01234
P=100136
00014
00001

The characteristic polynomial is thus

t—1 —1 —1 —1 —1
0 t—1 —2 —3 —4

det(tl — P) = det { 0 0 t—1-3 —6 5
0

=(t—1)
0 t—1 —4
0 0 0 0 t—1

so 1 is the only root of the characteristic polynomial. The eigenvectors are
just the polynomials f with ¢(f) = 1.f or equivalently f(x 4+ 1) = f(x) for all
x. These are just the constant polynomials.



Eigenvalue examples

Example ??7: Put V = C[x]<4, and define ¢: V — V by ¢(f)(x) = f(ix), so
#(x¥) = i*x*. The corresponding matrix P (with respect to 1,x,x% x>, x*) is

|

det(t/—P) = (t—1)(t—i)(t+1)(t+i)(t-1) = (t=1)(£*+1)(£*—1) = £ —t*—t+1

i

-
ol coo
—oooo

10 0
0i 0
P= (00—
00 0
00 0

The characteristic polynomial is thus

so the eigenvalues are 1,/,—1 and —i.

> The eigenvectors of eigenvalue 1 are functions f € V with f(ix) = f(x).
These are the functions of the form f(x) = a + ex*.

> The eigenvectors of eigenvalue i are functions f € V with f(ix) = if(x).
These are the functions of the form f(x) = bx.

» The eigenvectors of eigenvalue —1 are functions f € V with
f(ix) = —f(x). These are the functions of the form f(x) = cx°.

Eigenvalue examples

Example ??: Let u and v be non-orthogonal vectors in R3, and define
¢: C* = C° by ¢(x) = (u,x)v. We claim that the characteristic polynomial of
¢ is t3(t — u.v). Indeed, the matrix P with respect to the standard basis is
calculated as follows:

v vy

s o= [$4] oo [B3] oo [4]
uivs upv: uzvy

ujvp upvy U3V

ujvy Upvy U3vy
P =
[”1 v3 upv3 u3v3

The characteristic polynomial is det(t/ — P) = — det(P — tI), which is found
as follows:

det(P — tl)

upvy—t upvp  uzvp

= det upvy upvp—t uzvp
upvz  upvz uzvz—t

_ wpvp—t uzvy upvy  ugvp upva upvp —t
7(u1\/17t)det|: vy u3V3—z] *U2V1de‘[ul\/3 u3V3—t}+”3V1de‘[u1V3 upv3 }

Eigenvalue examples

Example ??: Let u be a unit vector in R and define a: C* — C3 by
a(v) = u x v. Choose a unit vector b orthogonal to a and put c =a x b. We
saw previously that the matrix of a with respect to a, b, c is

00 0
A= [o 0 71}
01 0
The characteristic polynomial is thus

det(t/ — )—det[o ¢ ﬂ =t +t=t(t+i)(t—1i).

The eigenvalues are thus 0, i and —i.
» The eigenvectors of eigenvalue 0 are the multiples of a.
» The eigenvectors of eigenvalue i are the multiples of b — ic.

» The eigenvectors of eigenvalue —i are the multiples of b 4 ic.

Eigenvalue examples

uyvyp —t Uz v 2
det [ 2uz2v3 u33327t} = (upvy — t)(ugv3 — t) — upvguzvp = t° — (upvy + u3zvz)t

upvy uzv
det [UIV3 L/3V37t] = uva(u3vy — ) — vpvzu3vy = —upvpt

uyjvp upvy —t
det [u}v% v | = uvaupvs — wyva(upvy — 1) = uyvat

det(P — tl) = (uyvy — t)(£2 — (upvp + u3v3)t) — ugvy (—uyvpt) + ugvyuyvat
= (upvy + upvp + u3\/3)t2 -

det(tl — P) = t5 — (u1v; + tpvp + uzv3)t? = t2(t — (u,v))

The eigenvalues are thus 0 and (u,v). The eigenvectors of eigenvalue 0 are
the vectors orthogonal to u. The eigenvectors of eigenvalue (u,v) are the
multiples of v.

If we had noticed this in advance then the whole argument would have been
much easier. We could have chosen a basis of the form a,b,v with a and b

00 0
orthogonal to u. With respect to that basis, ¢ would have matrix [g 8 ( 0 J
u,v

which immediately gives the characteristic polynomial.



Inner products

Definition ??: Let V be a vector space over R. An inner product on V is a
rule that gives a number (u, v) € R for each u, v € V, with the following
properties:

(@) (u+v,w) ={u,w) + (v,w) forall u,v,w € V.

(b) (tu,v) = t{u,v) for all u,v € V and t € R.

(c¢) (u,v)={(v,u) forall u,v e V.

(d) (u,u) >0forall ue V, and (u,u) =0 iff u=0.

Given an inner product, we write ||u|| = /(u, u), and call this the norm of u.
We say that u is a unit vector if |ju| = 1.

We say that v and v are orthogonal if (u,v) = 0.

The standard inner product on R”

(@) (u+v,w) = (u,w) + (v, w) (b) (tu,v) = t(u,v)
(c) (u,v) = (v, u) (d) (u,u) >0, equality iff u =0

Example ??: We can define an inner product on R" by

X1 Y1 n
<|:E:|,|:E:|>:inyi:X1y1+x2y2+"'+xnyn-

Yn i=1

Xn

Properties (a) to (c) are obvious. For property (d), note that if
u=[us,...,u)" €R"then

(wu)y =i+ 3+ + 0.

All the terms in this sum are at least zero, so the sum must be at least zero.
Moreover, there can be no cancellation, so the only way that (u,u) can be zero
is if all the individual terms are zero, which means uy = =--- = u, =0, so
u = 0 as a vector.

Other fields

Remark ?7?: Unlike most of the other things we have done, this does not
immediately generalise to fields K other than R. The reason is that axiom (d)
involves the condition (u, u) > 0, and in an arbitrary field K (such as Z/5, for
example) we do not have a good notion of positivity.

Moreover, all our examples will rely heavily on the fact that x? > 0 for all
x € R, and of course this ceases to be true if we work over C. We will see in
Section ?? how to fix things up in the complex case.

Inner products and matrix multiplication

Remark ??: If x,y € R" then we can regard x and y as n x 1 matrices, so x"
is a1 x n matrix, so x"y is a 1 x 1 matrix, or in other words a number. This
number is just (x,y). This is most easily explained by example: in the case

n =4 we have

1T o y1

{Xz] {”} =[x % xx] [ﬁ} = x1y1 + Xy + x3y3 + xays = (X, y).

X3 ¥3
X4 ya ya



Inner products of physical vectors

Example 7?: Let U be the set of physical vectors, as in Example ??7. Given
u,v € U we can define

(u,v) =(length of u in miles) x (length of v in miles)x
cos( angle between u and v ).
This turns out to give an inner product on U. Of course we could use a

different unit of length instead of miles, and that would just change the inner
product by a constant factor.

Inner products of matrices

(@) (u+v,w) = (u,w) + (v, w) (b) (tu,v) = t(u,v)
(c) (u,v) = (v, u) (d) (u,u) >0, equality iff u =0

Example ??: We can define an inner product on the space M,R by
(A, B) = trace(ABT).

. aj1 a2 byy by by3
Consider for example the case n =3, so a= [321 a2 323] B = | by1 byp by3
3] 232 233 b3y by b3z
so
+ e a2 a3 [ b b21 b3
AB' = | a1 a2 @3 | | byp by b3y | =
231 232 333 | | by3 byg baz

ap1 byy+appbyo+apzbyz apy byy+anabyo+ax3bo3 a1 b3y +apo b3z +azzbsz

[311 byy+ayabya+aizbyz a1 by +arpboo+aizboz a1 b3y +aro bz +arzbsz ]
a31 b1y +a3abyo+azzby3 a3y by1 +ag2bro+a33bo3 a31b31+a32b3p +a33b33

T a11b11 + a12b1p + a13b13+ 3.3
so (A, B) = trace(AB' ) = ap1bpy + appboy + apzboz+ = Z Z a,-jb,-j.
a31 b3 + a3pb3p + a33b33 i=1j=1

In other words (A, B) is the sum of the entries of A multiplied by the
corresponding entries in B. Thus, if we identify M,R with ]R"z, our inner
product on M,R corresponds to the standard inner product on R™.

Inner products of functions

(@) (u+ v, w) = (u,w) + (v, w) (b) (tu,v) = t{u,v)
(c) (u,v) ={v,u) (d) {u,u) >0, equality iff u=0

Example ??: We can define an inner product on C[0, 1] by

(u,v) = /01 u(x)v(x) dx.

Properties (a) to (c) are obvious. For property (d), note that if u € C[0, 1] then

(u, u) = /01 u(x)’ dx

As u(x)? > 0 for all x, we have {(u, u) > 0.

If (u, u) = 0 then the area between the x-axis and the graph of u(x)? is zero,
so u(x)? must be zero for all x, so u = 0 as required.

(There is a more careful proof in the notes.)

Inner products for quadratic polynomials

Example ??: For any a < b we can define an inner product (-, )}, 5 on
R[x]<2 by

b
(U, V)[ap) = / u(x)v(x) dx.

In particular, we have

L b L L
X:+J+1 :| B bl+1+1 _ al+j+1

b
s = i gy —
e /ax x {H—j—&—l i+j+1

a

This gives an infinite family of different inner products on R[x]<>.

13— (-1)3
<1aX2>[—1,1l:7§ ) =2/3
4_ _ 4

1 L(l D',

<X7X2>[71,1] =

15 — (-1 5
R e VL

55705

=25
5

2
Ix“Nlo,51 =



Another example

Example ??: Let V be the set of functions of the form p(x)e’xz/z, where

p(x) is a polynomial. For example, the function f(x) = (x* — x)efxz/z, shown

in the graph below, is an element of V:

We can define an inner product on V by (f, g) f_ f(x)g(x

Note that this only works because of the special form of the functions in V. For
most functions f and g that you might think of, the integral [*_f(x)g(x) dx

will give an infinite or undefined answer. However, the function e - decays
very rapidly to zero as |x| tends to infinity, and one can check that this is
enough to make the integral well-defined and finite when f and g are in V.

The Cauchy-Schwartz inequality

If v and w are vectors in R? or R®, you should be familiar with the fact that
(v, w) = [|v|[lw]| cos(8),
where 6 is the angle between v and w.

In particular, as the cosine lies between —1 and 1, we see that
(v, w)| < [|v]l [[wl].

We would like to extend all this to arbitrary inner-product spaces.

In fact, we have the formula
oo
2 2 2
—x2/2 — 2 —
(x"e™ /2 xMe X/>:/ x™Me™*" dx
— 00

{ﬁ _(ntm)! _ if n+ mis even

20Fm ((ntm)/2)!
if n+ mis odd

o

The Cauchy-Schwartz inequality

Theorem ?77:
Let V be an inner product space over R, and let v and w be elements of V.
Then (v, w)| < ||v]| ||w]|, with equality iff v and w are linearly dependent.

Proof: We may assume w # 0 (otherwise everything is trivial).

For any real numbers s and t, we have
0 < |lsv+ tWH2 (sv+tw,sv+tw) =s (v v) + st{v, w) + st({w, v) + 2 (w,w) =

S2|vI|? + 2st(v, w) + 62| w|?.
Now take s = (w, w) = ||w||* and t = —(v, w). The above inequality gives
0 < fwl*Ivii® = 21wl (v, w)2 + (v, w)2lIwll = Iwl 2wl Ivii? = (v, w)?).

We have assumed that w # 0, so ||w/|> > 0. We can thus divide by ||w/|* and
rearrange to see that (v, w)? < ||v|]?||w|?. It follows that |{v, w)| < ||v||||w||
as claimed.



The Cauchy-Schwartz inequality The Cauchy-Schwartz inequality

s = [wl|? t=—(v,w) llsv + tw]* = [|w|P(Iwl?[[v]* — (v, w)?) Theorem ?77:
Let V be an inner product space over R, and let v and w be elements of V.
Then |(v, w)| < ||v|| ||w]|, with equality iff v and w are linearly dependent.

If we have equality (i.e. [(v, w)| = ||v||||w]|) then our calculation shows that
lsv + tw|> =0, so sv + tw = 0. Here s = ||w||*> > 0, so we have a nontrivial
linear relation between v and w, so they are linearly dependent.

Conversely, suppose we start by assuming that v and w are linearly dependent.
As w # 0, this means that v = Aw for some X\ € R. It follows that

(v,w) = A|w|]?, so [(v,w)|| = |A]||w||>. On the other hand, we have

vl = [Alllwll, so ||lv]l llw]l = |Al]lw]|[?, which is the same.

An example of Cauchy-Schwartz An example with functions

Example ??7: We claim that for any vector x € R”, we have We claim that for any continuous function f: [0,1] — R we have

1
a4l S VA ’/(lfxz)f(x)dx
0

To see this, use the standard inner product on R”, and consider the vector

e=1[1,1,...,1]". We have Indeed, we can define an inner product on C[0,1] by (u, v) = fol u(x)v(x) dx.
We then have ||f]| = \/fol f(x)? dx and
[Ixll = /o 4+ X2 .
llell = v/n ||1—X2||2:(1—x2,1—x2>:/ 1—2x" + x* dx
0

(x,€) =x1 4+ -+ Xp. 1
’ ! :[X—%X3+%X5i|0:1—%+%:8/15

11— = \/8/15

The Cauchy-Schwartz inequality tells us that |[(u, f)| < |lu|| ||f]], so

— 2 .. 2
< IIxlllell = v/ 4o+ 3, 3= () b <\ B\ /Iy F(x)? dix as claimed.

The Cauchy-Schwartz inequality therefore tells us that

x4+ xal = [(x, €}

as claimed.



Examples with matrices

Let A be a nonzero n X n matrix over R. We claim that

(a) trace(A)? < ntrace(AAT), with equality iff A is a multiple of the identity.

(b) |trace(A?)| < trace(AAT), with equality iff A is either symmetric or
antisymmetric.

In both cases we use the inner product (A, B) = trace(AB”) on M,R and the

Cauchy-Schwartz inequality.

(a) Apply the inequality to A and /, giving [(A, )| < ||A||||/]|, or equivalently

(A, 1> < ||AJP||1]]> = trace(AAT ) trace(/1T)

Here (A, 1) = trace(A) and trace(//T) = trace(/) = n, so we get
trace(A)? < ntrace(AAT) as claimed. This is an equality iff A and / are
linearly dependent, which means that A is a multiple of /.

Definition ??: Let V be an inner product space over R, and let v and w be
nonzero elements of V, so ||v| [[w|| > 0. Put ¢ = (v, w)/(||v]|||w]|). The
Cauchy-Schwartz inequality tells us that —1 < ¢ < 1, so there is a unique angle
0 € [0, 7] such that cos(6) = c. We call this the angle between v and w.

Example ??: Take V = C[0, 1] (with the usual inner product), and v(t) =1,
and w(t) = t. Then ||v|| =1 and ||w| = 1/v/3 and (v, w) = 1/2, so
(v, w)/(llv]l llwl]) = V/3/2 = cos(/6), so the angle between v and w is /6.

Example ??: Take V = MsR A= [‘1’%‘1’] B= [i??}
010 000

HAH:\/02+12+02+12+22+12+02+12+02:\/§:2«/§

1B =12 402 102 +12 112 +12 £ 02 4 02 + 02 = V4 = 2
(A,B) =0.1+1.0+00+1.1+21+1.14+0.0+1.0+0.0=4

o (A, B)/(|AlllBIl) = 4/(4v/2) = 1/3/2 = cos(n/4). The angle between A
and B is thus 7 /4.

Examples with matrices

Let A be a nonzero n X n matrix over R. We claim that

(a) trace(A)? < ntrace(AAT), with equality iff A is a multiple of the identity.

(b) |trace(A?)| < trace(AAT), with equality iff A is either symmetric or
antisymmetric.

In both cases we use the inner product (A, B) = trace(AB”) on M,R and the

Cauchy-Schwartz inequality.

(b) Now instead apply the inequality to A and A7, noting that
IA] = ||AT]| = v/trace(AAT) and (A, AT) = trace(AAT") = trace(A?).
The conclusion is that | trace(A?)| < y/trace(AAT)\/trace(AAT), which
gives | trace(A?)| < trace(AAT). This is an equality iff A is a multiple of
A, say AT = )\A for some \. This means that A= ATT = \AT = \2A,
and A # 0, so this means that A2 =1, or equivalently A=+1. If A =1
then AT = Aand A'is symmettric; if A = —1 then AT = —Aand A is
antisymmetric.

Orthogonal complements

Definition ??: Let V be a vector space with inner product, and let W be a
subspace. We then put

Wt ={veV]|(v,w)=0forall we W}

This is called the orthogonal complement (or annihilator) of W. We say that
W is complemented if W + W+ = V.

Lemma ??: We always have W N W= = 0. (Thus, if W is complemented, we
have V =W @ W)

w) = 0 for all

Proof: Suppose that v € W N WL, As v € W, we have (v,
= (v,v) =0. This

w € W. As v € W, we can take w = v, which gives ||v||?
implies that v = 0, as required.



Orthogonal sequences

Definition ??7: Let V be a vector space with inner product. We say that a
sequence V = vi,..., v, of elements of V is orthogonal if we have (v;,v;) =0
for all i # j. We say that the sequence is strictly orthogonal if it is orthogonal,
and all the elements v; are nonzero. We say that the sequence is orthonormal if
it is orthogonal, and also (v;, v;) =1 for all i.

Remark ??: If V is a strictly orthogonal sequence then we can define an
orthonormal sequence V1, ..., 0, by Ui = vi/||vi|.

Pythagoras

Lemma ??: Let w1,..., Vv, be an orthogonal sequence, and put
V=vi+---+V, Then

vl = VIl + -+ [vall
Proof: We have
2
IVIP= Qv > v =D (vi,v).
i J )
Because the sequence is orthogonal, all terms in the sum are zero except those
for which i = j. We thus have

IvI? = (vi,vi) = Z llvil|?.

i

We can now take square roots to get the equation in the lemma.

Orthonormal examples

Example ??: The standard basis ey, ..., e, for R" is an orthonormal sequence.

Example ??: Let a, b and c be the vectors joining the centre of the earth to
the North Pole, the mouth of the river Amazon, and the city of Mogadishu.
These are elements of the inner product space U discussed in Examples ??
and ??. Then a, b, c is an orthogonal sequence, and a/4000, b/4000, c/4000 is
an orthonormal sequence.

(Of course, these statements are only approximations. You can take it as an
exercise to work out the size of the errors involved.)

Linear independence

Lemma ?7: Any strictly orthogonal sequence is linearly independent.

Proof: Let V = vi,..., v, be a strictly orthogonal sequence, and suppose we
have a linear relation A\1vqy + -+ + A\,v,, = 0. For each i it follows that

<V,',A1V1 + -4 A,,Vn> = <V,‘,0> =0.
The left hand side here is just
Ar{vi, vi) + Xa(vi, vo) + -+ -+ An(Vi, V).

Moreover, the sequence V is orthogonal, so the inner products (v;, v;) are zero
unless j = i, so the only nonzero term on the left hand side is Ai(v;, v;), so we
conclude that Ai(v;, v;) = 0. Moreover, the sequence is strictly orthogonal, so
vi # 0, so (vi,vi) > 0. It follows that we must have \; = 0, so our original
linear relation was the trivial one. We conclude that V is linearly independent,
as claimed.



Orthogonal projections

Proposition ??: Let V be a vector space with inner product, and let W be a
subspace. Suppose that we have a strictly orthogonal sequence

W = wi, ..., w, that spans W, and we define
<V7 W1> <V7 WP>
a(v)= ~~—~—Lwy + -+ Py,
)= T, wy Wy )

(for all v € V). Then 7(v) € W and v — 7(v) € W, so
v =m(v)+ (v —n(v)) € W+ W=, In particular, we have W + W+ =V, so
W is complemented.

Remark ??: If the sequence W is orthonormal, then of course we have
(wk, wk) = 1 and the formula reduces to

m(v) = {(v,wi)wi + ... + (v, wp)wp.

Orthogonal sequences

Definition ??: Let V be a vector space with inner product. We say that a
sequence V = vi, ..., v, of elements of V is orthogonal if we have (v;,v;) =0
for all i # j. We say that the sequence is strictly orthogonal if it is orthogonal,
and all the elements v; are nonzero. We say that the sequence is orthonormal if
it is orthogonal, and also (v;, v;) = 1 for all i.

Lemma ??: Let v1,..., Vv, be an orthogonal sequence, and put
v=wvi+---+ v, Then

Ivil = VIl + -+ [lval2

Orthogonal projections

Proof: First note that the coefficients A\j = (v, w;)/(w;, w;) are just numbers,
so the element m(v) = Aiwi + ... 4+ Apw, lies in the span of wi, ..., w,, which
is W. Next, we have

(Wi, m(v)) = M{wi, wa) + ..o+ Ai{wi, wi) + .o+ Ap(wi, wp).

As the sequence W is orthogonal, we have (w;, w;) = 0 for j # i, so only the
i'th term in the above sum is nonzero. This means that
<V7 Wl'>

{wi, m(v)) = Mi{wi, w;) = o (Wi, wi) = {v, w;) = (w;, v),

so (wi, v — m(v)) = (wi, v) — (w;,m(v)) = 0. As this holds for all i, and the
elements w; span W, we see that (w,v — w(v)) = 0 for all w € W, or in other
words, that v — m(v) € W, as claimed.

Orthogonal projections

Proposition ??7: Let V be a vector space with inner product, and let W be a
subspace. Suppose that we have a strictly orthogonal sequence

W = wi, ..., w, that spans W, and we define
<V7 W1> <V7 WP>
mVv)=—"—""m+- -+ ——W,
)= T, may ™ (W w5) "

(for all v € V). Then m(v) € W and v — mr(v) € W, so
v=mn(v)+ (v —m(v)) € W+ W= In particular, we have W + W+ =V, so
W is complemented.

Remark ??: If the sequence W is orthonormal, then of course we have
(Wi, wx) =1 and the formula reduces to

m(v) = (v,wi)wr + ... + (v, Wp)wp.



Parseval's inequality

Corollary ??: Let V be a vector space with inner product, and let
W = wi, ..., w, be an orthonormal sequence in V.
Then for any v € V we have |v[]> > 37 (v, w;)°.

Moreover, this is actually an equality iff v € span(W).

Proof: Put W = span(W), and put (v) = > 7 (v, wi)w; as in
Proposition ??. Put ¢(v) = v — m(v), which lies in W™. The sequence

(vywi)wa, ..., (v, wp)wp, €(v)

is orthogonal, and the sum of the sequence is w(v) + ¢(v) = v. Lemma ??
therefore tells us that

HWF:HWJWWMV+-”+HWW%WMF+H4@W:4kwm2+§:WwW?

All terms are > 0, so ||v|® > 3", (v, w;)?, with equality iff [|e(v)||* = 0.
Moreover, we have |le(v)||> = 0 iff e(v) = 0 iff v = 7(v) iff v € W.

The closest point

Proposition ?7: Let W and 7 be as in Proposition ??. Then 7(v) is the
point in W that is closest to v.

Proof: Put x = v — 7(v), so x € W=, The distance from v to 7(v) is just
|lv = m(v)|| = ||x||. Now consider another point w € W, with w # 7(v). The
distance from v to w is just ||v — w||; we must show that this is larger than
||x||. Put y =m(v) — w, and note that v — w = 7t(v) + x — w = x + y. Note
also that y € W (because 7(v) € W and w € W) and x € W, so

(x,¥) = 0= (y,x). Finally, note that y # 0 and so |ly|| > 0. It follows that

v = wl* = llx + yI* = (x +y,x +y)
= (x) + 5y + s x) + (v, y)
= [IxI* + 0+ 0+ [Iylf* > fIxI|*.

This shows that ||[v — w|| > ||x]| = ||v — 7(v)]|, so w is further from v than
w(v) is.

The Gram-Schmidt procedure

Theorem ??: Let V be a vector space with inner product, and let

U = u1,...,u, be a linearly independent list of elements of V.
Then there is a strictly orthogonal sequence V = vi,..., v, such that
span(vi, ..., v;) =span(ui,..., u;) for all i.

Proof: The sequence W is generated by the Gram-Schmidt procedure, which
we now describe.

Put U; = span(u, ..., u;). We will construct the elements v; by induction.
For the initial step, we take vi = u1, so (v1) is an orthogonal basis for Us.

Suppose we have constructed an orthogonal basis vi, ..., v,—1 for Ui_1.
Proposition ?? then tells us that U;_1 is complemented, so V = U,{l + Ui—1.
In particular, we can write u; = vi + w; with v; € U,{l and w; € U;_1.
Explicitly, the formulae are

= (Ui, vj)
W,':Z<I_7J\/j Vi = uj — w;.



The Gram-Schmidt procedure The Gram-Schmidt procedure

Uk = span(ui, ..., uk) Vi,...,Vvi—1 an orthogonal basis for Ui_1 Corollary ??: If V and U are as above, then there is an orthonormal sequence
ui = vi+w; vie Uty w; € Ui U1,..., U with span(¥1,...,0;) =span(uy,...,u) for all i.
Asvi € Ut and vi,...,vi_1 € Ui_1, we have (v;,v;) =0 for j < i, so Proof: Just find a strictly orthogonal sequence vi, ..., v, as in the

(va,...,vi) is an orthogonal sequence. Proposition, and put ¥ = v;/||vi|| as in Remark ?7.

Next, note that U; = Ui—1 + Ru;. As u; = v; + w; with w; € Ui_1, we see that
this is the same as Ui_1 + Rv;. By our induction hypothesis, we have

Ui—1 = span(vi,...,vj_1), and it follows that

Ui = Ui—1 + Rv; = span(vi, ..., vi).

This means that vi,...,v; is a spanning set of the i-dimensional space U;, so it
must be a basis. O

An example An example

Example ??: Consider the following elements of R®:

1 —1/2 1/3
1 0 0 0 1 1/2 -1/3
fl ] -] -] " = H w=| Y B
0 0 1 1 0 0 1
0 0 0 1 0 0 H
We apply the Gram-Schmidt procedure to get an orthogonal basis for the
T
space U = span(uy, u2, u3, us). We have vi = ug =[11000]", 50 (v1,n) =2 It now follows that (v3, v3) = 4/3 and {us, v3) = 1, whereas
and (u2,v1) = 1. Next, we have (ua, v1) = (ua, vo) = 0. It follows that
0 1 —1/2 1/3 ~1/4
v =y — M‘d = [i] - % [é] = { 1{2 } . (ug, vi) (ug, v2) (ug, v3) § 1 7{/3 1{44
Vi, Vi Vg = ug — vy — vy — vy = - — = | _ .
o 1§ 0 ; A IR T Y BERVER B e
0 1
It follows that {v»,v») = 3/2 and (us, vo) = 1, whereas (uz, vi) = 0. It follows .
that In conclusion, we have
—1/2 1/3
R C: I VAV C. L T § N I VA I e 1 ~1/2 1/3 —1/4
(v v (v, v2) (1) 3/2 é 123 Vi = (]5 v = 1{2 vz = _11/{;,3 Vg = _1{;4
0 0 1 1/4
0 0 0 1



A polynomial example A polynomial example

Example ?7: Consider the space V = R[x]<> with the inner product
(p,q) = fil p(x)q(x) dx. We will apply the Gram-Schmidt procedure to the vi=1 V2 =X vi=x"—1/3
usual basis 1, x, x? to get an orthonormal basis for V. We start with
vi =ty = 1, and note that (vi,v1) = fil 1dx = 2. We also have

(x,v1) = fil xdx = [x2/2]1_1 =0, so x is already orthogonal to v;. It follows We find that

that (x, vi) <V3,V3>:/1 (X271/3)2dX:/1

Vo = X — (V1, v1> Vi = X, -1 -1

and thus that (v, 1) = [1 x*dx = [x?’/3]1_1 =2/3. We also have

1
x4f§x2+é dx = [%xs - %x3 + %x} = 8/45.
-1

The required orthonormal basis is thus given by
1 1 0 =w/llvll=1/v2
(o= [ Pde=23 ()= [ Xax=0 & = v/l = /372
03 = va/||vs|| = \/45/8(x* — 1/3).

=
([

so
2 2
2 (x,wv) (x*, va) > 2/3 2
_ 2 _ N L P )
V3 =X i) Vi (v, va) Vo = X 3 X /

A matrix example A matrix example

| n=[l
1 2" loo

coco
| oo
oro

. 111 . _ 3 0 _[oo
Example ??: Consider P = 000, and let V be the space of 3 x 3 symmetric A= [8 3] s [(1)8

matrices of trace zero. We will find the matrix Q@ € V closest to P.

The Gram-Schmidt procedure works out as follows:

b
The general form of a matrix in V is A= [2 d o< ] . Thus, if we put

—a—d By = Ay
10 0 010 001 00 0 000 BZ:A2—<A2’BI>BI:A2
a=[g88] m-[fad] o[ w-[85] ~- (88 oy
. . . B = A <A3v51>8 (A3, B2)
we see that an arbitrary element A € V can be written uniquely as T e Y By 2
aA1 + bA; + cAs + dAs + eAs, so Ay, ..., As is a basis for V. boa  PaBD L (ABy o (ABy 1
FTY T LB L By By : (B3, B3) ~ Tt
It is not far from being an orthonormal basis: we have (A;, A;) = 2 for all i, _ [3? 3 ] _t [g,g 9 ] _ [‘})/2‘} ’ ]
. . 00— 00— —
and when i # j we have (A;, A;) = 0 except for the case (A1, As) = 1. z o 0172
(As, B1) (45, B) (45, B3) (A5, By)
Bs = Ag — By — By — By — By = As.

(B1, B1) ! (B2, Bo) 2 (B3, B3) 3 (Ba, Ba) ¢



A matrix example A matrix example

@
_
|
—
ocor
coco

We have ||Bs|| = /3/2 and ||B;|| = v/2 for all other i. After noting that

(1/2)/+/3/2 = 1/+/6, it follows that the following matrices give an
orthonormal basis for V:

The closest point in V to Pis Q =Y, , <B >> B,

The relevant inner products are (P, B1) = (P, B,) = (P, Bs) =1 and

~ 1 10 0 Y 1 . 1
B [585] e [198] & -5 [889] (P, Bs) = —1/2 and (P, Bs) = 0.
a- - [938] -2 [581]. Also (By, Bi) = (Ba, By) = (Bs, Bs) = 2 and (Ba, Bs) = 3/2, so

0 1 B BB -1 2B 2/3 1/2 1/2
— ——ZBi=|1/2-1/3 0
2( 1+ B+ B3) + 5 354 [1?2 O/ 71/3]

We now discuss the analogue of inner products for complex vector spaces. Example ??: We can define a Hermitian form on C" by
Given z = x + iy € C, we write Z for the complex conjugate, which is x — iy. (U, V) = Vi + -+ + UnVi.

Definition ??: Let V be a vector space over C. A Hermitian formon V is a This gives
rule that gives a number (u, v) € C for each u,v € V, such that:

(@) (u+v,w) ={u,w) + (v,w) forall u,v,w € V.

(b) (tu,v) = t{u,v) forall u,v € V and t € C.

(¢) (u,v) = (v,u) for all u,v € V. In particular, by taking v = u we see that
(u, uy = (u, u), so (u, u) is real.

Jull? = (u,u) =[]+ + |ua).

(d) For all u € V we have (u, u) > 0 (which is meaningful because
(u,u) € R), and (u,u) =0 iff u = 0.

Note that (b) and (c) together imply that (u, tv) = t{u, v).

Given an inner product, we will write ||u|| = y/(u, u), and call this the norm of

u. We say that u is a unit vector if |Ju|| = 1.



Hermitian adjoints Hermitian examples

Definition ??: For any n x m matrix A over C, we let AT be the complex Example ??: We can define a Hermitian form on C[t] by

conjugate of the transpose of A, so for example )
(r.g) = [ (0@
0

. . . 1—i 4—i
[1+I 240 3+1}T _ |:271. 57“] .
6—i

4i B+i 64i P
_, n . This gives
The above Hermitian form on C" can then be rewritten as R 1 )
L 7 = (£, 7y = [ IFoP ot
(u,v) =v'u=ufv. 0

Example ??: We can define a Hermitian form on M,C by
(A, B) = trace(B' A). If we identify M,C with C" in the usual way, then this is
just the same as the Hermitian form in Example ?7.

Results about Hermitian forms Adjoints of linear maps

Definition ??: Let V and W be real vector spaces with inner products (or

Let V be a vector space over C with a Hermitian form.
complex vector spaces with Hermitian forms). Let ¢: V — W and ¢p: W — V

22 : . .
Theorem 77 (The Cauchy-Schwartz |nequa.lllty). N . be linear maps (over R or C as appropriate). We say that ¢ is adjoint to 1 if
For v,w € V we have |(v, w)| < |lv|| ||w]||, with equality iff v and w are linearly we have
dependent over C. O
P (6(v), w) = (v, (w)
Lemma ??: Let v1,..., v, be an orthogonal sequence in V, and put forallve Vandwe W.
V=it v Then vl = /Tl + -+ [[va]l%. O
Proposition ?7: Let W = w, ..., w, be an orthonormal sequence in V. Then

for any v € V we have
P
2 2
IVIP > (v, wi) .
i=1

Moreover, this inequality is actually an equality iff v € span(W). ]



Adjoints for matrices

This is essentially a basis-free formulation of the operation of transposing a
matrix, as we see from the following example.

Example ??: Let A be an n X m matrix over R, giving a linear map

¢a: R™ = R" by $a(v) = Av. The transpose of A is then an m x n matrix AT,
giving a linear map ¢,7: R" — R™. We claim that ¢,7 is adjoint to ¢a. This
is easy to see using the formula (x,y) = x"y as in Remark ??. Indeed, we have

(@a(u),v) = (Au,v) = (Au) v =u"ATv = (u, ATv) = (u, §,47(v)),
as required.

Example ??: Let A be an n X m matrix over C, giving a linear map
$a: C™ — C" by ¢pa(v) = Av. Let At be the complex conjugate of A”. Then
Pt is adjoint to @a.

Differentiation is anti self adjoint

Example ??7: Let V be the set of functions of the form p(x)e’xz/z, where

p(x) is a polynomial. We use the inner product (f,g) = ffooo f(x)g(x) dx, as

—x2/2

in Example ??. If we have a function f(x) = p(x)e in V, we note that

F(x) = p'(x)e "2 + p(x).(~x).e > = (p'(x) — x p(x))e 72,

and p’(x) — x p(x) is again a polynomial, so f'(x) € V. We can thus define a
linear map D: V — V by D(f) = f'. We claim that D is adjoint to —D. This
is equivalent to the statement that for all f and g in V, we have

(D(f),g) + (f,D(g)) = 0. This is true because

=] oo d
() + () = [T et + g () d = [T S (F0g) b = (001 e
J—oo —o0 dx

= ijm f(x)g(x) — Jim f(x)g(x)-

. . 2 .
Both limits here are zero, because the very rapid decrease of e * /2 wipes out

the much slower increase of the polynomial terms.

Cross products are anti self adjoint

Fix a vector a = [a1, a2, a3]” € R?, and define a: R® — R® by a(x) = a x x.
Then

aoxa— axx3y1 — asxey1+

2X3 —azxy Y1 ap X1y

(a(x), y> = <[33X1—31X3] s [Y2]> = azxiy2 — aixzyp+ = det [32 X2 ,V2}
a1 Xxp —apx] ¥3 a3z X3 y3

aiXays — aXxiys
It follows that
(a(x),y) = det[a|x|y] = — det[aly|x] = —(a(y),x) = (x, —a(y))
soa’ = —a. Alternatively, we have a = ¢a, where A is as found below:
_a

ae) =[] ale)=[3]  ale) =[] A:{i?fil}

—az ai —ay a 0

It follows that a” = ¢,7 = ¢_a = —av.

An example

Example ??: Consider the vector spaces R[x]<> (with inner product
(f,g) = fol f(x)g(x) dx) and R? (with the usual inner product). Define maps
#: R[x]<2 — R? and ¢: R? — R[x]<> by

o(f) = [ 1] [5] = (30p + 309)* — (36p + 249)x + (9p + 3q).
Claim: ¢ is adjoint to 1. To check, consider f(x) = ax® + bx + ¢ € R[x]<2
and v = [7] € R?. Note that f(0) = c and f(1) = a+b+c, 50 ¢(f) = [ arbrc]:
We must show that (f,1(v)) = (¢(f), v), or in other words that

1
/0 (ax2 + bx 4 ¢)((30p + 30q)x2 — (36p + 24q)x + (9p + 3q)) dx = pf(0) + q (1) = pc + g(a+ b+ c).

This can be done with Maple: entering

expand (int ((a*x~2+b*x+c)* ((30*p+30%q) *x~2 - (36*p+24*q)*x + (9%p+3*q)),x=0..1));

gives cp + aq + bqg + cq, as required.



Existence of adjoints Existence of adjoints

Proposition ??: Let V and W be finite-dimensional complex vector spaces

Proposition ?7?7: Let V and W be finite-dimensional real vector spaces with
with Hermitian forms. Let ¢: V — W be a C-linear maps.

inner products (or complex vector spaces with Hermitian forms). Let

:V — Wbeali RorC iate).
¢ e a linear map (over IR or C as appropriate) Then there is a unique map ¥ = ¢': W — V that is adjoint to ¢.
Then there is a unique map ¥: W — V that is adjoint to ¢. (We write ¢ = ¢*
in the real case, or ¢ = ¢' in the complex case.) Proof:  We first show that there is at most one adjoint. Suppose that ¥ and

)’ are both adjoint to ¢, so

We will prove the complex case; the real case is similar but slightly easier.
(v,(w))

= <¢(V)7 W> = <V7"/}/(W)>

for all v € V and w € W. This means that (v,y(w) — ¢'(w)) = 0 for all v
and w. In particular, we can take v = ¢(w) — ¢'(w), and we find that

l[p(w) = ' (W)II* = ((w) — &' (w), b(w) — ' (w)) =0,
so (w) = ' (w) for all w, so ¥ =)'

Existence of adjoints Periodic functions

Definition ??: We say that a function f: R — C is periodic if
f(t+2m) = f(t) for all t € R. We let P be the set of all continuous periodic
functions from R to C, which is a vector space over C. We define a Hermitian

To show that there exists an adjoint, choose an orthonormal basis
YV =w,...,v, for V, and define a linear map ¢p: W — V by

n

bw) = > (w, 6() form on by L g
j=1 f = — f(t t) dt.
(r.8)= 5 [ (00
Recall that (x, \y) = X(x, y), and that (x,y) = (y,x). Using these rules we
find that Some important elements of P are the functions e, (for n € Z), s, (for n > 0)

and ¢, (for n > 0) defined as follows:

Vi w W)y = S v (w, Bl vg) = 32 T B (Vi vj) = D_(0(4)), w) (v i) = {B(), w).
J J J
en(t) = exp(int) sn(t) = sin(nt) ¢n(t) = cos(nt)
More generally, any element v € V can be written as Z,X,-v; for some

X1,...,%s € C, and then we have De Moivre's theorem tells us that

Cn+15p
(en —e—n)/(2i)

This shows that 1) is adjoint to ¢, as required. cn = (en+ e_n)/2.

(b)) = 32 (v b (W) = 3¢ (). w) = (& (Z_ x,-v,-) W) = (o), w). €n

Sn



Trigonometric polynomials

Definition ??: We put
T, =span({ex | —n< k<n})<P,

and note that T, < T,41 for all n. We also let T denote the span of all the
ex's, or equivalently, the union of all the sets T,. The elements of T are the
functions f: R — C that can be written in the form

f(t) = z”: akex(t) = z": ax exp(ikt)

for some n > 0 and some coefficients a_,, ..., a, € C. Functions of this form
are called trigonometric polynomials or finite Fourier series.

Projection onto T,

Definition ??: For any f € P, let m,(f) be the orthogonal projection of f in
T, so

n

() = D (f,em)em.

m=—n

We also put €,(f) = f — ma(f), so f = mn(f) + en(f), with m,(f) € T, and
en(f) € T;- (by Proposition 7).

An orthonormal basis

Proposition ??: The sequence e_,,€_p41,...,€n—1, € is an orthonormal basis
for Ty (so dim(T,) =2n+1).
Proof: For m # k we have

1 on 1 e )
(e em) = 7/ ex ()em (D) dt = 7/ expikt) exp( — imt) dt
27 Jo 27 Jo

xp(i(k — 2w
= [ itk — my = = [; pliCk m)r)}
27 Jo 2 i(k — m)

- m (ez(“*’")“" - 1) .

k—m)mi

0

As k — m is an integer, we have e =1 and so (ex, em) = 0. This shows
that the sequence of e;'s is orthogonal. We also have

1 pon 1 on 1 on
(eprep) = 7/ ex (t)er (D) dt = 7/ exp(2kit) exp(—2kit) dt = 7/ 1dt = 1.
2 Jo 2x Jo 2x Jo

Our sequence is therefore orthonormal, and so linearly independent. It also
spans T, (by the definition of T,), so it is a basis.

Another orthogonal basis

Proposition ??: The sequence C, = ¢, C1,...,Cn, S1, - - -, Sy iS another
orthogonal basis for T,. It is not orthonormal, but instead satisfies
IIskll> = 1/2 = ||ck||® for k > 0, and ||co> = 1.

Proof: We use sy, = (em — e—m)/(2i) and cm = (em + e—m)/2.

If k £ m (with k, m > 0) we see that e, and e_y are orthogonal to e, and
e_m. It follows that

(Smy Sk) = (Sm, ck) = {Cm, Sk) = {Cm, ck) = 0.

Now suppose that 0 < m < n, so ¢y and s, are both in C,. We have
(ém,e—m) =0, and so

(sm cm) = 25 (em — e_msem +e_m) = 2:((em, em) + (em, e_m) + —(e_msem) — (e_m,e_m))

=ta+o-0-1n=0

This shows that C, is an orthogonal sequence.



Another orthogonal basis The L2 convergence theorem

For k > 0 we have Theorem ??: For any f € P we have ||e,(f)|| — 0 as n — oo.
11 )
(K, s6) = §§<ek — € k& — e k) Proof: See Appendix ?7?.
= %(1 —-0-0+1)=1/2. (The proof is not examinable and will not be covered in lectures.)

Similarly, we have {(ck, cx) = 1/2. In the special case k = 0 we instead have

o Remark ??: Recall that 7,(f) is the closes point to f lying in T,, so the
c(t) =1 forall t, so (co,co) = (2m) ™" [ 1dt = 1. This completes the proof.

number ||en(f)|| = ||f — ma(f)]| can be regarded as the distance from f to T,.
The theorem says that by taking n to be sufficiently large, we can make this
distance as small as we like. In other words, f can be very well approximated
by a trigonometric polynomial of sufficiently high degree.

Corollary ??: Using Proposition 7?7, we deduce that

m(f) = (f,c0)co + 2D (Fraee+2 (F, se)sk.
k=1 k=1

Parseval's theorem Parseval's theorem

Corollary ??: For any f € P we have Similarly, using Corollary ?? and Proposition ??, we see that

oo fe o) oo n n
IF12 = Kf el = [(f, ) +2) [(f,al* +2) I(F, sl lma(AI* = [(F, co) Plleoll® + > 41F, e Plleel® + D 41K, s sl
k=—o0 k=1 k=1 k=1 k=1
Proof: As e_,,...,e, is an orthonormal basis for T,, we have =[{f,c)* + 22 (F, cl* +2 Z \(F,56)|°
k=1 k=1
I = lea(H)IP = [lma(IF = 1| D (Fredel® = D [(F,en)] We can again let n tend to infinity to see that
k=—n k=—n

2 _ 2 2 2
By taking limits as n tends to infinity, we see that ||f||> = 370 |(f, ex)|*. 17 = [{f, co)” + 2; [(Fs ca)l” + 2}(2: I(F, sl
-1 =1



Self-adjoint operators

Definition ??: Let V be a finite-dimensional vector space over C. A
self-adjoint operator on V is a linear map a: V — V such that af = a.

The diagonalisation theorem

Theorem ??: If a: V — V is a self-adjoint operator, then one can choose an
orthonormal basis V = w1, ..., v, for V such that each v; is an eigenvector of a.

Eigenvalues are real

Theorem ??: If a: V — V is a self-adjoint operator, then every eigenvalue of
« is real.

Proof: First suppose that A is an eigenvalue of «, so there exists a nonzero
vector v € V with a(v) = Av. We then have

v, v) = (v, v) = (a(v),v) = (v,al (v) = (v, a(v) = (v, Av) = X(v, ).

As v # 0 we have (v, v) > 0, so we can divide by this to see that A\ = },
which means that A is real.

A useful lemma

Lemma ??: Let a: V — V be a self-adjoint operator, and let W < V be a
subspace such that a(W) < W (ie a(w) € W for all w € W). Then
a(W) < wt,

Proof: Suppose that v € W™; we must show that a(v) is also in W=, To see
this, consider w € W, and note that (a(v), w) = (v, af(w)) = (v,a(w)) (by
the definition of adjoints and the fact that af = a). As a(W) < W we see
that a(w) € W, so (v,a(w)) = 0 (because v € W=). We conclude that
{(av),w) =0 for all w € W, so a(v) € W' as claimed.



Proof of Theorem ??

Put n = dim(V); the proof is by induction on n. If n =1 then we choose any
unit vector vi € V and note that a(v;) € V = Cvq. This means that

a(v1) = A1vi for some A1 € C, so v; is an eigenvector, and this proves the
theorem in the case n = 1.

Now suppose that n > 1. The characteristic polynomial of « is then a
polynomial of degree n over C, so it must have at least one root (by the
fundamental theorem of algebra), say A1. We know that the roots of the
characteristic polynomial are precisely the eigenvalues, so A1 is an eigenvalue,
so we can find a nonzero vector u; € V with a(u1) = A1u1. We then put

vi = u1/||u1]], so ||v1]| =1 and vy is still an eigenvector of eigenvalue A1, which
implies that a(Cv1) < Cvi. Now put V' = (Cv1)*. The lemma tells us that
a(V') < V’, so we can regard « as a self-adjoint operator on V. Moreover,
dim(V’) = n — 1, so our induction hypothesis applies. This means that there is
an orthonormal basis for V' (say v», v3, ..., v,) consisting of eigenvectors for a.
It follows that vi, va, ..., v, is an orthonormal basis for V' consisting of
eigenvectors for a.

Another example

Let T, be the set of trigonometric polynomials of degree at most n. We use

the usual inner product on T,, given by (f,g) = f2:0 f(t)g(t) dt. Define

t:

§: To— T, by 6(f) = if’ (where i = v/=1). We have
(f,6(g)) — (6(F), &)

[ 0w - i 0@ de =i [ (0 0 + £ (0l o
0 0

27
. d _ .
= —i| L (f(t)g(t)) dt = —i[f(2m)g(2m) — £(0)g(0)] =0,
so § is self-adjoint. We have e (t) = ik ex(t), so §(ex) = —k ex, so e is an

eigenvector of eigenvalue —k. These eigenvectors give us an orthonormal basis.

An example

Let a € R? be a unit vector. Define 7: C* — C* by m(v) = (v,a)a. This is
self-adjoint because

<7T(V)7W> = ((v,a)a,w) = (v,a) <a,w>

whereas

<V,7T(W)> = <V, <W7a>a> = <an> <Vva> = <avw><vva>7

which is the same. Now choose another unit vector b orthogonal to a and put
c=a x b. Then a,b, c is an orthonormal basis for R>. Moreover, we have
m(a) = a and 7(b) = 0 and 7(c) = 0, so a, b and c are all eigenvectors for =
(with eigenvalues 1, 0 and 0).

Another example

Define 7: MsC — M;C by 7(X) = X'. We find that
(7(X), Y) = trace(r(X) Y') = trace(XTVT) = trace((YX)") = trace(Y X)
(X, 7(Y)) = trace(X7(Y)") = trace(X7(7(Y))) = trace(XY) = trace(Y X).

This shows that 7 is self-adjoint. The matrices

0 0 0
| or-G88] -]
give an orthonormal basis for MsR. For k < 6 we have 7(Px) = Px, so Py is
an eigenvector of 7 with eigenvalue +1. Similarly, for k > 6 we have
T(Px) = —Px, so Py is an eigenvector of 7 with eigenvalue —1.



