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inequality, projections, the Gram-Schmidt procedure.
Adjoints of linear maps: Definition, proof of existence and uniqueness.

Diagonalisation of self-adjoint operators: Self-adjoint operators have
real eigenvalues, and admit an orthonormal basis of eigenvectors.

Fourier theory: in terms of inner product spaces.
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Predefinition ??: A vector space (over R) is a nonempty set V of things such
that

(a) If u and v are elements of V/, then u + v is an also an element of V.
(b) If uis an element of V and t is a real number, then tu is an element of V.

This definition is not strictly meaningful or rigorous; we will pick holes in it
later. But it will do for the moment.

Example 7?: The set R® of all three-dimensional vectors is a vector space,

. 1 3
because the sum of two vectors is a vector (eg [%] + [ﬂ = [%]) and the

. 1 3
product of a real number and a vector is a vector (eg 3 [%] = [g]) In the

same way, the set R? of two-dimensional vectors is also a vector space.



Row and column vectors

We generally use column vectors (rather than row vectors), as this makes
formulae with matrix multiplication work better.

However, column vectors often fit awkwardly on the page, so we use the
following notational device:

1
T

[1, 2, 3, 4] means E}
a+b

b
a+b, b+c, c+d, d+te eta means CIZ
[ b ) 7 ) d+
e
e+a

and so on.
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The space R”

Example ??: For any natural number n the set R" of vectors of length n is a
vector space. For example, the vectors u = [124816]" and v =[1—24 —816]"
are elements of R®, with u+ v = [208032]". We can even consider the set
R of all infinite sequences of real numbers, which is again a vector space.

Example ??: The set {0} is a trivial example of a vector space (but it is
important in the same way that the number zero is important). This space can
also be thought of as R°. We often write it as O rather than {0}.

Another trivial example is that R itself is a vector space (which can be thought
of as RY).
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Physical vectors

Example ??: The set U of physical vectors is a vector space.
We can define some elements of U by

» ais the vector from Sheffield to London
» b is the vector from London to Cardiff
» c is the vector from Sheffield to Cardiff
» d is the vector from the centre of the earth to the north pole
» e is the vector from the south pole to the north pole.
We then havea+b =cand 2d =e.

Once we have agreed on where our axes should point, and what units of length
we should use, we can identify U with R3.
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The space of functions

Example ??: The set F(R) of all functions from R to R is a vector space,
because we can add any two functions to get a new function, and we can
multiply a function by a number to get a new function.

For example, we can define functions f, g, h: R — R by

f(x) =e€* gx)=¢e" h(x) = cosh(x) = %,
so f, g and h are elements of F(R).

Then f + g and 2h are again functions, in other words f + g € F(R) and
2h € F(R). Of course we actually have f + g = 2h in this example.

For this to work properly, we must insist that f(x) is defined for all x, and is a
real number for all x; it cannot be infinite or imaginary. Thus the rules
p(x) = 1/x and g(x) = y/x do not define elements p, g € F(R).
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Smaller spaces of functions

Example ??: In practise, we do not generally want to consider the set F(RR)
of all functions. Instead we consider

» The set C(R) of continuous functions

» The set C™(R) of “smooth” functions
(those which can be differentiated arbitrarily often)

> the set R[x] of polynomial functions
(eg p(x) = 1+ x 4+ x* 4 x* defines an element p € R[x])
If f and g are continuous then f 4+ g and tf are continuous, so C(R) is a
vector space.

If f and g are smooth then f 4+ g and tf are smooth, so C*™(R) is a vector
space.

If f and g are polynomials then f + g and tf are polynomials, so R[x] is a
vector space.
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Smaller spaces of functions

Example ??: Let [a, b] denote the interval {x e R| a < x < b}

We write C|a, b] for the set of continuous functions f: [a, b] — R.

For example, the rule f(x) = 1/x defines a continuous function on the interval
[1,2].  (The only potential problem is at the point x = 0, but 0 ¢ [1, 2], so we
do not need to worry about it.)

We thus have an element f € CJ[1,2].

We can define another element g € C[1,2] by g(x) = 2/|x|.

We actually have g = 2f, because f and g are defined as functions on [1, 2],
and |x| = x for all x € [1,2].
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Spaces of matrices

Example ??: The set MbR of 2 x 2 matrices (with real entries) is a vector
space. Indeed, if we add two such matrices, we get another 2 x 2 matrix, for

example
[64]+[551=1[32]-

Similarly, if we multiply a 2 x 2 matrix by a real number, we get another 2 x 2
matrix, for example

UEHEIET IR

We can identify MoR with R?*, by the rule
251 ).

d

More generally, for any n the set M,R of n X n square matrices is a vector
. . o . 2
space, which can be identified with R™ .

More generally still, for any n and m, the set M, »R of n X m matrices is a
vector space, which can be identified with R"".
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The set of all lists

Example ?7: Let L be the set of all finite lists of real numbers.

For example, the lists a = (10,20, 30, 40) and b = (5,6,7) and ¢ = (1,7, 7?%)
define three elements a,b,c € L. Is L a vector space?

In trying to answer this question, we will reveal some inadequacies of
Predefinition 77.

It seems clear that L is closed under scalar multiplication: for example
100b = (500, 600, 700), which is another element of L.

The real issue is closure under addition.
For example, is a+ b an element of L?

We cannot answer this unless we know what a + b means.
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The set of all lists

L = { all finite lists of real numbers } a = (10, 20, 30, 40) b=(5,6,7)
What does a + b mean? There are at least three possible meanings:

(1) a+ b could mean (10, 20, 30,40,5,6,7)
(the list a followed by the list b).

(2) a+ b could mean (15,26, 37)
(chop off a to make the lists the same length, then add them together).

(3) a+ b could mean (15, 26, 37, 40)
(add zeros to the end of b to make the lists the same length, then add
them together.)
The point is that the expression a 4+ b does not have a meaning until we decide
to give it one.

(Strictly speaking, the same is true of the expression 100b, but in that case
there is only one reasonable possibility for what it should mean.)
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To avoid this kind of ambiguity, we should say that a vector space is a set
together with a definition of addition etc.

Suppose we use the 3rd definition of addition, so a + b = (15, 26,37, 40).
The ordinary rules of algebra would tell us that (a + (—1).a) + b =b.
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To avoid this kind of ambiguity, we should say that a vector space is a set
together with a definition of addition etc.

Suppose we use the 3rd definition of addition, so a + b = (15, 26,37, 40).
The ordinary rules of algebra would tell us that (a + (—1).a) + b =b.
However, in fact we have
(a+ (—1).a) + b = ((10,20, 30, 40) + (—10, —20, —30, —40)) + (5,6, 7)
=(0,0,0,0) + (5,6,7) = (5,6,7,0)#(5,6,7) = b.
Thus, the ordinary rules of algebra do not hold.

We do not want to deal with this kind of thing; we only want to consider sets
where addition and scalar multiplication work in the usual way. We must
therefore give a more careful definition of a vector space, which will allow us to
say that L is not a vector space, so we need not think about it.

(If we used either of the other definitions of addition then things would still go
wrong; details are left as an exercise.)
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A more precise definition

Our next attempt at a definition is as follows:

Predefinition ??: A vector space over R is a nonempty set V/, together with a
definition of what it means to add elements of V or multiply them by real
numbers, such that

(a) If uand v are elements of V/, then u+ v is an also an element of V.
(b) If uis an element of V and t is a real number, then tu is an element of V.

(c) All the usual algebraic rules for addition and multiplication hold.

In the course we will be content with an informal understanding of the phrase
“all the usual algebraic rules”, but for completeness, we will give an explicit list
of axioms.
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Definition ??: A vector space over R is a set V, together with an element

0 € V and a definition of what it means to add elements of V or multiply them

by real numbers, such that

(a) If u and v are elements of V/, then u+ v is an also an element of V.

(b) If v is an element of V and t is a real number, then tv is an element of V.

(c) For any elements u, v,w € V and any real numbers s, t, the following
equations hold:

(1) 0+v=v (5) lu=u

2) u+v=v+u (6) (st)u=s(tu)
B)ut+(v+w)=(u+v)+w (7) (s+t)u=su+tu
(4) Ou=0 (8) s(u+v)=su+sv.

Note that there are many rules that do not appear explicitly in the above list,
such as the fact that t(u+ v — w/t) = tu+ tv — w, but it turns out that all
such rules can be deduced from the ones listed. We will not discuss any such
deductions.
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Remark ??7:  We will usually use the symbol 0 for the zero element of
whatever vector space we are considering.

Thus 0 could mean

> the vector [§] (if we are working with R®)
> the zero matrix [J99] (if we are working with M>3R)
> the zero function (if we are working with C(R))

or whatever.

Occasionally it will be important to distinguish between the zero elements in
different vector spaces. In that case, we write Oy for the zero element of V.

For example:
ORZZ[S] 0M2R2[88 .
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Vector spaces over other fields

One can also consider vector spaces over fields other than R; the most
important case for us will be the field C of complex numbers. We record the
definitions for completeness.

Definition ??: A field is a set K together with elements 0,1 € K and a
definition of what it means to add or multiply two elements of K, such that:

(a) The usual rules of algebra are valid. More explicitly, for all a, b, c € K the
following equations hold:

> O0+a=a > a(bc) = (ab
> ot (btc)=(atb)+c s 2 ene
> a+b=b+a

> 1aea > a(b+c)=ab+ ac

(b) For every a € K there is an element —a with a + (—a) = 0.
(c) For every a € K with a # 0 there is an element a~* € K with aa~! = 1.

(d) 1#0 (or equivalently, K # {0}).
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Examples of fields

Example ??7: Recall that

Z = { integers } ={...,—2,-1,0,1,2,3,4,...}
Q = { rational numbers } ={a/b|a,beZ, b+# 0}
R = { real numbers }

C = { complex numbers } = {x + iy | x,y € R},

soZCQCRCC.
Then R, C and Q are fields.

The ring Z is not a field, because axiom (c) is not satisfied: there is no element
271 in the set Z for which 2.271 = 1.

One can show that the ring Z/nZ is a field if and only if n is a prime number.
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Definition ??: A vector space over a field K is a set V, together with an
element 0 € V and a definition of what it means to add elements of V or
multiply them by elements of K , such that

(a) If u and v are elements of V/, then u + v is an also an element of V.
(b) If v is an element of V and t is an element of K, then tv € V.

(c) For any elements u, v,w € V and any elements s, t € K, the following
equations hold:

(1) 0+v=v (5) lu=u

2) u+v=v+u (6) (st)u=s(tu)
B)ut+(v+w)=(u+v)+w (7) (s+t)u=su+tu
(4) Ou=0 (8) s(u+v)=su+sv.

Example ??7: Almost all our examples work over any field K.
M;Q = {4 x 4 matrices with entries in Q} is a vector space over Q.
C[x] = {polynomials with complex coefficients} is a vector space over C.
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d(tv + V') = tp(v) + t'd(v').
To show that this reformulation is valid, we must show that if (c) holds, then
so do (a) and (b); and conversely, if (a) and (b) hold, then so does (c).

This is left as an exercise. ()
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Example ??: Consider f,g: R — R given by f(x) = 2x and g(x) = x°.
g(x+x) = x®+x? +2xx’ # x* + x? = g(x) + g(x'), so g is not linear.

Similarly, sin(x + x) # sin(x) + sin(x") so sin is not linear.
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Linear maps from R to R

Example ??: Consider f,g: R — R given by f(x) = 2x and g(x) = x°.
g(x+x) = x®+x? +2xx’ # x* + x? = g(x) + g(x'), so g is not linear.

Similarly, sin(x + x) # sin(x) + sin(x") so sin is not linear.

On the other hand: f(x +x")=2(x+x") =2x + 2x" = f(x) + f(x)
f(tx) = 2tx = tf(x) so f is linear.

Example ??: For any number m € R, we can define ptm: R — R by
m(x) = mx (so f in the previous example is u2). We have

i+ X) = m(x 4 x) = mx + mx = pim(x) + pim(x)
wm(tx) = mtx = tmx = tum(x),

SO m is linear. Note also that the graph of um, is a straight line of slope m
through the origin; this is essentially the reason for the word “linear”. (O
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Example 7?: For any v € R?, we let p(v) be the vector obtained by rotating v
through 90 degrees anticlockwise around the origin. It is well-known that the
formula for thisis p[;] =[]

[¥]
(V]




Rotation is linear

Example ??: For any v € R?, we let p(v) be the vector obtained by rotating v
through 90 degrees anticlockwise around the origin. It is well-known that the
formula for thisis p[;] =[]

[v]

() ) == (7 )= () [ o5 e 5]
el =)= (2] = s]

so pis linear. O
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More general rotations

More generally, let rotg(v) be the vector obtained by rotating v anticlockwise
by an angle of 8 around the origin.

Then
cos(G)xfsin(G)y]

roty [;] = [sin(e)x+cos(9)y

Using this, we see that rots: R> — R? is a linear map. O
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Reflection is linear

Example ??: For any v € R?, we let 7(v) be the vector obtained by reflecting
v across the line y = 0.

It is clear that the formula is 7[] = [ %, ], and using this we see that 7 is linear.

[v]

[5]
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More general reflections

More generally, let refg(v) be the vector obtained by reflecting v across the line
crossing the x-axis at an angle of 6/2.

Then
6)x+sin(6
refo [3] = [ i |

Using this, we see that refy: R> — R? is a linear map. O
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Example ??: Define : R — R by 6(v) = ||v|| so 0[5] = v/x2 + y2.

This is not linear, because 6(u + v) # 6(u) + 6(v) in general.

Indeed, if u=[3] and v = [ '] then (u+v) = 0 but O(u)+6(v) = 1+1=2.
Example ??: Define o: R> = R* by o [}] = [;7]].

Then o is not linear, because o [3] # [3].

,v3/(><2+y2)} )

27?- . . 2 2 X1 __
Example ??: Define a: R° — R by a[y] = [x3/(x2+y2)
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Some nonlinear examples

Example ??: Define : R — R by 6(v) = ||v|| so 0[5] = v/x2 + y2.
This is not linear, because 6(u + v) # 6(u) + 6(v) in general.
Indeed, if u=[3] and v = [ '] then (u+v) = 0 but O(u)+6(v) = 1+1=2.

Example ??: Define o: R> = R* by o [}] = [;7]].
Then o is not linear, because o [3] # [3].

X3 X2+ 2
(This does not really make sense when x =y = 0,/(butyfc))r that case we make
the separate definition that a[3] =[§].)
This map satisfies a(tv) = ta(v), but it does not satisfy
a(u+v) = au) + a(v), so it is not linear.

Example ??: Define a: R> = R? by a[}] = [yS/(X2+y2)] .

For example, if u = [}] and v = [?] then a(u) = v and a(v) = u but

a(u+v) = (W+v)/2# a(w) +a(v). O
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u- %

Example ??7: Given vectors u = [3%} and v = [%} in R3, recall that the
3 3

inner product and cross product are defined by

<U,V> = uVv=uwv + uzvo + usvs

Upv3—u3vp
uxyv= [U3V1—U1V3} .

upva—uzvy

e; ey e3 up u3 U Uz U up upvz—uz vy
det |u v u3 | =det[,2 2]er—det[\l \3]ex+det[y 2]es = |mvi—uw| =uxv
vi V2 v3 upvo—upvy
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inner product and cross product are defined by
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Fix a vector a € R3. Define a: R* — R by a(v) = (a,v) and 8: R® — R? by
B(v) =a x v. Then both « and § are linear.
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. uy iy .
Example ?7: Given vectors u = u and v = [52} in R3, recall that the
3 3

inner product and cross product are defined by

<U,V> = uVv=uwv + uzvo + usvs
upv3—u3zvy
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and A(tv) = tB(v) and B(v+w) = A(v) + B(w).
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Example ??: Given vectors u = 5%} and v = [é} in R3, recall that the
3 3

inner product and cross product are defined by

<U,V> = uVv=uwv + uzvo + usvs
upv3—u3zvy
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Example ?7: Given vectors u = 5% and v = [é} in R3, recall that the
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inner product and cross product are defined by

<U,V> = uVv=uwv + uzvo + usvs
upv3—u3zvy
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Fix a vector a € R3. Define a: R* — R by a(v) = (a,v) and 8: R® — R? by
B(v) =a x v. Then both « and § are linear.

To prove this we must show that a(tv) = ta(v) and a(v 4+ w) = a(v) + a(w)

and A(tv) = tB(v) and B(v+w) = A(v) + B(w).

We will write out only the last of these; the others are similar but easier.
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u \%

Example ?7: Given vectors u = 5% and v = [é} in R3, recall that the
3 3

inner product and cross product are defined by

<U,V> = uVv=uwv + uzvo + usvs
upv3—u3zvy
uxv= [U3V1—U1V3}
uivp—upvy
Fix a vector a € R3. Define a: R* — R by a(v) = (a,v) and 8: R® — R? by
B(v) =a x v. Then both « and § are linear.

To prove this we must show that a(tv) = ta(v) and a(v 4+ w) = a(v) + a(w)

and A(tv) = tB(v) and B(v+w) = A(v) + B(w).

We will write out only the last of these; the others are similar but easier.

vit+wy ap(v3tws)—az(va+w2)

Blv+w)=g4 |:v2+W2] = {as(V1+W1)—21(V3+W3)}
v3+w3 a1 (va+twa)—ap(vi+wy)
= [amaa ] + [Am =] = 6(v) + Aw). O

ajvp—azvy apwp—azxwp
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We can thus define ¢a: R" — R"” by ¢a(v) = Av.
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Multiplication by a matrix is linear

Example 7?7: Let A be a fixed m X n matrix.

Given a vector v € R”, we can multiply A by v to get a vector Av € R".

We can thus define ¢a: R" — R"” by ¢a(v) = Av.

It is clear that A(v +v') = Av + AV’ and Atv = tAv, so ¢a is a linear map.

We will see later that every linear map from R" to R™ has this form.

In particular, if we put R = [(1) _01] and T = [(1, ,OJ, we find that
RIyI=[21=r(5]) TLHI=151=7(D

(where p and 7 are as in Examples ?? and ?7).

This means that p = ¢r and 7 = ¢7.

More generally, rotg = ¢r, and refy = ¢1,, where

cos(f) — sin(0 cos(0) sin(0
Re = [sin((O)) cos(é))] Ty = [sin((e)) 7co(s()9)i| O
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Definite integration is linear

Example ??: For any continuous function f: R — R, we write
I(f) = [y f(x)dx € R.

This defines a map /: C(R) — R.

p(x) = x* I(p) = Jo x* dx = [x*/35
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Example ??: For any continuous function f: R — R, we write
I(f) = [y f(x)dx € R.
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Definite integration is linear
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Definite integration is linear

Example ??: For any continuous function f: R — R, we write
I(f) = [y f(x)dx € R.

This defines a map /: C(R) — R.

p(x) = x* I(p) = Jy " dx = [x*/3]5 = 1/3
g(x)=2x-1 I(q):f012x71dx:[x27x]é:0
r(x) =¢&" I(r)= [} e“dx=[e]h =e—1.

Using the obvious equations

fol f(x) + g(x)dx = fol f(x)dx + fol g(x)dx
fol tf(x)dx = tfol f(x)dx

we see that I(f + g) = I(f) + I(g) and I(tf) = tI(f), so | is a linear map.()
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Linear differential operators

Definition ??: For smooth f: R — R put D(f) = f" and L(f) = f" + f.

These are again smooth, so D: C*(R) — C*(R) and L: C*(R) — C®(R).

p(x) = sin(x) D(p)=q L(p) =0
q(x) = cos(x) D(q)=—-p L(g)=0
r(x) =¢" D(r)=r L(r)y=2r

Using the equations (f + g)' = f' + g’ and (tf)’ = t f’ we see that D is
linear. Similarly, we have
Lf+g)=(F+g)" +(f+tg)=f"+g"+f+¢g
=(f"+f)+(g" + &) =L(F) + L(g)
L(tf) = (tF)" + tf = t £ + tf = tL(f).

This shows that L is also linear. (O
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Example ??: For any 2 X 2 matrix A = [2 5], the trace and determinant are
defined by trace(A) = a+ d € R and det(A) = ad — bc € R.

We thus have two functions trace, det: MoR — R.

It is easy to see that trace(A + B) = trace(A) + trace(B) and
trace(tA) = ttrace(A), so trace: MbR — R is a linear map.

On the other hand, det(tA) = t* det(A) and det(A + B) # det(A) + det(B) in
general, so det: MhbR — R is not a linear map.
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Trace and determinant

Example ??: For any 2 X 2 matrix A = [2 5], the trace and determinant are
defined by trace(A) = a+ d € R and det(A) = ad — bc € R.

We thus have two functions trace, det: MoR — R.

It is easy to see that trace(A + B) = trace(A) + trace(B) and
trace(tA) = ttrace(A), so trace: MbR — R is a linear map.

On the other hand, det(tA) = t* det(A) and det(A + B) # det(A) + det(B) in
general, so det: MhbR — R is not a linear map.

1]

For a specific counterexample, take ~ A=[}9] and =18
det(A) = det(B) = 0 but det(A + B) = 1, so det(A + B) # det(A) + det(B).

None of this is really restricted to 2 X 2 matrices. For any n we have a map
trace: M,R — R given by trace(A) = 27:1 Aiji, which is again linear. We also
have a determinant map det: M,R — R which satisfies det(t/) = t"; this shows
that det is not linear, except in the silly case where n=1. (O



Matrix inversion is not linear



Matrix inversion is not linear

Example ??:  “Define” ¢: MoR — MR by ¢(A) = A™!



Matrix inversion is not linear

Example 77:  “Define”’ ¢: MoR — MR by ¢(A) = A%, so

abl_ | d/(ad—bc) —b/(ad—bc)
¢[cd - |:—c/(ad—bc) a/(ad—bc) ]



Matrix inversion is not linear

Example 77:  “Define”’ ¢: MoR — MR by ¢(A) = A%, so

abl_ | d/(ad—bc) —b/(ad—bc)
¢[cd - |:—c/(ad—bc) a/(ad—bc) ]

This is not a linear map, simply because it is not a well-defined map at all: the
“definition” does not make sense when ad — bc = 0.



Matrix inversion is not linear

Example 77:  “Define”’ ¢: MoR — MR by ¢(A) = A%, so

abl_ | d/(ad—bc) —b/(ad—bc)
¢[cd - |:—c/(ad—bc) a/(ad—bc) ]

This is not a linear map, simply because it is not a well-defined map at all: the
“definition” does not make sense when ad — bc = 0.

Even if it were well-defined, it would not be linear



Matrix inversion is not linear

Example 77:  “Define”’ ¢: MoR — MR by ¢(A) = A%, so

abl_ | d/(ad—bc) —b/(ad—bc)
¢[cd - |:—c/(ad—bc) a/(ad—bc) ]

This is not a linear map, simply because it is not a well-defined map at all: the
“definition” does not make sense when ad — bc = 0.

Even if it were well-defined, it would not be linear, because
oI+ =0NT=1/2



Matrix inversion is not linear

Example 77:  “Define”’ ¢: MoR — MR by ¢(A) = A%, so

abl_ | d/(ad—bc) —b/(ad—bc)
¢[cd - |:—c/(ad—bc) a/(ad—bc) ]

This is not a linear map, simply because it is not a well-defined map at all: the
“definition” does not make sense when ad — bc = 0.

Even if it were well-defined, it would not be linear, because
d(1+1)= (1) =1/2, whereas ¢(I) + ¢(1) = 21



Matrix inversion is not linear

Example 77:  “Define”’ ¢: MoR — MR by ¢(A) = A%, so

o2 by — [ d/(ad—bc) —b/(adfbc)]

cd —c/(ad—bc) a/(ad—bc)

This is not a linear map, simply because it is not a well-defined map at all: the
“definition” does not make sense when ad — bc = 0.

Even if it were well-defined, it would not be linear, because
d(1+1)=(21)7t =1/2, whereas (1) + ¢p(I) = 21, so ¢(I + 1) # (1) + ¢(I).
O
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Row reduction is not linear

Example ??: Define ¢: MsR — MszR by
¢(A) = the row reduced echelon form of A.

For example, we have the following sequence of reductions:

123 12 3 12 3
486 — |00 —6 — |00 1
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Row reduction is not linear

Example ??: Define ¢: MsR — MszR by
¢(A) = the row reduced echelon form of A.
For example, we have the following sequence of reductions:
123 12 3 12 3 120
[4 6] — [00 —6] — [oo 1 ] — [001}
7149 00 —12 00 —12 000

which shows that
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Row reduction is not linear

Example ??: Define ¢: MsR — MszR by

¢(A) = the row reduced echelon form of A.
For example, we have the following sequence of reductions:
[1
4
7

which shows that

3 12 3 12 3 120
6| — |00 —6 — |00 1 — |001
9 00 —12 00 —12 000

-
N

1

4

7
The map is not linear, because ¢(/) = I and also ¢(21) =1, so ¢(21) # 2¢(1).
O
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For example:
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Example ??: We can define a map trans: M,R — M,R by trans(A) = A”.

Here as usual, AT is the transpose of A, which is obtained by flipping A across
the main diagonal.

For example:
123717
045 =
006

In general, we have (A7); = A;.

10
24
35

0
0.
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It is clear that (A+ B)" = AT + B” and (tA)" = tAT



Transposition is linear

Example ??: We can define a map trans: M,R — M,R by trans(A) = A”.

Here as usual, AT is the transpose of A, which is obtained by flipping A across
the main diagonal.

For example:
12377 0
045 = 0.
006 6
In general, we have (A7); = A;.

It is clear that (A4 B)" = A" + BT and (tA)" = tAT,

10
24
35

so trans: M,R — M,R is a linear map.

T T T
eg a b] + a b _ | atd’ b+b _ |atd ' | _a b]T + a’ b O
S cd o d ct+c’ d+d’ b+b" d+d’ cd d
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Isomorphisms

Definition ?77:
A linear map ¢: V — W is an isomorphism if it is a bijection,

so there is an inverse map ¢~ ': W — V with ¢(¢*(w)) = w forall w € W,
and ¢ H(o(v)) = v forallve V.

( 7' is automatically a linear map - we leave this as an exercise.)
Say that V and W are isomorphic if there is an isomorphism from V to W.
Example ??: We can now rephrase part of Example ?? as follows:

There is an isomorphism ¢: MoR — R* given by

|

Similarly, the space M, ¢R is isomorphic to RP9. (O

Q0 ou

o128 |

so MR is isomorphic to R*.
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Physical vectors

Example ??7: Let U be the space of physical vectors, as in Example 7?. A
choice of axes and length units gives rise to an isomorphism from R to U.

More explicitly, choose a point P on the surface of the earth (for example, the
base of the Eiffel Tower) and put

u = the vector of length 1 km pointing east from P
v = the vector of length 1 km pointing north from P
w = the vector of length 1 km pointing vertically upwards from P.

Define ¢: R® — U by ¢(x,y,z) = xu+ yv + zw. Then ¢ is an isomorphism.

We will be able to give more interesting examples of isomorphisms after we
have learnt about subspaces. ()
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Definition ??: Let V be a vector space. A vector subspace (or just subspace)
of V is a subset W C V such that

(a) 0ew
(b) Whenever u and v lie in W, the element u + v also lies in W.
(In other words, W is closed under addition.)

(c) Whenever u lies in W and t lies in R, the element tu also lies in W.
(In other words, W is closed under scalar multiplication.)

These conditions mean that W is itself a vector space.

Remark ?7: Strictly speaking, a vector space is a set together with a
definition of addition and scalar multiplication such that certain identities hold.

We should therefore specify that addition in W is to be defined using the same
rule as for V, and similarly for scalar multiplication. (O
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Remark ??: W is a subspace iff (a) 0 € W

(b) Whenever u,v € W, the element u + v also lies in W.

(c) Whenever u € W and t € R, the element tu also lies in W.
Reformulation: a subset W C V is a subspace iff (a) 0 € W and
(d) Whenever u,v € W and t,s € R we have tu+sv € W.

To show that this reformulation is valid, we must check that if condition (d)
holds then so do (b) and (c); and that if (b) and (c) hold then so does (d).

In fact, conditions (b) is the special cases of (d) where t = s =1, and
condition (c) is the special case of (d) where v = 0; so if (d) holds then so
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Remark ??: W is a subspace iff (a) 0 € W

(b) Whenever u,v € W, the element u + v also lies in W.

(c) Whenever u € W and t € R, the element tu also lies in W.
Reformulation: a subset W C V is a subspace iff (a) 0 € W and
(d) Whenever u,v € W and t,s € R we have tu+sv € W.

To show that this reformulation is valid, we must check that if condition (d)
holds then so do (b) and (c); and that if (b) and (c) hold then so does (d).

In fact, conditions (b) is the special cases of (d) where t = s =1, and
condition (c) is the special case of (d) where v = 0; so if (d) holds then so

do (b) and (¢).

Conversely, suppose that (b) and (c) hold, and that u,v € W and t,s € R.
Then condition (c) tells us that tu € W, and similarly that sv € W. Given
these, condition (b) tells us that tu + sv € W; we conclude that condition (d)
holds, as required. (O
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Examples of subspaces

Example ??: For any vector space V/, there are two silly examplesof subspaces
of V: {0} is always a subspace of V, and V itself is always a subspace of V.

Example ??: Any straight line through the origin is a subspace of R?. These
are the only subspaces of R? (except for the two silly examples).

Example ??: In R3, any straight line through the origin is a subspace, and
any plane through the origin is also a subspace. These are the only subspaces
of R® (except for the two silly examples). O
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To check this, we first note that 0 € W. Suppose that A, A’ € W and
t,t’ € R. We then have trace(A) = trace(A’) = 0 (because A, A" € W)
and so
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Trace-free matrices

Example ??: The set W = {A € MzR | trace(A) = 0} is a subspace of MzR.

To check this, we first note that 0 € W. Suppose that A, A’ € W and
t,t’ € R. We then have trace(A) = trace(A’) = 0 (because A, A" € W)
and so

trace(tA + t'A’) = ttrace(A) + t'trace(A') = t.0+ .0 = 0,

so tA+t'A e W.

Thus, conditions (a) and (d) in Remark ?? are satisfied, showing that W is a
subspace as claimed. (O
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Example ??: Recall that R[x] is the set of all polynomial functions of x

(so the functions p(x) = x + 1 and q(x) = (x + 1)°> — (x — 1)® and
r(x) = 1+ 4x* + 8x® define elements p, q, r € R[x]).

It is clear that the sum of two polynomials is another polynomial, and any
polynomial multiplied by a constant is also a polynomial, so R[x] is a subspace
of the vector space F(R) of all functions on R.

We write R[x]<q4 for the set of polynomials of degree at most d,
so a general element f € R[x]<q4 has the form

f(x):ao+21X+..~+adXd=ZQiXi

for some ag,...,aq € R. It is easy to see that this is a subspace of R[x].

If we let f correspond to the vector [a0 -+ ad]T € R, we get a one-to-one
correspondence between R[x]<4 and Rt (O
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Spaces of polynomials

More precisely, there is an isomorphism ¢: R?™ — R[x]<4 given by

ap d
(Z)<|::|> :ao+alx+agx2+---+adxd:Za;xi.
i=0

ad
Remark ??: It is a common mistake to think that R[x]<g is isomorphic to R?
(rather than R¥*!), but this is not correct.

Note that the list 0,1, 2,3 has four entries (not three), and similarly, the list
0,1,2,...,d has d + 1 entries (not d). O
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Even and odd functions

Example ??: A function f: R — R is said to be even if f(—x) = f(x) for all
x, and odd if f(—x) = —f(x) for all x.

eg cos(—x) = cos(x) and sin(—x) = —sin(x), so cos is even and sin is odd.
(Of course, most functions are neither even nor odd.)

We write EF for the set of even functions, so EF is a subset of the set F(R) of
all functions from R to R, and cos € EF.

If f and g are even, it is clear that f + g is also even. If f is even and t is a
constant, then it is clear that tf is also even; and the zero function is certainly
even as well.

This shows that EF is actually a subspace of F(R).
Similarly, the set OF of odd functions is a subspace of F(R). (O
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Solutions of differential equations

Example ??: Let V be the vector space of smooth functions u(x, t) in two
variables x and t (to be thought of as position and time).

. . 2 2

» We say that u solves the Wave Equation if % — % =0.
This equation governs the propagation of small waves in deep water, or of
electromagnetic waves in empty space.

. . 2
» We say that u solves the Heat Equation if % — % =

This governs the flow of heat along an iron bar.
» We say that u solves the Korteweg-de Vries Equation if
o) Il du _
This governs the propagation of large waves in shallow water.
The set of solutions of the Wave Equation is a subspace of V, as is the set of
solutions to the Heat Equation.

However, the sum of two solutions to the KdV equation does not satisfy the
KdV equation, so the set of solutions is not a subspace of V.

The Wave and Heat equations are linear, but the KdV equation is not. ()
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Solutions of differential equations

The distinction between linear and nonlinear differential equations is of
fundamental importance in physics.

Linear equations can generally be solved analytically, or by efficient computer
algorithms, but nonlinear equations require far more computing power.

The equations of electromagnetism are linear, which explains why hundreds of
different radio, TV and mobile phone channels can coexist, together with
visible light (which is also a form of electromagnetic radiation), with little or no
interference.

The motion of fluids and gasses is governed by the Navier-Stokes equation,
which is nonlinear; because of this, massive supercomputers are needed for
weather forecasting, climate modelling, and aircraft design. (O
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Example ?7: Consider the following sets of 3 x 3 matrices:

Uy = { symmetric matrices } ={AecMsR|AT = A}

Ur = { antisymmetric matrices } ={AcMsR|AT = -A}

U, = { trace-free matrices } = {A € M3R | trace(A) = 0}

Us = { diagonal matrices } ={A e MzR| Aj =0 when i # j}
U, = { strictly upper-triangular matrices } = {A € MsR | Aj =0 when i > j}
Us = { invertible matrices } = {A € MzR | det(A) # 0}

Us = { noninvertible matrices } ={A € MzR | det(A) =0}

Then Uy, ..., Us are all subspaces of MzR.

We will prove this for Uy and Us; the other cases are similar. O



Subspaces of matrices

Uo= { symmetric matrices } ={AcMsR|AT = A}



Subspaces of matrices

Uo= { symmetric matrices } ={AcMsR|AT = A}

It is clear that 07 =0, so 0 € U.



Subspaces of matrices

Uo= { symmetric matrices } ={AcMsR|AT = A}

It is clear that 0T =0, so 0 € Us.
Suppose that A,B € U (so AT = Aand B" = B) and 5,t € R.



Subspaces of matrices

Uo= { symmetric matrices } ={AcMsR|AT = A}

It is clear that 0T =0, so 0 € Us.
Suppose that A,B € U (so A" = Aand B" = B) and s,t € R. Then

(sA+tB) =sA" +tBT =sA+tB



Subspaces of matrices

Uo= { symmetric matrices } ={AcMsR|AT = A}

It is clear that 0T =0, so 0 € Us.
Suppose that A,B € U (so A" = Aand B" = B) and s,t € R. Then

(sA+tB) =sA" +tBT =sA+tB

so sA+ tB € Up.



Subspaces of matrices

Uo= { symmetric matrices } ={AcMsR|AT = A}

It is clear that 0T =0, so 0 € Us.
Suppose that A,B € U (so A" = Aand B" = B) and s,t € R. Then

(sA+tB) =sA" +tBT =sA+tB

so sA+ tB € Up.

So Up is a subspace. O
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The elements of U, are the matrices of the form

0 a2 a3
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Us = { strictly upper-triangular matrices } = {A € MzR | Aj = 0 when i > j}

The elements of U, are the matrices of the form

0 a2 a3
A= (0 0 a3
0 O 0

The zero matrix is an element of Us (with a12 = a13 = a23 = 0).

Suppose that A, B € Uy and s, t € R.

0 a2 a3 0 by bz
sA+tB:s[o 0 323:|+t[0 0 b23] =
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Subspaces of matrices

Us = { strictly upper-triangular matrices } = {A € MzR | Aj = 0 when i > j}

The elements of U, are the matrices of the form

0 a2 a3
A= (0 0 a3
0 O 0

The zero matrix is an element of Us (with a12 = a13 = a23 = 0).
Suppose that A, B € Uy and s, t € R.
0 app a 0 byp b 0 sajp+tbyp sajz+tb
sA+tB=s [0 o aii] +t [o o bii} = [0 o sa;,-%—tb;,] ,
00 0 00 0 0 o 0

which shows that sA + tB is again strictly upper triangular
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0 a2 a3
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Suppose that A, B € Uy and s, t € R.

0 a2 a3 0 by bz
sA+tB:s[o 0 323:|+t[0 0 b23]
00 00

0 sajp+tbyp saj3+tby3
0 K
0 0

0 sap3+tbos
0o 0 0
which shows that sA + tB is again strictly upper triangular, and so is an
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Us = { strictly upper-triangular matrices } = {A € MzR | Aj = 0 when i > j}

The elements of U, are the matrices of the form

0 a2 a3
A= (0 0 a3
0 O 0

The zero matrix is an element of Us (with a12 = a13 = a23 = 0).
Suppose that A, B € Uy and s, t € R.
0 app a 0 byp b 0 sajp+tbyp sajz+tb
sA+tB=s [0 o aii] +t [o o bii} = [0 o sa;,-%—tb;,] ,
00 0 00 0 0 o 0

which shows that sA + tB is again strictly upper triangular, and so is an
element of Us.

Thus U, is also a subspace. ()
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Subspaces of matrices

}
}

Us= { invertible matrices } ={A € MzR | det(A) #

0
Us= { noninvertible matrices } ={A € MzR | det(A) =0
Us is not a subspace, because it does not contain the zero matrix.

Us is not a subspace: if we put

10
A= [00
00

ooo

] 32[8‘1’8]
001

then A,B € Us but A+ B=1¢ Us. O
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Definition ??: Let U be a vector space, and let V and W be subspaces of U.
We put

V4+W={ueU|u=v+wforsomeveVandwe W}

Example 77: If U = R® and V:{[§] | x € R} and W:{[S] |z € R}

then V+W={[§] | x,z € R}



Sums of subspaces

Definition ??: Let U be a vector space, and let V and W be subspaces of U.
We put

V4+W={ueU|u=v+wforsomeveVandwe W}
3 X 0
Example 77: If U = R® and V:{[g] | x € R} and W:{[o] |z € R}
then V+W:{[6] | x,z € R}

Example ??: If U = MR and
V=A{[gg]l labeR} W={[3¢] | b,d €R}

then
V+W={[§g] |a,b,d e R}O
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Proof for VN W: As V is a subspace we have 0 € V, and as W is a subspace
we have 0 € W,so0e VN W.

Next, suppose we have x,y € VN W and s,t € R. Then x,y € V and V is a
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Intersections of subspaces

Proposition ??7: Let U be a vector space, and let V and W be subspaces of
U. Then both VN W and V + W are subspaces of U.

Proof for VN W: As V is a subspace we have 0 € V, and as W is a subspace
we have 0 € W,so0e VN W.

Next, suppose we have x,y € VN W and s,t € R. Then x,y € V and V is a
subspace, so sx + ty € V. Similarly, we have x,y € W and W is a subspace so
sx + ty € W. This shows that sx +ty € VN W.

This works for all x, y, s and t, so V N W is a subspace. O
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Sums of subspaces

Proposition ??7: Let U be a vector space, and let V and W be subspaces of
U. Then both VN W and V + W are subspaces of U.

Proof for V + W:
We can write 0 as 0+ 0with0 € Vand0e W,so0e V+ W.

Now suppose we have x,x’ € V+ W and t,t' € R.

As x € V+ W we can find v € V and w € W such that x = v + w.

As x' € V+ W we can also find v/ € V and w’ € W such that x’ = v/ +w'.
We then have tv + t'v/ € V (because V is a subspace)

and tw + t'w’ € W (because W is a subspace).

We also have
tx+t'x =tlv+w)+t'(V +w)=(tv+t'V)+ (tw+ t'w)

with tv +t'v € Vand tw+t'w €¢ W



Sums of subspaces

Proposition ??7: Let U be a vector space, and let V and W be subspaces of
U. Then both VN W and V + W are subspaces of U.

Proof for V + W:
We can write 0 as 0+ 0with0 € Vand0e W,so0e V+ W.

Now suppose we have x,x’ € V+ W and t,t' € R.

As x € V+ W we can find v € V and w € W such that x = v + w.

As x' € V+ W we can also find v/ € V and w’ € W such that x’ = v/ +w'.
We then have tv + t'v/ € V (because V is a subspace)

and tw + t'w’ € W (because W is a subspace).

We also have
tx+t'x =tlv+w)+t'(V +w)=(tv+t'V)+ (tw+ t'w)

withtv +t'v e Vand tw+t'w e W ,sotx+t'x' € V+ W.



Sums of subspaces

Proposition ??7: Let U be a vector space, and let V and W be subspaces of
U. Then both VN W and V + W are subspaces of U.

Proof for V + W:
We can write 0 as 0+ 0with0 € Vand0e W,so0e V+ W.

Now suppose we have x,x’ € V+ W and t,t' € R.

As x € V+ W we can find v € V and w € W such that x = v + w.

As x' € V+ W we can also find v/ € V and w’ € W such that x’ = v/ +w'.
We then have tv + t'v/ € V (because V is a subspace)

and tw + t'w’ € W (because W is a subspace).

We also have
tx+t'x =tlv+w)+t'(V +w)=(tv+t'V)+ (tw+ t'w)

withtv +t'v e Vand tw+t'w e W ,sotx+t'x' € V+ W.

As this works for all x, x’, t and t/, we conclude that V + W is a subspace. ()
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Example ??: Take U =R and
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Indeed, [x,y,2z]" € VN W iff x4+ 2y 43z =0 and also 3x + 2y + z = 0.
If we subtract these two equations and divide by two, we find that z = x.
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Conversely, if y = —2x and z = x we see that both equations are satisfied.
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Example ??: Take U =R and
V={lx,y,2]" | x+2y+3z=0} W= {lx,y,2]" | 3x+2y+z =0}
Claim: VN W = {[x,—2x,x]" | teR}  and V4 W =R>

Indeed, [x,y,2z]" € VN W iff x4+ 2y 43z =0 and also 3x + 2y + z = 0.
If we subtract these two equations and divide by two, we find that z = x.
If we feed this back into the first equation, we see that y = —2x.
Conversely, if y = —2x and z = x we see that both equations are satisfied.
It follows that V N W = {[x, —2x,x]" | t € R} as claimed.
Next, consider an arbitrary vector u = [x,y,z]T € R% Put
1 12x+8y+4z 1 —8y—4z

= — 3x+2y+z = — | —3x+10y—z

v 12 —6xt4)j\/t22 w 12 6x+jl—y+y14z

Thenu=v+wwithve Vandwe W,souec V+ W.
This works for any u € R3, so R® = V + W. O
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V={lxy,2]" | x+2y+3z =0} W ={[x,y,2]" | 3x+2y+z = 0}.
X 1 12x+8y+4z 1 —8y—4z
u= [Y] V=_— 3x+2y+z W = — | —3x+10y—z
z 1 {—6x—4y—22] 12 [ 6x-+dy+14z }

(12x+8y +4z) +2(3x+2y + z) + 3(—6x —4y —2z) =0,sov € V
3(—8y —4z)+2(—3x+10y —z)+ (6x+4y +14z) =0, sow € W

V+W=— 15

12

12x+8y+4z—8y—4z 1 12x
3x4+2y+z—3x+10y—z |:12y:| = uO
—6x—4y —2z+6x+4y+14z 12z
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Subspaces of polynomials

Example ??: Take U = R[x]<s and

V={fecU|fO)=f'(0)=0} W = {f € U] f(—x) = f(x) for all x}.
Then

U:{ao+alx+a2x2+a3x3+a4x4 | ao,...,a4€]R}
V = {32X2 —+ 33X3 + a4x4 | az,az,as € R}

W = {a + a:x> + agx* | a0, a2, as € R}
From this we see that

VvnWw= {22X2+34X4 | az, a, ER}
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Example ??: Take U = R[x]<s and

V={fecU|fO)=f'(0)=0} W = {f € U] f(—x) = f(x) for all x}.
Then
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Subspaces of polynomials

Example ??: Take U = R[x]<s and

V={fecU|fO)=f'(0)=0} W = {f € U] f(—x) = f(x) for all x}.
Then

U={ao+aix + axx’ + asx’ + aax* | a0,...,a4 € R}
V = {ax® + a3x® + asx* | a», 33,24 € R}
W = {a + a:x> + agx* | a0, a2, as € R}
From this we see that
VAW = {ax’ + ax* | 32,24 € R}
V+ W = {ap 4 axx® 4 a3x® + asx* | a0, a2, a3, a4 € R}.

In particular, the polynomial f(x) = x does not lie in V 4+ W, so
V+W#UQO
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Kernels and images
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Example 7?: Define ¢: R®> — R3 by ¢([x,y,2]") = [2x — 2,2y — 8x,2z — y]".
Then

ker(¢) = {[x,y,2]" € R’ | z=2x, y = 4x, 2z =y)} = {[t,4t,2t]" |t € R}
image(¢) = {[u,v,w]” € R® |4u+ v+ 2w =0} = {[u,v, —2u — v/2]" | u,v € R*}.

So ker(¢) is a line through the origin (and thus a one-dimensional subspace)
and image(¢) is a plane through the origin (and thus a two-dimensional

subspace). O
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Then clearly ¢(A) = 0 iff A= AT iff A is a symmetric matrix. Thus
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Conversely, suppose that we have a vector [u, v, w]” € R® with
u—2v+w=0.
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Another example

Define ¢: R®* — R* by

4x+8y+16z

X x+42y+4z
¢) |:}z/i| = |:2><+4};+82:| = (x+2y+4z) [%]
Then
ker(¢) = {[x,y,2]" €R® | x+2y +4z=0} = {[-2y —4z,y,2]" |y,z€ R}
image(¢) = {[t,2t,4t]" | t e R}

So ker(¢) is a plane through the origin (and thus a two-dimensional subspace)
and image(¢) is a line through the origin (and thus a one-dimensional

subspace). O
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Injective and surjective maps

¢: U — V is surjective if every v € V has the form ¢(u) for some u € U.
¢: U— V is said to be injective if whenever ¢(u) = ¢(u’) we have u = u'.

Proposition ??7: Let ¢: U — V be a linear map between vector spaces.
Then ¢ is injective iff ker(¢) = {0}, and ¢ is surjective iff image(¢) = V.
Proof:
> Suppose that ¢ is injective, so whenever ¢(u) = ¢(u') we have u = u'.
Suppose that u € ker(¢). Then ¢(u) = 0 = ¢(0). As ¢ is injective and
¢(u) = #(0), we must have u = 0. Thus ker(¢) = {0}, as claimed.
> Conversely, suppose that ker(¢) = {0}. Suppose that ¢(u) = ¢(u’). Then
d(u—u')=¢(u)—p(u')=0,s0 u—u' € ker(¢p) ={0}, sou—uv" =0, so
u = u’. This means that ¢ is injective.
> Recall that image(¢) is the set of those v € V such that v = ¢(u) for
some u € U. Thus image(¢) = V iff every element v € V has the form
¢(u) for some u € U, which is precisely what it means for ¢ to be
surjective. ()



Isomorphisms

Corollary ??: ¢: U — V is an isomorphism iff ker(¢) = 0 and
image(¢) = V. 0o
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Definition ??: Let V and W be vector spaces. We define V @& W to be the
set of pairs (v, w) with v € V and w € W. Addition and scalar multiplication
are defined in the obvious way:

(vyw)+ (V' W)= (v+Vv,w+w)
t.(v,w) = (tv, tw).

This makes V @& W into a vector space, called the direct sum of V and W. We
may sometimes use the notation V x W instead of V & W.



Direct sums

Definition ??: Let V and W be vector spaces. We define V @& W to be the
set of pairs (v, w) with v € V and w € W. Addition and scalar multiplication
are defined in the obvious way:

(vyw)+ (V' W)= (v+Vv,w+w)
t.(v,w) = (tv, tw).

This makes V @& W into a vector space, called the direct sum of V and W. We
may sometimes use the notation V x W instead of V & W.

Example ??:  An element of R @ R? is a pair (x,y), where x is a list of p real
numbers, and y is a list of g real numbers. Such a pair is essentially the same
thing as a list of p + g real numbers, so R* @ R = R"™7. ()
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is the set of things of the form v 4+ w for some v € V and w € W, which is
precisely the definition of V 4+ W. The kernel is the set of pairs

(x,y) € V& W for which x + y = 0. This means that x € V and y € W and

y=—x.
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Now suppose that V and W are subspaces of a third space U. We then have a
space V @ W as above, and also a subspace V + W < U as in Definition ?7.
We need to understand the relationship between these.

Proposition ??:  The rule o(v, w) = v + w defines a linear map

o: V& W — U, whose image is V + W, and whose kernel is the space
X={(x,—x) e Ve W |xe VnNW} Thus, if VN W =0 then ker(c) =0
and o gives an isomorphism Ve W — V + W.

Proof: We leave it as an exercise to check that ¢ is a linear map. The image
is the set of things of the form v 4+ w for some v € V and w € W, which is
precisely the definition of V 4+ W. The kernel is the set of pairs

(x,y) € V& W for which x + y = 0. This means that x € V and y € W and
y = —x. Note then that x = —y and y € W so x € W. We also have x € V,
soxe VnNnW.
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Two subspaces

Now suppose that V and W are subspaces of a third space U. We then have a
space V @ W as above, and also a subspace V + W < U as in Definition ?7.
We need to understand the relationship between these.

Proposition ??:  The rule o(v, w) = v + w defines a linear map

o: V& W — U, whose image is V + W, and whose kernel is the space
X={(x,—x) e Ve W |xe VnNW} Thus, if VN W =0 then ker(c) =0
and o gives an isomorphism Ve W — V + W.

Proof: We leave it as an exercise to check that ¢ is a linear map. The image
is the set of things of the form v 4+ w for some v € V and w € W, which is
precisely the definition of V 4+ W. The kernel is the set of pairs

(x,y) € V& W for which x + y = 0. This means that x € V and y € W and
y = —x. Note then that x = —y and y € W so x € W. We also have x € V,
so x € VN W. This shows that ker(c) = {(x, —x) | x € V. N W}, as claimed.
If VN W =0 then we get ker(o) = 0, so o is injective (by Proposition ??). If
we regard it as a map to V + W (rather than to U) then it is also surjective, so
it is an isomorphism V@& W — V 4+ W, as claimed. O
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Remark ??7: If VN W =0and V+ W = U then o gives an isomorphism
V& W — U. In this situation it is common to say that U=V & W.

This is not strictly true (because U is only isomorphic to V @& W, not equal to
it), but it is a harmless abuse of language.

Sometimes people call V @ W the external direct sum of V and W, and they
say that U is the internal direct sum of V and W if U =V + W and
VAnw=0. 0O



Internal direct sums



Internal direct sums

Remark ??: If VN W =0and V + W = U then the map o(v,w) =v +w
gives an isomorphism V & W — U. In this situation it is common to say that
U=VvegWw.



Internal direct sums

Remark ??: If VN W =0and V + W = U then the map o(v,w) =v +w
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Remark ??: If VN W =0and V + W = U then the map o(v,w) =v +w
gives an isomorphism V & W — U. In this situation it is common to say that
U=VvegWw.

This is not strictly true (because U is only isomorphic to V & W, not equal to
it), but it is a harmless abuse of language.

Sometimes people call V & W the external direct sum of V and W, and they
say that U is the internal direct sum of V and W if U =V + W and
vnw=0 0O
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Odd and even functions

Example ?7: Consider the space F of all functions from R to R, and the
subspaces EF and OF of even functions and odd functions.

We claim that F = EF & OF.
To prove this, we must check that EF N OF =0 and EF + OF = F.

Suppose that f € EF N OF.
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f(x) = 0.
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Example ?7: Consider the space F of all functions from R to R, and the
subspaces EF and OF of even functions and odd functions.

We claim that F = EF & OF.
To prove this, we must check that EF N OF =0 and EF + OF = F.

Suppose that f € EF N OF. Then for any x we have f(x) = f(—x) (because

f € EF), but f(—x) = —f(x) (because f € OF), so f(x) = —f(x), so

f(x) =0. Thus EF N OF =0, as required. Next, consider an arbitrary function
geF. Put

g+(x) = (g(x) + g(=x))/2 g-(x) = (g(x) — g(—=x))/2.
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Example ?7: Consider the space F of all functions from R to R, and the
subspaces EF and OF of even functions and odd functions.

We claim that F = EF & OF.
To prove this, we must check that EF N OF =0 and EF + OF = F.

Suppose that f € EF N OF. Then for any x we have f(x) = f(—x) (because

f € EF), but f(—x) = —f(x) (because f € OF), so f(x) = —f(x), so

f(x) =0. Thus EF N OF =0, as required. Next, consider an arbitrary function
geF. Put

g+(x) = (g(x) + g(—x))/2 g-(x) = (g(x) — g(—x))/2.
Then
g+(—x) = (g(—x)+g(x))/2 =g+ (x)  g-(—x) = (g(—x)—g(x))/2 = —g-(x),

so g+ € EF and g_ € OF.
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Example ?7: Consider the space F of all functions from R to R, and the
subspaces EF and OF of even functions and odd functions.

We claim that F = EF & OF.
To prove this, we must check that EF N OF =0 and EF + OF = F.

Suppose that f € EF N OF. Then for any x we have f(x) = f(—x) (because

f € EF), but f(—x) = —f(x) (because f € OF), so f(x) = —f(x), so

f(x) =0. Thus EF N OF =0, as required. Next, consider an arbitrary function
geF. Put

g+(x) = (g(x) + g(—x))/2 g-(x) = (g(x) — g(—x))/2.
Then
g+(—x) = (g(—x)+g(x))/2 =g+ (x)  g-(—x) = (g(—x)—g(x))/2 = —g-(x),

so g+ € EF and g_ € OF. It is also clear from the formulae that g = g+ + g,
so g € EF + OF.



Odd and even functions

Example ?7: Consider the space F of all functions from R to R, and the
subspaces EF and OF of even functions and odd functions.

We claim that F = EF & OF.
To prove this, we must check that EF N OF =0 and EF + OF = F.

Suppose that f € EF N OF. Then for any x we have f(x) = f(—x) (because
f € EF), but f(—x) = —f(x) (because f € OF), so f(x) = —f(x), so
f(x) =0. Thus EF N OF =0, as required. Next, consider an arbitrary function
geF. Put
g+(x) = (g(x) + g(—x))/2 g-(x) = (g(x) — &g(=x))/2.
Then

g+(—x) = (g(—x)+g(x))/2=g+(x)  &-(—x) = (g(—x)—g(x))/2 = —g-(x),

so g+ € EF and g_ € OF. It is also clear from the formulae that g = g+ + g,
so g € EF 4+ OF. This shows that EF + OF = F, so F = EF & OF as claimed.

O
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V ={A€ MyR| trace(A) =0} = {[2 %] | a,b,c € R}
W={tl|teR} ={[§?] |t R}
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Example ??: Put U = M:R and
V ={A€ MyR| trace(A) =0} = {[2 %] | a,b,c € R}
W={tlteR}={[{% | teR}.

We claim that U =V @ W. To check this, first suppose that Ac VN W. As

A € W we have A = tl for some t € R, but trace(A) = 0 (because A € V)
whereas trace(tl) = 2t, so we must have t =0



Trace free matrices

Example ??: Put U = M:R and
V ={A€ MyR| trace(A) =0} = {[2 %] | a,b,c € R}
W={tlteR}={[{% | teR}.

We claim that U =V @ W. To check this, first suppose that Ac VN W. As

A € W we have A = tl for some t € R, but trace(A) = 0 (because A € V)
whereas trace(tl) = 2t, so we must have t = 0, which means that A =0.



Trace free matrices

Example ??: Put U = M:R and

V ={A€ MyR| trace(A) =0} = {[2 %] | a,b,c € R}
W={tl|teR} ={[§?] |t R}

We claim that U =V @ W. To check this, first suppose that Ac VN W. As
A € W we have A = tl for some t € R, but trace(A) = 0 (because A € V)
whereas trace(tl) = 2t, so we must have t = 0, which means that A= 0. This
shows that VN W = 0.



Trace free matrices

Example ??: Put U = M:R and

V ={A€ MyR| trace(A) =0} = {[2 %] | a,b,c € R}
W={tl|teR} ={[§?] |t R}

We claim that U =V @ W. To check this, first suppose that Ac VN W. As
A € W we have A = tl for some t € R, but trace(A) = 0 (because A € V)
whereas trace(tl) = 2t, so we must have t = 0, which means that A= 0. This
shows that VN W = 0.

Next, consider an arbitrary matrix B =[P 7] € U.



Trace free matrices

Example ??: Put U = M:R and

V ={A€ MyR| trace(A) =0} = {[2 %] | a,b,c € R}
W={tl|teR} ={[§?] |t R}

We claim that U =V @ W. To check this, first suppose that Ac VN W. As
A € W we have A = tl for some t € R, but trace(A) = 0 (because A € V)
whereas trace(tl) = 2t, so we must have t = 0, which means that A= 0. This
shows that V N W = 0.

Next, consider an arbitrary matrix B = [? ] € U. We can write this as

B = C + D, where

(b-9/2 a
[0 ] e v

C
_ [+s)2 0 _p+s
D=[E2 0] =B rew.



Trace free matrices

Example ??: Put U = M:R and

V ={A€ MyR| trace(A) =0} = {[2 %] | a,b,c € R}
W={tl|teR} ={[§?] |t R}

We claim that U =V @ W. To check this, first suppose that Ac VN W. As
A € W we have A = tl for some t € R, but trace(A) = 0 (because A € V)
whereas trace(tl) = 2t, so we must have t = 0, which means that A= 0. This
shows that V N W = 0.

Next, consider an arbitrary matrix B = [? ] € U. We can write this as

B = C + D, where

(b-9/2 a
[0 ] e v

C
_ [+s)2 0 _p+s
D=[E2 0] =B rew.

This shows that U=V + W. O



Independence and spanning sets

Two randomly-chosen vectors in R? will generally not be parallel; it is an
important special case if they happen to point in the same direction.
Similarly, given three vectors u, v and w in R®, there will usually not be any
plane that contains all three vectors. This means that we can get from the
origin to any point by travelling a certain (possibly negative) distance in the
direction of u, then a certain distance in the direction of v, then a certain
distance in the direction of w. The case where u, v and w all lie in a common
plane will have special geometric significance in any purely mathematical
problem, and will often have special physical significance in applied problems.
Our task in this section is to generalise these ideas, and study the
corresponding special cases in an arbitrary vector space V. The abstract
picture will be illuminating even in the case of R? and R®. O
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Linear independence

Definition ??: Let V be a vector space, and let V = v,..., v, be a list of
elements of V.

A linear relation between the v;'s is a vector [A1, ..., As]” € R” such that
AMvi+...+ v, =0.

The vector [0, ...,0]” is obviously a linear relation, called the trivial relation.

If there is a nontrivial linear relation, we say that the list V is linearly
dependent.

Otherwise, if the only relation is the trivial one, we say that the list V is linearly
independent. ()
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Vi = |:2:| Vo = |:5] V3 = |:8]
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Then vi — 2w +v3 =0, so [1,—2,1]7 is a nontrivial linear relation, so the list
V1i,V2, V3 is linearly dependent.
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Example ??: Consider the following vectors in R3:

1 4 7
Vi = |:2:| Vo = |:5] V3 = |:8]
3 6 9
Then vi — 2w +v3 =0, so [1,—2,1]7 is a nontrivial linear relation, so the list
V1i,V2, V3 is linearly dependent.

Example ??: Consider the following vectors:

T R ]
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Example ??: Consider the following vectors in R*:

1 4 7
Vi = |:2:| Vo = |:5] V3 = |:8]
3 6 9
Then vi — 2w +v3 =0, so [1,—2,1]7 is a nontrivial linear relation, so the list
V1i,V2, V3 is linearly dependent.

Example ??: Consider the following vectors:
1 0 0
Vlz[lj| V2:|:1] V3:[0].
1 1 1
A linear relation between these is a vector [A1, A2, As]” such that
v+ dovo + A3v3 =0
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Example ??: Consider the following vectors in R*:
1 4 7
Vi = |:2:| Vo = |:5] V3 = |:8]
3 6 9
Then vi — 2w +v3 =0, so [1,—2,1]7 is a nontrivial linear relation, so the list
V1i,V2, V3 is linearly dependent.

Example ??: Consider the following vectors:

1 0 0
Vlz[lj| V2:|:1] V3:[0].
1 1 1

A linear relation between these is a vector [A1, A2, As]” such that

A1vi + Aava + Azvs = 0, or equivalently

A1
A1+A2 = |:
A1+A2+A3



Linear independence examples

Example ??: Consider the following vectors in R*:
1 4 7
Vi = |:2:| Vo = |:5] V3 = |:8]
3 6 9
Then vi — 2w +v3 =0, so [1,—2,1]7 is a nontrivial linear relation, so the list
V1i,V2, V3 is linearly dependent.

Example ??: Consider the following vectors:

1 0 0
Vlz[lj| V2:|:1] V3:[0].
1 1 1

A linear relation between these is a vector [A1, A2, As]” such that

A1vi + Aava + Azvs = 0, or equivalently

A1 0
A1t+A2 = |0].
A1+A2+23 0

From this we see that A\; = 0, then from the equation A\;1 + A2 = 0 we see that
A2 = 0, then from the equation A1 + A2 + A3 = 0 we see that A3 = 0.



Linear independence examples

Example ??: Consider the following vectors in R*:
1 4 7
Vi = |:2:| Vo = |:5] V3 = |:8]
3 6 9
Then vi — 2w +v3 =0, so [1,—2,1]7 is a nontrivial linear relation, so the list
V1i,V2, V3 is linearly dependent.

Example ??: Consider the following vectors:

1 0 0
Vlz[lj| V2:|:1] V3:[0].
1 1 1
A linear relation between these is a vector [A1, A2, As]” such that

A1vi + Aava + Azvs = 0, or equivalently

A1 0
A1t+A2 = |0].
A1+A2+23 0

From this we see that A\; = 0, then from the equation A\;1 + A2 = 0 we see that
A2 = 0, then from the equation A1 + X2 + A3 = 0 we see that A3 = 0. Thus,
the only linear relation is the trivial one where [A1, A2, A3]” = [0,0,0]"



Linear independence examples

Example ??: Consider the following vectors in R*:
1 4 7
Vi = |:2:| Vo = |:5] V3 = |:8]
3 6 9
Then vi — 2w +v3 =0, so [1,—2,1]7 is a nontrivial linear relation, so the list
V1i,V2, V3 is linearly dependent.

Example ??: Consider the following vectors:

1 0 0
Vlz[lj| V2:|:1] V3:[0].
1 1 1
A linear relation between these is a vector [A1, A2, As]” such that

A1vi + Aava + Azvs = 0, or equivalently

A1 0
A1t+A2 = |0].
A1+A2+23 0

From this we see that A\; = 0, then from the equation A\;1 + A2 = 0 we see that
A2 = 0, then from the equation A1 + X2 + A3 = 0 we see that A3 = 0. Thus,
the only linear relation is the trivial one where [A1, A2, A3]7 = [0,0,0]", so our
vectors vi, vp, v3 are linearly independent. ()
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Example ??: Consider the polynomials p,(x) = (x + n)?, so
po(x) = x* pr(x) =x"+2x+1
p(x) =x* +4x +4 p3(x) = x> + 6x + 0.

| claim that the list po, p1, p2 is linearly independent. Indeed, a linear relation
between them is a vector [Ao, A1, A2] " such that Aopo + A1p1 + Xapa = 0, or

equivalently
(Mo + A1+ X2)x 4+ (2A1 + 4X2)x + (A +4X2) =0

for all x, or equivalently
)\o+)\1+A2:0, 2/\1+4A2:0, A1 +4) =0.

Subtracting the last two equations gives A1 = 0
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Example ??: Consider the polynomials p,(x) = (x + n)?, so
po(x) = x* pr(x) =x"+2x+1
p(x) =x* +4x +4 p3(x) = x> + 6x + 0.
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between them is a vector [Ao, A1, A2] " such that Aopo + A1p1 + Xapa = 0, or

equivalently
(Mo + A1+ X2)x 4+ (2A1 + 4X2)x + (A +4X2) =0

for all x, or equivalently
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Linear independence of polynomials

Example ??: Consider the polynomials p,(x) = (x + n)?, so

po(x) = x* pr(x) =x"+2x+1

p(x) =x* +4x +4 p3(x) = x> + 6x + 0.
| claim that the list po, p1, p2 is linearly independent. Indeed, a linear relation
between them is a vector [Ao, A1, A2] " such that Aopo + A1p1 + Xapa = 0, or

equivalently
(Mo + A1+ X2)x 4+ (2A1 + 4X2)x + (A +4X2) =0

for all x, or equivalently
)\o+)\1+A2:0, 2/\1+4A2:0, A1 +4) =0.

Subtracting the last two equations gives A1 = 0, putting this in the last
equation gives X\> = 0, and now the first equation gives Ao = 0. Thus, the only
linear relation is [Ao, A1, X2]” = [0,0,0]", so the list po, p1, p2 is independent.

O
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Linear independence of polynomials

Example ??: Consider the polynomials p,(x) = (x + n)?, so

po(x) = x* pr(x) =x"+2x+1
p(x) =x* +4x +4 p3(x) = x> + 6x + 0.

| next claim, however, that the list po, p1, p2, p3 is linearly dependent.

Indeed, you can check that
p3—3p2+3p1—po =0

so [1,—3,3,—1]" is a nontrivial linear relation.

(The entries in this list are the coefficients in the expansion of
(T —1)®= T® —3T24+3T — 1; this is not a coincidence, but the explanation
would take us too far afield.) O
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h(x)=e"
f3(x) = sinh(x)
fa(x) = cosh(x)

These are linearly dependent, because sinh(x) is by definition just
(e —e7)/2, so
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Linear dependence of functions

Example ??: Consider the functions

fi(x) =€
h(x)=e"
f3(x) = sinh(x)
fa(x) = cosh(x)

These are linearly dependent, because sinh(x) is by definition just
(e —e7)/2, so

A—h-2h=¢e"—e " —(e"—e*)=0
so [1,-1, —2,O]T is a nontrivial linear relation. Similarly, we have

cosh(x) = (€* 4+ e7¥)/2, s0 fy = 2fi + 3£, so [3,3,0,—1]" is another linear
relation. O
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Example ??7: Consider the matrices

Ei=[30] Ex =[] Es =[99] E;=[33].
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E=[50] E=I[3 B=I[{8] E&=I[?

A linear relation between these is a vector [A1, A2, A3, Aa] " such that
AME1 + Mo By + M3E3 + \4E4 is the zero matrix. But
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Linear independence of matrices

Example ??7: Consider the matrices
E=[50] E=I[3 B=I[{8] E&=I[?

A linear relation between these is a vector [A1, A2, A3, Aa] " such that
AME1 + Mo By + M3E3 + \4E4 is the zero matrix. But
AL A
MEL+ XE + X3E3 + MEs = [A; Ai]

and this is only the zero matrix if A1 = X2 = A3 = A\ = 0.

Thus, the only linear relation is the trivial one, showing that E;, ..., Es4 are
linearly independent. O
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Linear independence and the map uy

Remark ?7: Let V be a vector space, and let V = vy, ..., v, be a list of
elements of V. We have a linear map py: R" — V, given by

(A, A7) = Avi 4+ 4 Aava

By definition, a linear relation between the v;'s is just a vector
A =[A1,..., 2] € R" such that py(X) = 0, or in other words, an element of
the kernel of uy.

Thus, V is linearly independent iff ker(uy) = {0} iff uy is injective (by
Proposition 7?). O
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The Wronskian

Definition ?77: Let C°°(R) be the vector space of smooth functions

f' R — R. Given fi,...,f, € C*°(R), their Wronskian matrix is the matrix

( f») whose entries are the derivatives £9 for i = 1,.

- ,n and
=0,...,n— 1. For example, in the case n = 4, we have

i L B f

fl f/ f/ f/
WM(fh f27 fé: ﬁl) = flll f2// f3;/ fj/
ff// f'22/// f‘/// ﬂ?//

The Wronskian of fi,.

., fn is the determinant of the Wronskian matrix; it is
written W(f,...,f,)

Note that the entries in the Wronskian matrix are all functions, so the
determinant is again a function. O
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Example ??: Consider the functions exp, sin and cos, so exp’ = exp and

sin’ = cos and cos’ = —sin and sin® 4+ cos? = 1. We have

cos exp cos — sin
7"

exp sin cos exp sin cos
W (exp, sin, cos) = det | exp’ sin’ /| = det
exp” sin cos’’ exp — sin — cos
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sin’ = cos and cos’ = — sin and sin? 4+ cos® = 1. We have

exp sin cos exp sin cos

W (exp, sin, cos) = det | exp’ sin’ cos’ | = det |exp cos — sin
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Example ??: Consider the functions exp, sin and cos, so exp’ = exp and

o , . -
sin’ = cos and cos’ = — sin and sin? 4+ cos® = 1. We have

exp sin cos exp sin cos

W (exp, sin, cos) = det | exp’ sin’ cos’ | = det |exp cos — sin

exp / sin’/ cos’’ exp — sin — cos

= exp.(— cos® — sinz) — exp.(— sin . cos + sin . cos) + exp.(— sin? — cosz)

=exp.(—1) — exp .(0) + exp .(—1)



Wronskian example

Example ??: Consider the functions exp, sin and cos, so exp’ = exp and

o , . -
sin’ = cos and cos’ = — sin and sin? 4+ cos® = 1. We have

exp sin cos exp sin cos

W (exp, sin, cos) = det | exp’ sin’ cos’ | = det |exp cos — sin

exp / sin’/ cos’’ exp — sin — cos

= exp.(— cos® — sinz) — exp.(— sin . cos + sin . cos) + exp.(— sin? — cosz)
=exp.(—1) — exp .(0) + exp .(—1)
= —2exp.O
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The Wronskian and linear dependence

Proposition 77:
If fi,...,f, are linearly dependent, then W(f,...,f,) = 0.
(The function w = W(f, ..., f,) is the zero function, ie w(x) = 0 for all x.)

Proof for n = 3:
If fi, f, f5 are linearly dependent, then there are numbers A1, A2, A3 (not all
zero) such that A\1fi + A2f2 + A3fs is the zero function, which means that

Afi(x) + Xofa(x) + Ashs(x) =0 (for all x)
We can differentiate to get

AL (x) 4 Aafy (x) 4+ Asfy (x) = 0
and again to get

M (x) + Ay (x) + Ash' (x) = 00



The Wronskian and linear dependence

Ah(x) + Xeh(x) + Ash(x) =
A (%) + Xaf (x) + Asf(x)
M (%) + Xofy' (x) + Aaf (x) =

0
0
0
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M (X) 4 Aof3 (x) + Xafy (x) =
)\1f1 (X) + )\2f2//(x) + )\3f3”(x)

fi(x) fz(X) f(x) 0
Al[fmhxg[z ]+A3{f3<x>}=[o]
7' (x) /(%) 7' (x) 0

SO
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Ah(x) + Xofa(x) + A3fs(x) =0
AL (x) + Xafy (x) + A (x) = 0
M (%) + Xaf' (x) + Asf'(x) = 0

fi(x) fz(X) f(x) 0
Al[fmhxz[z ]+A3{f;<x>}=[o]
77 (x) /(%) 7' (x) 0

so the columns of the matrix

SO

h Hh f
WM(fi, £, ) = | & & £ |.
fl” fQN fg”

are linearly dependent, so

W(fi, £, ) = det(WM(fi, £, £5)) = O.



The Wronskian and linear dependence

Ah(x) + Xofa(x) + A3fs(x) =0
AL (x) + Xafy (x) + A (x) = 0
M (%) + Xaf' (x) + Asf'(x) = 0

fi(x) fz(X) f(x) 0
Al[fmhxa[z ]+A3{f;<x>}=[o]
77 (x) /(%) 7' (x) 0

so the columns of the matrix

SO

h Hh f
WM(fi, ,6) = | # & £ |.
fl” f‘2// f3//

are linearly dependent, so
W(fi, £, f3) = det(WM(f, f5, f3)) = 0.

Corollary ?7:
If W(f,...,f,) #0, then fi,...,f, are linearly independent. 0o
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A Wronskian counterexample

Remark ??: Consider a pair of smooth functions like this:

AN AN

Suppose that fi(x) is zero (not just small) for x > 0, and that f(x) is zero for
x < 0. (It is not easy to write down formulae for such functions, but it can be
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A Wronskian counterexample

Remark ??: Consider a pair of smooth functions like this:

AN AN

Suppose that fi(x) is zero (not just small) for x > 0, and that f(x) is zero for
x < 0. (It is not easy to write down formulae for such functions, but it can be
done; we will not discuss this further here.) For x < 0, the matrix

A(x) 0
WM(fi, £)(x) has the form { R

} , so the determinant is zero. For x > 0,

0 A(x)
0 £(x)
zero. Thus W(f, £)(x) = 0 for all x, but f; and £, are not linearly dependent.
This shows that the test in Proposition ?? is not reversible: if the functions are
dependent then the Wronskian vanishes, but if the Wronskian vanishes then
the functions need not be dependent. In practice it is rare to find such
counterexamples, however. ()

the matrix WM(f1, f)(x) has the form [ ] so the determinant is again
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Definition ??: Given a list V = vi,..., v, of elements of a vector space V, we
write span()) for the set of all vectors w € V that can be written in the form
w = Avi+ ...+ A\, for some Aq,..., A\, € R. Equivalently, span()) is the
image of the map py: R” — V (which shows that span()) is a subspace of V).
We say that V spans V if span(V) = V, or equivalently, if uy is surjective.

Remark ?7: Often V will be a subspace of some larger space U. If you are
asked whether certain vectors v, ..., v, span V, the first thing that you have
to check is that they are actually elements of V. (O
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The standard basis spans

Definition ??: Let e; be the vector in R" whose i'th entry is 1, with all other
entries being zero. For example, in R3 we have

alt] =[] e=[}

Example ??: The list e1,...,e, spans R". Indeed, any vector x € R” can be
written as xie1 + ... + xp€,, which is a linear combination of ey, ..., e,, as
required. For example, in R3 we have

X1 1 0 0
[XZ] =X1 [8] + X2 [[1)] + X3 [?] = xie1 + xxez + x3ze3.()

X3
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Monomials span R[x]

Example ??: The list 1,x,...,x" spans R[x]<p.

Indeed, any element of R[x]<, is a polynomial of the form
f(x) = a0+ aix+ --- + anx", and so is visibly a linear combination of

Lx,....,x". O
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A spanning set for R*

Example ??7: Consider the vectors

1 1 0 0
up = |1} u =1 us = |1 u = |}
1 0 1 0

We claim that these span R*. Indeed, consider an arbitrary vector
v=[abcd]” €R* We have

a—c+d c—d 0 0 a
(a— c+duy + (c — d)uy + (c — a)ug + (b — c)ug = z:iij + [2:3] + [ﬁ:j] + [bEC] = [fg] =v
a—c+d 0 c—a 0 d

which shows that v is a linear combination of uy, ..., us, as required. O
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Consider an arbitrary vector v=[abc d]T € R*. We want to find p, g, r, s such
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w=l] wsfi] ws ] [
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Consider an arbitrary vector v=[abc d]T € R*. We want to find p, g, r, s such
that v = pu; + quz + rus + sus, or equivalently

HRSHEIHEHERHR el
p+g=al(l) p+q+r+s=>(2) p+qg+r=c(3) p+r=d(4)

Subtracting (3) and (4) gives g = ¢ — d; Subtracting (1) and(3) gives
r = ¢ — a; Subtracting (2) and(3) gives s = b — c; putting g =c — d in (1)
givesp=a—c+d.



A spanning set for R*
1 1 0 0
w=l] wsfi] ws ] [
1 0 1 0

Consider an arbitrary vector v=[abc d]T € R*. We want to find p, g, r, s such
that v = pu; + quz + rus + sus, or equivalently

AN [ )

[;] *"[}] *"M B H " [8] T e |
ptg=a(l) ptqgtr+s=>b(2) pt+tq+r=c(3) pt+tr=d(4)
Subtracting (3) and (4) gives g = ¢ — d; Subtracting (1) and(3) gives
r = ¢ — a; Subtracting (2) and(3) gives s = b — c; putting g =c — d in (1)
givesp=a—c+d.

a—ctd c—d 0 0 a
—c+d — - —

(a—c+duy + (c — d)uy + (c — a)uz + (b — c)uz = ziid + [273] + [i_:] " |:b0c:| - [fg] =v
a—c+d 0 c—a 0 d

O
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Example ??: Consider the polynomials pi(x) = (x + i)*.
We claim that the list p_2, p—1, po, p1, p2 spans R[x]<2. Indeed, we have

po(x) = x*
pr(x) = poi(x) = (x +1)* = (x = 1)* = 4x
p2(x) + p-2(x) = 2po(x) = (x +2)° + (x —2)* = 2x* = 8.



A spanning set for quadratic polynomials

Example ??: Consider the polynomials pi(x) = (x + i)*.
We claim that the list p_2, p—1, po, p1, p2 spans R[x]<2. Indeed, we have
po(x) = x*
pr(x) = poi(x) = (x +1)* = (x = 1)* = 4x

p2(x) + pa(x) — 2m(x) = (x + 2+ (x — 2)° — 2% = 8.

Thus for an arbitrary quadratic polynomial f(x) = ax®> 4 bx 4 ¢, we have
F(x) = apo(x) + 3b(p1(x) — ps(x)) + Se(pa(x) + p-2(x) — 2p0(x))
= £poa(x) — 2p1(x) + (3 — £)po(x) + Epu(x) + Epa(x).0
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Simple harmonic motion

Example ??: Put V = {f € C®(R) | f” + f = 0}. Claim: the functions sin
and cos span V.

—f(x) for all x, then there are constants a and

In other words, if f has f”/(x) =
+ bcos(x) for all x.

b such that f(x) = asin(x)
Proof: Firstly, we have sin’ = cos and cos’ = — sin, so sin” = —sin and
cos” = — cos, so sin and cos are indeed elements of V.

Consider an arbitrary element f € V. Put a = f'(0) and b = f(0), and put
g(x) = f(x) — asin(x) — bcos(x). We claim that g = 0. First, we have

g(0) = f(0) — asin(0) — bcos(0) =b—a.0 —b.1=0
g'(0) = f'(0) — asin’(0) — bcos'(0) = a — acos(0) + bsin(0) =a—a.l—b.0=0.

Now put h(x) = g(x)? + g’(x)?; the above shows that h(0) = 0% + 0% = 0.
O
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g(x) = f(x) — asin(x) — bcos(x); g € V so g’ (x) + g(x) = 0;
g(0) =g'(0) =0;

h(x) = g(x)* + &' (x)? h(0) =0

Next, we have g € V, s0 g’ = —g, so
' (x) = 2g(x)g’(x) + 28" (x)g" (x) = 28" (x)(g(x) + &"(x)) = 0.
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g(0) =g'(0) =0;
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Simple harmonic motion

g(x) = f(x) — asin(x) — bcos(x); g € V so g’ (x) + g(x) = 0;
g(0) =g'(0) =0;

h(x) = g(x)* + &' (x)? h(0) =0

Next, we have g € V, so g’ = —g, so

H(x) = 2g(x)g’(x) + 28" (x)g" (x) = 28’ (x)(g(x) + " (x)) = 0.

This means that h is constant, but h(0) = 0, so h(x) = 0 for all x.

However, h(x) = g(x)? 4 g’(x)?, which is the sum of two nonnegative
quantities; the only way we can have h(x) = 0 is if g(x) =0 = g’(x). This
means that g = 0, so f(x) — asin(x) — bcos(x) =0, so

f(x) = asin(x) 4+ bcos(x), as required. O
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V = wvi,..., v, of elements of V that spans V.

Example ??: Using our earlier examples of spanning sets, we see that the
spaces R", M, »R and R[x]<, are finite-dimensional.
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Finite-dimensional spaces

Definition ??: A vector space V is finite-dimensional if there is a (finite) list
V = wvi,..., v, of elements of V that spans V.

Example ??: Using our earlier examples of spanning sets, we see that the
spaces R", M, »R and R[x]<, are finite-dimensional.

Example ??: The space R[x] is not finite-dimensional. To see this, consider a
list P = p1,...,pn of polynomials. Let d be the maximum of the degrees of
Pi,...,Pn. Then p; lies in R[x]<q for all i, so the span of P is contained in
R[x]<q. In particular, the polynomial x*** does not lie in span(P), so P does
not span all of R[x].O
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Bases

Definition ??: A basis for a vector space V is a list V of elements of V that
is linearly independent and also spans V. Equivalently, a list V = w1,..., vy is a
basis iff the map py: R” — V is a bijection. O



Antisymmetric matrices



Antisymmetric matrices

Example ??7: We will find a basis for the space V of antisymmetric 3 x 3
matrices.



Antisymmetric matrices

Example ??7: We will find a basis for the space V of antisymmetric 3 x 3
matrices. Such a matrix has the form



Antisymmetric matrices

Example ??7: We will find a basis for the space V of antisymmetric 3 x 3
matrices. Such a matrix has the form

In other words, if we put
010 001 000
A:[—1oo} B:[ooo} C:[001]7
000 -100 0-10

then any antisymmetric matrix X can be written in the form
X =aA+ bB + cC.



Antisymmetric matrices

Example ??7: We will find a basis for the space V of antisymmetric 3 x 3
matrices. Such a matrix has the form

0 a b
X:[—aOc:|
—b —c 0
In other words, if we put
010 001 000
A:[—1oo} B:[ooo} C:[001]7
000 —-100 0-10

then any antisymmetric matrix X can be written in the form
X = aA+ bB + cC. This means that the matrices A, B and C span V



Antisymmetric matrices

Example ??7: We will find a basis for the space V of antisymmetric 3 x 3
matrices. Such a matrix has the form

0 a b
X:[—aOc:|
—b —c 0
In other words, if we put
010 001 000
A:[—1oo} B:[ooo} C—[001]7
000 —100 0-10

then any antisymmetric matrix X can be written in the form
X = aA+ bB + cC. This means that the matrices A, B and C span V, and
they are clearly independent



Antisymmetric matrices

Example ??7: We will find a basis for the space V of antisymmetric 3 x 3
matrices. Such a matrix has the form

0 a b
X:[—aOc:|
—b —c 0
In other words, if we put
010 001 000
A:[—1oo} B:[ooo} C—[001]7
000 —100 0-10

then any antisymmetric matrix X can be written in the form
X = aA+ bB + cC. This means that the matrices A, B and C span V, and
they are clearly independent, so they form a basis.()
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Put V ={A€ MsR| AT = A and trace(A) = 0}.

Any matrix X € V has the form
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X = [23 : ]
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Trace-free symmetric matrices

Put V ={A€ MsR| AT = A and trace(A) = 0}.

Any matrix X € V has the form
X = [23 : ]
ce —a—d

for some a, b, c,d, e € R. In other words, if we put

a=s8e] s=[iss] c=[ige] o=[885] £=[¢1]
then any matrix X € V can be written in the form

X =aA+ bB + cC+ dD + eE.
This means that the matrices A, ..., E span V, and they are also linearly

independent, so they form a basis for V. O
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f(x) = ax? + bx + c for some a, b, c € R.

> The list po, p1, p2, where pi(x) = x’. This is the most obvious basis. For f
as above we have

f=cpo+bpi+ap=f(0)po+f'(0)pr+ 3(0)p2-

> The list qo, q1, g2, where gi(x) = (x + 1)', is another basis.



Bases for the space of quadratic polynomials

Example ??:  There are several interesting bases for the space @ = R[x]<2 of
polynomials of degree at most two. A typical element f € Q has
f(x) = ax? + bx + c for some a, b, c € R.
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as above we have
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Bases for the space of quadratic polynomials

Example ??:  There are several interesting bases for the space @ = R[x]<2 of
polynomials of degree at most two. A typical element f € Q has
f(x) = ax? + bx + c for some a, b, c € R.
> The list po, p1, p2, where pi(x) = x’. This is the most obvious basis. For f
as above we have

f=cpo+bpi+ap=f(0)po+f'(0)pr+ 3(0)p2-

> The list go, q1, g2, where g;(x) = (x + 1), is another basis. For f as
above, one checks that
ax> +bx+c=a(x+1)>+(b—2a)(x+1)+(a—b+c)

o]

f=(a—b+c)q+(b—2a)q1+aq =f(—1)qo+f'(-1)q1 + 3" (~1)q.
O
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» The list ro, r1, r2, where ri(x) = (x 4 i)?, is another basis. Indeed, we have
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Bases for the space of quadratic polynomials
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» The list ro, r1, r2, where ri(x) = (x 4 i)?, is another basis. Indeed, we have
1=1((x+2)°-2(x+ 1) +x°)

= 1(ra(x) = 21(x) + r0(x))

pr(x) = x = —1((x + 2 — 4(x + 1)” + 3°)

f%(m(x) —4n(x) + 3r(x))

This implies that po, p1, p> € span(ro, r1, r2) and thus that
span(ro, ri, n) = Q. O
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and g(0) = g(1) = g(2) = 0.
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si(x) = —x* 4+ 2x
s(x) = (x> = x)/2.
gives another basis. These functions have the property that

9(0)=1 s(1)=0 s(2)=0
51(0)20 51(1)2 1 51(2)20
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Bases for the space of quadratic polynomials

» The list 9
so(x) = (x* —3x+2)/2

si(x) = —x* 4+ 2x
s(x) = (x> = x)/2.
gives another basis. These functions have the property that

9(0)=1 s(1)=0 s(2)=0
51(0)20 51(1)2 1 51(2)20
52(0)20 52(1)20 52(2): 1

Given f € Q we claim that f = £(0).so + f(1).s1 + f(2).s. Indeed, if we
put g(x) = f(x) — f(0)so(x) — f(1)s1(x) — £(2).52(x), we find that g € Q
and g(0) = g(1) = g(2) = 0. A quadratic polynomial with three different
roots must be zero, so g =0, so f = f(0).s0 + f(1).51 + f(2).52. O
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to(x) =1
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gives another basis. These functions have the property that
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Bases for the space of quadratic polynomials

» The list
to(x) =1
ti(x) = V3(2x — 1)
t2(x) = V5(6x> — 6x +1).
gives another basis. These functions have the property that
1 e
Anwmayu_{;;g;i
Using this, we find that f = \oto + A\it1 + A2t2, where

A= [} F()t(x) dx. O
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A space of polynomials

Put V = {f € R[x]<s | f(1) = f(~1) = 0 and /(1) = f/(—1)}.

Consider a polynomial f € R[x]<a, so f(x) = a+ bx + cx® + dx® + ex*
for some constants a,...,e. We then have

fl)=a+b+c+d+e
f(-l)=a—b+c—d+e
f'(1) = f(-1)=(b+2c+3d+4e) — (b—2c+3d —4e) = 4c + 8e

It follows that f € Viffa+b+c+d+e=a—b+c—d+e=4c+8e=0.
This simplifies to c = —2e and a=e and b= —d
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Put V= {f € R[x]<a | f(1) = f(=1) =0 and f'(1) = f'(-1)}.
Consider a polynomial f € R[x]<a, so f(x) = a+ bx + cx® + dx® + ex*

for some constants a,...,e. We then have

fl)=a+b+c+d+e
f(-l)=a—b+c—d+e
f'(1) = f(-1)=(b+2c+3d+4e) — (b—2c+3d —4e) = 4c + 8e

It follows that f € Viffa+b+c+d+e=a—b+c—d+e=4c+8e=0.
This simplifies to ¢ = —2e and a = e and b= —d, so

f(x) =e—dx —2ex’ + dx’ + ex* = d(x® — x) + e(x* — 2x* +1).



A space of polynomials

Put V = {f € R[x]<s | f(1) = f(~1) = 0 and /(1) = f/(—1)}.

Consider a polynomial f € R[x]<a, so f(x) = a+ bx + cx® + dx® + ex*
for some constants a,...,e. We then have
fl)=a+b+c+d+e
f(-l)=a—b+c—d+e
f'(1) = f(-1)=(b+2c+3d+4e) — (b—2c+3d —4e) = 4c + 8e
It follows that f € Viffa+b+c+d+e=a—b+c—d+e=4c+8e=0.
This simplifies to ¢ = —2e and a = e and b= —d, so

f(x) =e—dx —2ex’ + dx’ + ex* = d(x® — x) + e(x* — 2x* +1).

Thus, if we put p(x) = x> — x and g(x) = x* —2x> + 1 = (x> — 1), then p, g
is a basis for V. O
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Example ??7: A magic square is a 3 X 3 matrix in which the sum of every row
is the same, and the sum of every column is the same. More explicitly, a matrix

abc
X = |:d e f]
ghi
is a magic square iff we have

at+b+c=d+e+f=g+h+i
at+d+g=b+e+h=c+f+i

Let V be the set of magic squares, which is easily seen to be a subspace of
M;sR; we will find a basis for V. First, we write

R(X)=a+b+c=d+e+f=g+h+i

C(X)=a+d+g=bt+et+h=c+f+i
T(X)=a+b+c+td+e+f+g+h+i0O



a b ¢ R(X) b dietf=gthti
—a+t+btc=d+e =g i
X=|d e f|leV C(X) =—atdtgebtethmctrfti
. T(X) =a+btc+dte+f+g+hti
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R(X =a+btc=d+e+f=g+h+i
X=1|d e f|leV C(X) =atdig=bteth=ct+rf+i
. T(X) =a+btctd+et+f+g+hti
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On the one hand, we have
T(X)=a+b+c+dte+ft+g+h+i=
(a+b+c)+(d+e+f)+(g+h+i)=3R(X). We also have
T(X)=a+d+g+b+e+h+c+f+i=
(a+d+g)+(b+e+h)+(c+f+i)=3C(X).

It follows that R(X) = C(X) = T(X)/3.

It is now convenient to consider the subspace W = {X € V | T(X) = 0},
consisting of squares as above for which

at+b+c=d+e+f=g+h+i=0
atd+g=bt+tet+h=c+f+i=00
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For such a square, we certainly have
c=—-a—b f=—-d-—e g=—-a—d h=—-b—e.
Substituting this back into the equation g + h+ i = 0 (or into the equation

c+f+i=0)givesi=a+ b+ d+e. It follows that any element of W can

be written in the form
a b —a—b ]

X = |: d e —d—e
—a—d —b—e at+b+d+e

Equivalently, if we put

10-1 01 —1
A= 000 B=1]00 0 D=
—10 1 0—-11

| o

00 00 O

gn) e B

then any element of W can be written in the form X = aA+ bB + dD + eE for
some list a, b, d, e of real numbers. This means that A, B, D, E spans W
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For such a square, we certainly have
c=—-a—b f=—-d-—e g=—-a—d h=—-b—e.

Substituting this back into the equation g + h+ i = 0 (or into the equation
c+f+i=0)givesi=a+ b+ d+e. It follows that any element of W can
be written in the form

a b —a—b ]

X = |: d e —d—e
—a—d —b—e at+b+d+e

Equivalently, if we put
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then any element of W can be written in the form X = aA+ bB + dD + eE for

some list a, b, d, e of real numbers. This means that A, B, D, E spans W, and
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X=|def EW at+b+c=d+e+f=g+h+i=0
ghi at+d+g=b+tet+h=c+f+i=0

For such a square, we certainly have
c=—-a—b f=—-d-—e g=—-a—d h=—-b—e.

Substituting this back into the equation g + h+ i = 0 (or into the equation
c+f+i=0)givesi=a+ b+ d+e. It follows that any element of W can
be written in the form

a b —a—b
X = |: d e —d—e ]
—a—d —b—e at+b+d+e

Equivalently, if we put

10-1 01 —1
A= 000 B=1]00 0 D=
—10 1 0—-11

| ~o

00 00 O
gn) e B
then any element of W can be written in the form X = aA+ bB + dD + eE for

some list a, b, d, e of real numbers. This means that A, B, D, E spans W, and
these matrices are clearly linearly independent, so they form a basis for W. O
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We claim that Q, A, B, D, E is a basis for V.

e

Indeed, given X € V we can put t = T(X)/9 and Y = X — tQ.
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a,b,d,e € R. It follows that X =tQ + Y = tQ + aA+ bB + dD + €E.
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Indeed, given X € V we can put t = T(X)/9 and Y = X — tQ.

We then have Y € Vand T(Y) = T(X) —tT(Q)=0,s0 Y € W.

As A, B, D, E is a basis for W, we see that Y = aA + bB + dD + eE for some
a,b,d,e € R. It follows that X =tQ + Y = tQ + aA+ bB + dD + €E.

This means that Q, A, B, D, E spans V.

Suppose we have a linear relation
qgQ+aA+bB+dD+eE =0

for some q, a, b, d, e € R. Applying T gives 9qg = 0 (because
T(A)=T(B)=T(D)=T(E)=0and T(Q)=9), and so g =0.



Next, the matrix Q = [ ﬁ} lies in V but not in W (because T(Q) =9).
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a,b,d,e € R. It follows that X =tQ + Y = tQ + aA+ bB + dD + €E.

This means that Q, A, B, D, E spans V.
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Suppose we have a linear relation
qgQ+aA+bB+dD+eE =0

for some q, a, b, d, e € R. Applying T gives 9qg = 0 (because
T(A)=T(B)=T(D)=T(E)=0and T(Q)=9), and so g = 0. This leaves
aA+bB+dD +eE =0



Next, the matrix Q = [ ﬁ} lies in V but not in W (because T(Q) =9).
We claim that Q, A, B, D, E is a basis for V.

Indeed, given X € V we can put t = T(X)/9 and Y = X — tQ.

We then have Y € Vand T(Y) = T(X) —tT(Q)=0,s0 Y € W.

As A, B, D, E is a basis for W, we see that Y = aA + bB + dD + eE for some
a,b,d,e € R. It follows that X =tQ + Y = tQ + aA+ bB + dD + €E.

This means that Q, A, B, D, E spans V.

e

Suppose we have a linear relation
qgQ+aA+bB+dD+eE =0

for some q, a, b, d, e € R. Applying T gives 9qg = 0 (because
T(A)=T(B)=T(D)=T(E)=0and T(Q)=9), and so g = 0. This leaves
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e

Indeed, given X € V we can put t = T(X)/9 and Y = X — tQ.

We then have Y € Vand T(Y) = T(X) —tT(Q)=0,s0 Y € W.

As A, B, D, E is a basis for W, we see that Y = aA + bB + dD + eE for some
a,b,d,e € R. It follows that X =tQ + Y = tQ + aA+ bB + dD + €E.

This means that Q, A, B, D, E spans V.

Suppose we have a linear relation

qQ +aA+bB+dD +eE =0

for some q, a, b, d, e € R. Applying T gives 9qg = 0 (because
T(A)=T(B)=T(D)=T(E)=0and T(Q)=9), and so g = 0. This leaves
aA+ bB + dD + eE =0, and A, B, D and E are linearly independent, so
a=b=d=e=0 as well.



Next, the matrix Q = ﬁ} lies in V but not in W (because T(Q) =9).
We claim that Q, A, B, D, E is a basis for V.

e

Indeed, given X € V we can put t = T(X)/9 and Y = X — tQ.

We then have Y € Vand T(Y) = T(X) —tT(Q)=0,s0 Y € W.

As A, B, D, E is a basis for W, we see that Y = aA + bB + dD + eE for some
a,b,d,e € R. It follows that X =tQ + Y = tQ + aA+ bB + dD + €E.

This means that Q, A, B, D, E spans V.

Suppose we have a linear relation
qQ +aA+bB+dD +eE =0

for some q, a, b, d, e € R. Applying T gives 9qg = 0 (because
T(A)=T(B)=T(D)=T(E)=0and T(Q)=9), and so g = 0. This leaves
aA+ bB + dD + eE =0, and A, B, D and E are linearly independent, so
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independent as well as spanning V/, so they form a basis for V.



Next, the matrix Q = ﬁ} lies in V but not in W (because T(Q) =9).
We claim that Q, A, B, D, E is a basis for V.

Indeed, given X € V we can put t = T(X)/9 and Y = X — tQ.

We then have Y € Vand T(Y) = T(X) —tT(Q)=0,s0 Y € W.

As A, B, D, E is a basis for W, we see that Y = aA + bB + dD + eE for some
a,b,d,e € R. It follows that X =tQ + Y = tQ + aA+ bB + dD + €E.

This means that Q, A, B, D, E spans V.

e

Suppose we have a linear relation
qQ +aA+bB+dD +eE =0

for some q, a, b, d, e € R. Applying T gives 9qg = 0 (because
T(A)=T(B)=T(D)=T(E)=0and T(Q)=9), and so g = 0. This leaves
aA+ bB + dD + eE =0, and A, B, D and E are linearly independent, so
a=b=d=e=0 as well. This means that Q, A, B, D and E are linearly
independent as well as spanning V/, so they form a basis for V. Thus
dim(V)=5. O
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Linear maps out of R”

We next discuss linear maps R” — V (for any vector space V).
We will do the case n = 2 first; the general case is essentially the same, but
with more complicated notation.

Definition ??: Let V be a vector space, and let v and w be elements of V.
We then define py,w: R?> >V by

pvw ([y]) = xv + yw.

This makes sense because:
» x is a number and v € V and V is a vector space, so xv € V.
» yis a number and w € V and V is a vector space, so yw € V.
» xv and yw lie in the vector space V, so xv + yw € V.

It is clear that p,w is a linear map. O
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Proposition ??: Any linear map ¢: R? = V has the form ¢ = .., for some
v,we V.

Proof: The vector e; = [}] is an element of R?, and ¢ is a map from R? to V,
so we have an element v = ¢(e;) € V. Similarly, the vector e; = [9] is an
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Linear maps out of R?

Proposition ??: Any linear map ¢: R? = V has the form ¢ = .., for some
v,we V.

Proof: The vector e; = [}] is an element of R?, and ¢ is a map from R? to V,
so we have an element v = ¢(e;) € V. Similarly, the vector e; = [9] is an
element of R?, and ¢ is a map from R? to V, so we have an element

w = ¢(e2) € V. We claim that ¢ = p,,w. Indeed, as ¢ is linear, we have

p(xer + yeo) = xg(e1) + yp(e2) = xv + yw = pvw ([7]) -
On the other hand, it is clear that
xer+ye; = x[g]+y[§] =[],
so the previous equation reads
o ([3]) = pvw ([F]) -

This holds for all x and y, so ¢ = py,w as claimed. O
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Linear maps out of R”

For any list V = vi,..., v, of elements of V, we can define a linear map

wy: R" — V by

wy([x, - - - ,x,,]T) =D Xivi=X1vi + ...+ XV

Proposition ??:  Any linear map ¢: R” — V has the form ¢ = uy for some
list V = wvi,..., v, of elements of V (which are uniquely determined by the

formula v; = ¢(e;), where e, is as in Definition ??). Thus, a linear map
R" — V is essentially the same thing as a list of n elements of V.

Proof: Put v; = ¢(e;) € V.
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Linear maps out of R”

For any list V = vi,..., v, of elements of V, we can define a linear map
wy: R" — V by
wo([x, -, x0]") = DoiXivi=X1vi + ...+ XaVi.

Proposition ??:  Any linear map ¢: R” — V has the form ¢ = uy for some
list V = wvi,..., v, of elements of V (which are uniquely determined by the
formula v; = ¢(e;), where e, is as in Definition ??). Thus, a linear map

R" — V is essentially the same thing as a list of n elements of V.

Proof: Put v; = ¢(e;) € V. For any x € R" we have

X = xi1€e1 + ...+ xpe, = E Xi€;,
i

SO

B(x) = Zx;qﬁ(e,—) = invf = vy (X),
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An example

Consider the map ¢: R®> — MsR given by

a at+b a

¢ [g] = [a+b atbtc a+b]

c a a+b a
Put A = A1,A2,A3, where
111 010
A=) = [1H] A=sle) = [i1] M=o =]

D= 1) o[3]<

coco
oro

coo
—

a a+b a a
] = [a+b atb+c a+b] =¢ [b]
a a+b a c

i
i
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An example

Consider the map ¢: R®> — MsR given by

a at+b a

o [8] = [+ ot 2]
Put A = Ay, Az, Az, where

== [{H1] w=eter=[{}] A =oter=|
Then

AHERBHED R

so ¢ =pa. O

coco
oro

coo
—

a a+b a a
] = [a+b atb+c a+b] =¢ [b]
a a+b a c

ocoo
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Another example

Consider the map ¢: R® — R[x] given by
P [b] —(a+ b+ )+ (atb)(x+1)+a(x+2)>
Put P = p1, p2, p3, where

pi(x) = d(e1) = x>+ (x +1)° + (x +2)*> =3x* + 6x+5
p(x) =) = x>+ (x+1)° =2x" +2x +1
p3(x) = p(es) = x*.



Another example

Consider the map ¢: R® — R[x] given by
P [b] —(a+ b+ )+ (atb)(x+1)+a(x+2)>
Put P = p1, p2, p3s, where
pi(x) = d(e1) = x>+ (x +1)° + (x +2)*> =3x* + 6x+5
p(x) =) = x>+ (x+1)° =2x" +2x +1
ps(x) = p(es) = x°.
Then

[ B] = a(3x 4 6x + 5) + b(2x + 2x + 1) + X’



Another example

Consider the map ¢: R® — R[x] given by
P [b] —(a+ b+ )+ (atb)(x+1)+a(x+2)>
Put P = p1, p2, p3s, where
pi(x) = d(e1) = x>+ (x +1)° + (x +2)*> =3x* + 6x+5
p(x) =) = x>+ (x+1)° =2x" +2x +1
ps(x) = p(es) = x°.
Then

[p [b] = a3 +6x+5)+ b2 +2x+1) + ol = ¢ [b] o)
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Corollary ??: Every linear map a: R” — R"™ has the form ¢4 (as in
Example ??) for some m X n matrix A (which is uniquely determined). Thus, a
linear map a: R” — R™ is essentially the same thing as an m x n matrix.

Proof: A linear map a: R"” — R" is essentially the same thing as a list

Vi,...,V, of elements of R™. If we write each v; as a column vector, then the
list can be visualised in an obvious way as an m x n matrix. For example, the
list
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Linear maps from R” to R™

Corollary ??: Every linear map a: R” — R"™ has the form ¢4 (as in
Example ??) for some m X n matrix A (which is uniquely determined). Thus, a
linear map a: R” — R™ is essentially the same thing as an m x n matrix.

Proof: A linear map a: R"” — R" is essentially the same thing as a list

Vi,...,V, of elements of R™. If we write each v; as a column vector, then the
list can be visualised in an obvious way as an m x n matrix. For example, the
list

11 1371 [5] [7
[2].[2]. (6], [4]
corresponds to the matrix
[1357]
2468l"
Thus, a linear map a: R" — R™ is essentially the same thing as an m x n

matrix. There are some things to check to see that this is compatible with
Example ??, but we shall not go through the details. O
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A rotation matrix

Consider the linear map p: R® — R® defined by
x y
o[:]=[i]
(so p(v) is obtained by rotating v through 27 /3 around the line x = y = z).

Then
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A rotation matrix

Consider the linear map p: R® — R® defined by
x y
o[:]=[i]
(so p(v) is obtained by rotating v through 27 /3 around the line x = y = z).

Then
ple)=[5]  ale)=]

This means that p = ¢r, where

e =]

= O

R:

= O O
O o
o
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Example 7?: Consider a vector a = [a, b, c]” € R?, and define 3: R® — R® by
B(v) = a x v. This is linear, so it must have the form § = ¢g for some 3 x 3
matrix B. To find B, we note that
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Example 7?: Consider a vector a = [a, b, c]” € R?, and define 3: R® — R® by
B(v) = a x v. This is linear, so it must have the form § = ¢g for some 3 x 3
matrix B. To find B, we note that
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Matrices for vector products

Example 7?: Consider a vector a = [a, b, c]” € R?, and define 3: R® — R® by
B(v) = a x v. This is linear, so it must have the form § = ¢g for some 3 x 3
matrix B. To find B, we note that

X bz—cy
8 [y} = | oar |,
z ay —bx

ger=[1]  ser=[5] ser=[3]

SO

These three vectors are the columns of B, so
0 —c b

B = |: c 0 78] .
—b a 0

(Note incidentally that the matrices arising in this way are precisely the 3 x 3
antisymmetric matrices.) O
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Matrices for plane projections

Example ??:  Consider a unit vector a = [a, b, c]” € R® (so &> + b* +c* =1)
and let P be the plane perpendicular to a. For any v € R®, we let 7(v) be the

projection of v onto P. The formula for this is w(v) = v — (v, a)a.

The map = is linear, so it must have the form 7(v) = Av for some 3 x 3 matrix
A. To find A, we observe that

N « a x—a2x—aby—acz
T [y] = [y] — (ax + by + cz) [b] = [y—abx—l?y—bcz} .
z z ¢

zfacxfbcyfczz



Matrices for plane projections

Example ??:  Consider a unit vector a = [a, b, c]” € R® (so &> + b* +c* =1)
and let P be the plane perpendicular to a. For any v € R®, we let 7(v) be the

projection of v onto P. The formula for this is 7(v) = v — (v, a)a.

The map = is linear, so it must have the form 7(v) = Av for some 3 x 3 matrix
A. To find A, we observe that

N « a x—a2x—aby—acz
T [y] — |:y:| 7(ax+by+cz) |:b] = | y—abx—b2y—bcz | .
z z c 2
z—acx—bcy—cz
It follows that
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Example ??:  Consider a unit vector a = [a, b, c]” € R® (so &> + b* +c* =1)
and let P be the plane perpendicular to a. For any v € R®, we let 7(v) be the

projection of v onto P. The formula for this is 7(v) = v — (v, a)a.

The map = is linear, so it must have the form 7(v) = Av for some 3 x 3 matrix
A. To find A, we observe that

N « a x—a2x—aby—acz
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Matrices for plane projections

Example ??:  Consider a unit vector a = [a, b, c]” € R® (so &> + b* +c* =1)
and let P be the plane perpendicular to a. For any v € R®, we let 7(v) be the

projection of v onto P. The formula for this is 7(v) = v — (v, a)a.

The map = is linear, so it must have the form 7(v) = Av for some 3 x 3 matrix
A. To find A, we observe that

N « a x—a2x—aby—acz
T [y] — |:y:| 7(ax+by+cz) |:b] = | y—abx—b2y—bcz | .
z z c 2
z—acx—bcy—cz
It follows that

(e1) = {:ﬂ (e2) = {1};] (es) = [:b] .

—ac 1-c¢

1—a2 —ab —ac
These three vectors are the columns of A, so A = { —ab 1—b% —bc ]
—ac —bc 1—c?

It is an exercise to check that A> = AT = A and det(A) = 0. O
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Matrices for linear maps

Let V and W be finite-dimensional vector spaces, with bases V = v1,..., v,
and W=w,...,wy say. Let a: V — W be a linear map. Then a(v;) is an
element of W, so it can be expressed (uniquely) in terms of the basis W, say

a(vj) = aijwi + -+ - + amjWm.

These numbers aj; form an n x m matrix A, which we call the matrix of o with
respect to V and W.

Remark ??: Often we consider the case where W = V and so we have a map
a:V — V,and V and W are bases for the same space. It is often natural to
take W =V, but everything still makes sense even if W £ V. O
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Let V and W be finite-dimensional vector spaces, with bases V = v1,..., v,
and W=w,...,wy say. Let a: V — W be a linear map. Then a(v;) is an
element of W, so it can be expressed (uniquely) in terms of the basis W, say

a(vj) = aijwi + -+ - + amjWm.



Matrices for linear maps

Let V and W be finite-dimensional vector spaces, with bases V = v1,..., v,
and W=w,...,wy say. Let a: V — W be a linear map. Then a(v;) is an
element of W, so it can be expressed (uniquely) in terms of the basis W, say

a(vj) = aijwi + -+ - + amjWm.

These numbers aj; form an n x m matrix A, which we call the matrix of o with
respect to V and W.

O



Adapted bases for vector products



Adapted bases for vector products

Example ??: Let a be a unit vector in R3, and define 3: R® — R® by

B(x) =axx



Adapted bases for vector products

Example ??: Let a be a unit vector in R3, and define 3: R® — R® by
B(x) =axx

Choose any unit vector b orthogonal to a, and then put c =a x b, so c is
another unit vector that is orthogonal to both a and b.



Adapted bases for vector products

Example ??: Let a be a unit vector in R3, and define 3: R* — R> by
B(x) =axx

Choose any unit vector b orthogonal to a, and then put c =a x b, so c is
another unit vector that is orthogonal to both a and b. We then have

B(a) =0 = 0a+0b + Oc
B(b) =c =0a+0b+ 1c
B(c) =-b =0a+ (—1)b+Oc.



Adapted bases for vector products

Example ??: Let a be a unit vector in R3, and define 3: R* — R> by
B(x) =axx

Choose any unit vector b orthogonal to a, and then put c =a x b, so c is
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Adapted bases for vector products

Example ??: Let a be a unit vector in R3, and define 3: R* — R> by
B(x) =axx

Choose any unit vector b orthogonal to a, and then put c =a x b, so c is
another unit vector that is orthogonal to both a and b. We then have

B(a) =0 = 0a+0b + Oc
B(b) =c =0a+0b+ 1c
B(c) =-b =0a+(—1)b+0c.

The columns in the matrix we want are the lists of coefficients in the three
equations above: the first equation gives the first column, the second equation
gives the second column, and the third equation gives the third column. Thus,
the the matrix of 8 with respect to the basis a, b, c is

00 0
[00—1].0
01 0
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Example ??: Let a be a unit vector in R3, and define 7: R®* — R> by
m(x) = x — (a,x)a.

Choose any unit vector b orthogonal to a, and then put c =a x b, so c is
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Adapted bases for projectors

Example ??: Let a be a unit vector in R3, and define 7: R®* — R> by
m(x) = x — (a,x)a.

Choose any unit vector b orthogonal to a, and then put c =a x b, so c is
another unit vector that is orthogonal to both a and b. We then have

m(@a) =0 =0a+0b+0c
m(b) =b =0a+1b+0c
m(c) =c =0a+0b+lc

The columns in the matrix we want are the lists of coefficients in the three
equations above: the first equation gives the first column, the second equation
gives the second column, and the third equation gives the third column. Thus,
the the matrix of m with respect to the basis a, b, c is

000
010f.
H3Ee
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Shifting polynomials

Example ??: Define ¢: R[x]<s — R[x]<4 by ¢(x*) = (x + 1)*. Let A be the
matrix of ¢ with respect to the basis 1, x, x2, x>. We then have

P(1) =
6(x) = 14 x
H(x*) =142x+x°
(x3) =1+43x+3°%+x°%,
or in other words
6(x9) =10 +0xl +0.x2 4053
sl =1+ 1 402 403
6(x2) =10 42t 412 4053

#(3) = 1.0+ 3ud 432 413,



Shifting polynomials

Example ??: Define ¢: R[x]<s — R[x]<4 by ¢(x*) = (x + 1)*. Let A be the
matrix of ¢ with respect to the basis 1, x, x2, x>. We then have

P(1) =
Bx) = 1+ x
2
H(x*) =1+42x+x°
(x3) =1+43x+3°%+x°%,
or in other words

(%) =150 + 0! 4053 + 053 1111
ext) =10 41t 4 0.2 0.3 Az |01 2 3 o
s(x%) =1+ 2.l 4152 403 Tjoo0 1 s
6(x3) =10 43 4362 413, o0 0 0 1
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The Vandermonde matrix

Example ??: Define ¢: R[x]<s — R* by
¢(f) = [f(1),£(2), £(3), F(4)]"-
Then

so-[f] =[] wn=[3] =[] wo-[}]



The Vandermonde matrix

Example ??: Define ¢: R[x]<s — R* by

o(f) = [£(1), £(2), F(3), F(4)] "
Then
oo [f] =[] o[ wr-[1] [

so the matrix of ¢ with respect to the usual bases is
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Example ??: Define ¢: R* = R* by

X1 X4
x2 — X3

(z) X3 - X2 :
X4 X1



The reverse maps

Example ??: Define ¢: R* = R* by

X1 Xa

x2 — X3
P15 =1%]-

X4 X1

The associated matrix (with respect to the standard basis) is

0001
0010
0100 O
1000
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Shifting waves

Example ?7: Let V be the space of solutions of the differential equation
f'" +f =0, and define ¢: V — V by ¢(f)(x) = f(x + w/4). As

sin(x + m/4) = sin(x) cos(m/4) + cos(x) sin(m/4) = 5 sin(x) + 5 cos(x),

1

we have ¢(sin) = 7

sin + 5 cos. As
cos(x + 7/4) = cos(x) cos(m/4) — sin(x) sin(7/4) = % cos(x) + (f%)sin(x)7

we have ¢(cos) = 7% sin —|—% cos.



Shifting waves

Example ?7: Let V be the space of solutions of the differential equation
f'" +f =0, and define ¢: V — V by ¢(f)(x) = f(x + w/4). As

sin(x 4+ m/4) = sin(x) cos(m/4) + cos(x) sin(7/4) = sm(x) \/5 cos(x),

we have ¢(sin) = - sin + > cos. As

cos(x + 7/4) = cos(x) cos(m/4) — sin(x) sin(7/4) = cos(x) + (f%) sin(x),
we have ¢(cos) = f% sin —|—% cos. It follows that the matrix of ¢ with

respect to the basis {sin, cos} is
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Example ??: Define ¢: MoR — MaR by ¢(A) = A”. In terms of the usual
basis
Er =[58] E = [§¢] Es=[%

o] Es=[39]

) =FE =1E +0E+0.E3+0.E
(Z)(Ez) =E =0E +0.E+1.E+0.E
) =E =0.E+1E+0.E3+0.E
) =B =0E+4+0E+0.E+1.E



Matrix examples

Example ??: Define ¢: MoR — MaR by ¢(A) = A”. In terms of the usual
basis

E = [59] E>=[g¢] Es =[939] Es=[39]

we have
=FE =1E +0E+0.E3+0.E

)
(Z)(Ez) =E =0E +0.E+1.E+0.E
) =E =0.E+1E+0.E3+0.E
d(E) =E =0E+0.E+0.E+1.E

The matrix of ¢ is thus

OO o
o= OO0
o OO
= O O O
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Example ??: Define ¢): MoR — MzR by ¢(A) = A — trace(A)l/2.
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Example ??: Define ¢: MbR — MR by ¢(A) = A — trace(A)//2. In terms
of the usual basis

E = [59] E>=[g¢] Es =[939] Es=[39]
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Example ??: Define ¢: MbR — MR by ¢(A) = A — trace(A)//2. In terms
of the usual basis

E = [30] E»=[35] Es =93] Ev=[57]
we have

W(Er) :51—1/2:{5_2} = 1E 4+ 0.6+0.E+(-1)E

Y(E) =E =0.E1+ 1.6+ 0.E3+ 0.E,

Y(E3) =E;s =0.E,+0.E+1.E+0.E

W(E) :E4—//2:{’O%ﬂ =().E+0.E+0.E+ .E



Matrix examples

Example ??: Define ¢: MbR — MR by ¢(A) = A — trace(A)//2. In terms
of the usual basis

E = [30] E»=[35] Es =93] Ev=[57]
we have

W(Er) :51—1/2:{5_2} = 1E 4+ 0.6+0.E+(-1)E

Y(E) =E =0.E1+ 1.6+ 0.E3+ 0.E,

Y(E3) =E;s ) =0.FL+0.E+1.E5+0.E

W(E) :E4—//2:{’05ﬂ =().E+0.E+0.E+ .E

The matrix is thus

1 1

2 90735

0 10 0

0101 0 O
1

—2003
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» Given an n X m matrix A, we define a linear map ¢a: R™ — R" by
da(x) = Ax.

» Every linear map from R™ to R" is ¢4 for some A.

» Given a vector space V and a list V = vi,..., v;, of elements of V we
define py: R™ = V by puy(X) = >, Aivi.

» If V is a basis then uy is an isomorphism.

» Suppose we have a linear map a: V. — W, a basis V = vi,..., vy, for V
and a basis W = wi,...,w, for W. Then there is a unique matrix
A = (ay) such that a(vj)) =3, ajw;.



Reminders

» Given an n X m matrix A, we define a linear map ¢a: R™ — R" by
da(x) = Ax.

» Every linear map from R™ to R" is ¢4 for some A.

» Given a vector space V and a list V = vi,..., v;, of elements of V we
define py: R™ = V by puy(X) = >, Aivi.

» If V is a basis then uy is an isomorphism.

» Suppose we have a linear map a: V. — W, a basis V = vi,..., vy, for V
and a basis W = wi,...,w, for W. Then there is a unique matrix
A = (ay) such that a(v;) =3, ayw;. This is called the matrix of o with
respect toV and W. O
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Matrices for linear maps

Proposition ??:  For any x € R™, we have uw(¢a(x)) = a(uv(x)), so the two
routes around the square below are the same:

RrR™ A R"

o | |

(This is often expressed by saying that the square commutes.)

Proof: We will do the case where m = 2 and n = 3; the general case is
essentially the same, but with more complicated notation. In our case, vi, v is
a basis for V/, and wi, wo, ws is a basis for W. From the definitions of a; and

A, we have
a(vi) =auwi + auws + asiws A= [jﬁ 22]
a(ve) = anwi + anws + anws a31 432
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definition of uy). It follows that

a(py () = alqvy +xv) = xpa(vy) +xpa(v)
= xp(ajawy + apywy + az1w3) + xp(ajpwy + apawy + azpw3)
= (a1 + a12x)wr + (321x1 + ap2x2)wo + (a31x1 + a300)w3



Matrices for linear maps

Now consider a vector x = [1] € R?. We have v, (x) = xivi + x2v2 (by the
definition of uy). It follows that

a(py(x) = alxqvy +xv) = xpa(vy) + xpa(vp)
= xp(arawy + ap1wy + a31w3) + xp(arpwy + agpwp + azpw3)
= (a1 + a12x)wr + (321x1 + ap2x2)wo + (a31x1 + a300)w3
On the other hand, we have

a1 12|y a11x1 + a12%p
Palx) =Ax= |a1  ap [X } = |a21x +anx|

a31 a3 a31x1 + a32%2



Matrices for linear maps

Now consider a vector x = [1] € R?. We have v, (x) = xivi + x2v2 (by the
definition of uy). It follows that

a(py () = alqvy +xv) = xpa(vy) +xpa(v)
x1(a11wy + a21wo + a31w3) + xa(a1awy + axwp + azpw3)
(a1170 + 21220)w1 + (a21x1 + a220)wp + (a31x1 + a320)w3

On the other hand, we have

11 212 [, a11x1 + a12%p
Palx) =Ax= |a1  ap [Xl} = |a21x +anx|
a31 a3 a31x1 + a32%2
SO
a11x1 + 3120 (a11x1 + a1px0)wi +
BW(DAK) = myy |a21x1 +anxe | = (210 +a0)wmt = a(uy(x).O
a31x1 + 3322 (ag1xq + a3px0)w3
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Proposition ??: Suppose we have linear maps U Svew (which can
therefore be composed to give a linear map a8: U — W). Suppose that we
have bases U, V and W for U, V and W. Let A be the matrix of a with
respect to V and W, and let B be the matrix of 8 with respect to ¢/ and V.
Then the matrix of a3 with respect to U/ and W is AB.

Proof: By the definition of matrix multiplication, the matrix C = AB has
entries cix = Y ; ajibjx. By the definitions of A and B, we have
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therefore be composed to give a linear map a8: U — W). Suppose that we
have bases U, V and W for U, V and W. Let A be the matrix of a with
respect to V and W, and let B be the matrix of 8 with respect to ¢/ and V.
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Proposition ??: Suppose we have linear maps U Svew (which can
therefore be composed to give a linear map a8: U — W). Suppose that we
have bases U, V and W for U, V and W. Let A be the matrix of a with
respect to V and W, and let B be the matrix of 8 with respect to ¢/ and V.
Then the matrix of a3 with respect to U/ and W is AB.

Proof: By the definition of matrix multiplication, the matrix C = AB has
entries cix = Y ; ajibjx. By the definitions of A and B, we have

)
a(vy) = ajwi Blue) = by
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Proposition ??: Suppose we have linear maps U Svew (which can
therefore be composed to give a linear map a8: U — W). Suppose that we
have bases U, V and W for U, V and W. Let A be the matrix of a with
respect to V and W, and let B be the matrix of 8 with respect to ¢/ and V.
Then the matrix of a3 with respect to U/ and W is AB.

Proof: By the definition of matrix multiplication, the matrix C = AB has
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Composition and matrices

Proposition ??: Suppose we have linear maps U Svew (which can
therefore be composed to give a linear map a8: U — W). Suppose that we
have bases U, V and W for U, V and W. Let A be the matrix of a with
respect to V and W, and let B be the matrix of 8 with respect to ¢/ and V.
Then the matrix of a3 with respect to U/ and W is AB.

Proof: By the definition of matrix multiplication, the matrix C = AB has
entries cix = Y ; ajibjx. By the definitions of A and B, we have

)
a(vy) = ajwi Blue) = by

af(uk) = o (Zj bjk"i) =2 bialv)) = 35 b 37; aiwi =
. (ZJ aijbjk) w; =Y, CikWi.

This means precisely that C is the matrix of a8 with respect to U and
W. 0o
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Change of basis

Definition ??: Let V be a finite-dimensional vector space, with two different
bases V =vi,...,vsand V' = v{,...,v). We then have
v/ = pyvi + -+ Pajva

for some scalars pj;. Let P be the n x n matrix with entries p;;. This is called
the change-of-basis matrix from V to V'. One can check that it is invertible,
and that P! is the change of basis matrix from V' to V.
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An example

Consider the following bases of R[x]<3:

3 2
v o=x vy =« vy o=x v =1
v =x3 4% Fxt1 v5 =x3 452 4 x vj =3 42 A =x3

Then

v{ =lwvi+lw+lw+1lw
vz/ =1lwvi+1lw+1l.wvs+0.vs
vé =1vi+1.wvw+0.v3s+0.v4
vi =1wvi+0vw+0.v3+0.w

so the change of basis matrix is

1111

— 1110
P = 1100
1000



Another example



Another example

Consider the following bases of MR:

) I ) I



Another example

Consider the following bases of MR:



Another example

Consider the following bases of MyR:

A = (58] A =[5 A =[1g] A =[11]
A =17 A =[14] A =[5 a4 =[11]
Then

Al =2.A;1 + (—2).A; + 0.A3 + 1. A4



Another example

Consider the following bases of MyR:

A = (58] A =[5 A =[1g] A =[11]
A =17 A =[14] A =[5 a4 =[11]
Then

Al =2.A;1 + (—2).A; + 0.A3 + 1. A4
Ay = 0.A1 + 0.4, + 2. A3 + (—1).As



Another example

Consider the following bases of MyR:

A = (58] A =[5 A =[1g] A =[11]
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Another example

Consider the following bases of MyR:

A = (58] A =[5 A =[1g] A =[11]
A =17 A =[14] A =[5 a4 =[11]
Then

Al =2.A;1 + (—2).A; + 0.A3 + 1. A4
Ay = 0.A1 + 0.4, + 2. A3 + (—1).As
Ay = 0.A1 + 2.4, + 0.A3 + (—1).As
Ay = 0.A1+ 0.Ay + 0.As + 1. A,



Another example

Consider the following bases of MyR:

[

11
&

>
E:
|
0!
o
=0
b—l“—'
>
I
[
o
o
>
&
|
0!

N A

Al =2.A;1 + (—2).A; + 0.A3 + 1. A4
Ay = 0.A1 + 0.4, + 2. A3 + (—1).As
Ay = 0.A1 + 2.4, + 0.A3 + (—1).As
Ay = 0.A1+ 0.Ay + 0.As + 1. A,

so the change of basis matrix is

Ry

Il
—
=] "\)w
| voo

|l ovo

-
—ooo
—

[,
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Lemma ??: Let V be a finite-dimensional vector space, with two different
bases V =vi,...,vaand V' = v{,..., V. Let P be the change of basis matrix,
so
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Lemma ??: Let V be a finite-dimensional vector space, with two different
bases V =vi,...,vaand V' = v{,..., V. Let P be the change of basis matrix,
so

Vi = pijvi+ -+ Pajva.

Then for any x € R” we have uy(dp(x)) = py(Px) = pyr(x), so the following
diagram commutes:

R — % L Rr

N

Proof: We have Px =y, where y; = Zj pijXj. Thus
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Change of basis

Lemma ??: Let V be a finite-dimensional vector space, with two different
bases V =vi,...,vaand V' = v{,..., V. Let P be the change of basis matrix,
so

Vi = pijvi+ -+ Pajva.

Then for any x € R” we have uy(dp(x)) = py(Px) = pyr(x), so the following
diagram commutes:

R — % L Rr

N

Proof: We have Px =y, where y; = Zj pijXj. Thus

v(Px) = Zy, P = Zpuxjv = ij- (Zp,jV,-) ZXJVJ,
i j



Change of basis

Lemma ??: Let V be a finite-dimensional vector space, with two different
bases V =vi,...,vaand V' = v{,..., V. Let P be the change of basis matrix,
so

Vi = pijvi+ -+ Pajva.

Then for any x € R” we have uy(dp(x)) = py(Px) = pyr(x), so the following
diagram commutes:

R — % L Rr

N

Proof: We have Px =y, where y; = Zj pijXj. Thus

v (Px) = Zy, P = Zpuxjv = ij- (Z p,-jv,-> = ij-vj, = p,v/(x).

J
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Let A be the matrix of a with respect to V and W,

and let A’ be the matrix with respect to V' and W’. Then A’ = Q'AP.
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Proposition ??7: Let a: V — W be a linear map.

Suppose we have two bases V and V' for V, with change-of basis matrix P
and two bases W and W' for W, with change-of-basis matrix Q.

Let A be the matrix of a with respect to V and W,

and let A’ be the matrix with respect to V' and W’. Then A’ = Q'AP.

Proof: We actually prove that QA" = AP, which comes to the same thing.
For any x € R", we have

uw (QA'X) = iy (A'x) (Lemma ?7)
= a(uy (x)) (Proposition 77)
= a(uv(Px)) (Lemma ?7)

= uw(APX) (Proposition ?7).
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Let A be the matrix of a with respect to V and W,
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Proof: We actually prove that QA" = AP, which comes to the same thing.
For any x € R", we have
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Proposition ??7: Let a: V — W be a linear map.

Suppose we have two bases V and V' for V, with change-of basis matrix P
and two bases W and W' for W, with change-of-basis matrix Q.

Let A be the matrix of a with respect to V and W,

and let A’ be the matrix with respect to V' and W’. Then A’ = Q'AP.
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Change of basis

Proposition ??7: Let a: V — W be a linear map.

Suppose we have two bases V and V' for V, with change-of basis matrix P
and two bases W and W' for W, with change-of-basis matrix Q.

Let A be the matrix of a with respect to V and W,

and let A’ be the matrix with respect to V' and W’. Then A’ = Q'AP.

Proof: We actually prove that QA" = AP, which comes to the same thing.
For any x € R", we have

uw (QA'X) = iy (A'x) (Lemma ?7)
= afpy (x)) (Proposition ?77?)
= apy(Px)) (Lemma ?7?)
= uw(APX) (Proposition ?7).

This shows that uw((QA" — AP)x) = 0. Moreover, W is linearly independent,
so wyy is injective and has trivial kernel, so (QA’ — AP)x = 0. This applies for
any vector x, so the matrix QA" — AP must be zero, as claimed.
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The upshot is that all parts of the following diagram commute:
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Traces and determinants

Remark 7?: Suppose we have a finite-dimensional vector space V and a linear
map « from V to itself. We can now define the trace, determinant and
characteristic polynomial of . We pick any basis V, let A be the matrix of «
with respect to V and V, and put

trace(a) = trace(A) det(a) = det(A)
char(a)(t) = char(A)(t) = det(tl — A).

This is not obviously well-defined: what if we used a different basis, say V',
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Remark 7?: Suppose we have a finite-dimensional vector space V and a linear
map « from V to itself. We can now define the trace, determinant and
characteristic polynomial of . We pick any basis V, let A be the matrix of «
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Remark 7?: Suppose we have a finite-dimensional vector space V and a linear
map « from V to itself. We can now define the trace, determinant and
characteristic polynomial of . We pick any basis V, let A be the matrix of «
with respect to V and V, and put

trace(a) = trace(A) det(a) = det(A)
char(a)(t) = char(A)(t) = det(tl — A).

This is not obviously well-defined: what if we used a different basis, say V',
giving a different matrix, say A’? The proposition tells us that P~1AP = A,
and it follows that P~*(t/ — A)P = tl — A’. Using the rules
trace(MN) = trace(NM) and det(MN) = det(M) det(N) we see that
trace(A’) = trace(P~(AP)) = trace((AP)P ") = trace(A(PP')) = trace(A)
det(A") = det(P) " det(A) det(P) = det(A)
char(A')(t) = det(P) ' det(t/ — A) det(P) = char(A)(t).

This shows that definitions are in fact basis-independent.
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Example ??: Let a € R? be a unit vector, and define 8: R* — R3? by
B(x) = a x x. The matrix B of 3 with respect to the standard basis is found as
follows:

—as

sen=[4] ser=[¢] sea=[%] 8[43 %]
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0 — (—a3)(a3.0 — (—ap)(—a1)) + az(agza; — 0.(—a2)) =0

We can instead choose a unit vector b orthogonal to a and then put c =a x b.

. . . 00 0
With respect to the basis a, b, c, the map 3 has matrix B = [8 (1) Bl].

It is easy to see that trace(B’) = 0 = det(B’).
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B(x) = a x x. The matrix B of 3 with respect to the standard basis is found as
follows:
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0 — (—a3)(a3.0 — (—a2)(—a1)) + az(azay — 0.(—ap)) =0

We can instead choose a unit vector b orthogonal to a and then put c =a x b.

. . . 00 0
With respect to the basis a, b, c, the map 3 has matrix B = [0 0 71].
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It is easy to see that trace(B’) = 0 = det(B’).
Either way we have trace(3) = 0 = det(f3).
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Example ??: Let a € R? be a unit vector, and define 8: R* — R3? by

B(x) = a x x. The matrix B of 3 with respect to the standard basis is found as
follows:

Ben=[=] Be)=[3"] sle=]=] B:[a‘l?f;}

—ar a 0

We have trace(B) = 0 and de(s) = o. det L"l *;1] ~ (—ag). det {jgz *0"’1} 4 2. det [jgz a‘” -
0 — (—a3)(a3.0 — (—ap)(—a1)) + az(agza; — 0.(—a2)) =0

We can instead choose a unit vector b orthogonal to a and then put c =a x b.

. . . 00 0
With respect to the basis a, b, c, the map 3 has matrix B = [0 0 71].

It is easy to see that trace(B’) = 0 = det(B’).
Either way we have trace(3) = 0 = det(f3).
We also find that char(8)(t) = char(B')(t) = t* + t.



An example

Example ??: Let a € R? be a unit vector, and define 8: R* — R3? by
B(x) = a x x. The matrix B of 3 with respect to the standard basis is found as
follows:

er=[5] ser=[F] swr=[3] 5[4 73]

—ar a 0

We have trace(B) = 0 and de(s) = o. det L"l *;1] ~ (—ag). det {jgz *0"’1} 4 2. det [jgz a‘” -

0 — (—a3)(a3.0 — (—a2)(—a1)) + az(azay — 0.(—ap)) =0

We can instead choose a unit vector b orthogonal to a and then put c =a x b.
With respect to the basis a, b, c, the map 3 has matrix B = [8 0 31].

It is easy to see that trace(B’) = 0 = det(B’).

Either way we have trace(3) = 0 = det(f3).

We also find that char(8)(t) = char(B')(t) = t* + t.

This is much more complicated using B.
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. . . 000
With respect to the basis a, b, c, the map 7 has matrix P/ = [8 1 (11]

It is easy to see that trace(P’) = 2.
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Example 7?: Let a € R? be a unit vector, and define m: R® — R3 by
m(x) = x — (x,a)a. The matrix P of 7 with respect to the standard basis is
found as follows:

1-af —aa —a3ay 1-a) —a12 —a133
m(e) = |:—3132:| m(ep) = {l—a% ] m(e3) = [_"3"2] P=|—ajap 1-a3 —aa3

2
—a133 —apa3 1-a3 —aja3 —aga3 1—a3

We have trace(P) =1—al+1—a3+1—-a3=3—(al + a3 +a3) =2.

We can instead choose a unit vector b orthogonal to a and then put c =a x b.
. . . 000
With respect to the basis a, b, c, the map 7 has matrix P/ = [8 1 (11]

It is easy to see that trace(P’) = 2.
Either way we have trace(m) = 2.
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Example 7?: Let a € R? be a unit vector, and define m: R® — R3 by
m(x) = x — (x,a)a. The matrix P of 7 with respect to the standard basis is
found as follows:

2

1-af —aa —a3ay 1—af —a1a —aa3

me1) = | —ajay | wle2) = | 1-33 wlez)= | 7B P=| —aa 1-a3 —apay
—a133 —apa3 1-a3 —aja3 —aga3 1—a3

We have trace(P) =1—al+1—a3+1—-a3=3—(al + a3 +a3) =2.

We can instead choose a unit vector b orthogonal to a and then put c =a x b.
With respect to the basis a, b, c, the map 7 has matrix P/ = [§ g g].

It is easy to see that trace(P’) = 2.

Either way we have trace(m) = 2.
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Another example

Example 7?: Let a € R? be a unit vector, and define m: R® — R3 by
m(x) = x — (x,a)a. The matrix P of 7 with respect to the standard basis is
found as follows:

2

1-af a3 —a3ay 1—af —a1a —aa3

me1) = | —ajay | wle2) = | 1-33 wlez)= | 7B P=| —aa 1-a3 —apay
—a133 —apa3 1-a3 —aja3 —aga3 1—a3

We have trace(P) =1—al+1—a3+1—-a3=3—(al + a3 +a3) =2.

We can instead choose a unit vector b orthogonal to a and then put c =a x b.
With respect to the basis a, b, c, the map 7 has matrix P/ = [§ g g].

It is easy to see that trace(P’) = 2.

Either way we have trace(m) = 2.

We also find that det(7) = det(P’) = 0 and

char(7)(t) = char(P')(t) = t(t — 1)°.

This is much more complicated using P.
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The determinant criterion

Remark ??: Suppose again that we have a finite-dimensional vector space V
and a linear map « from V to itself. One can show that the following are

equivalent:

(a) «is injective

(b) « is surjective

(¢) «is an isomorphism

(d) det(a) # 0.

(It is important here that o goes from V to itself, not to some other space.)

We shall not give proofs, however.
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Height of linear relations

Let V be a vector space, and let V = vi,..., v, be a list of elements in V.

We put V; = span(vi, ..., v;) (with the convention that V4 = 0).

There may or may not be any nontrivial linear relations for V.

If there is a nontrivial relation A, so that A\jvi + -+ 4+ Apv, = 0 and A # O for
some k, then we define the height of X to be the largest i such that A; # 0.

For example, if n =6 and 5v; — 2v» — 2v3 + 3v4 = O then [5, -2, -2,3,0,0]" is
a nontrivial linear relation of height 4.
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(b) vie Via
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Example ??: Consider the following vectors in R>:

1 2 3 4
Vi = 2 Vo = 3 V3 = 4 Vy = 5
3 4 5 6
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1 2 3 4
Vi = 2 Vo = 3 V3 = 4 Vy = 5
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The equation can be rearranged as vz = —v1 + 2w
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Example ??: Consider the following vectors in R>:
1 2 3 4
Vi = 2 Vo = 3 V3 = 4 Vy = 5
3 4 5 6

Then vi — 2v» + v3 =0, so [1,—2,1,0]" is a linear relation of height 3.

The equation can be rearranged as vz = —v; + 2v», showing that
V3 € span(vl, V2) = V..
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Example ??: Consider the following vectors in R>:
1 2 3 4
Vi = 2 Vo = 3 V3 = 4 Vy = 5
3 4 5 6

Then vi — 2v» + v3 =0, so [1,—2,1,0]" is a linear relation of height 3.

The equation can be rearranged as vz = —v; + 2v», showing that
vz € span(vi, v») = V,. One can check that

Vo=Vs={[x,y,2]" | x+2z=2y}.



The following are equivalent:
(a) V has a linear relation of height i; (b) vi € Vi_y; (c) Vi= Vi1,

Example ??: Consider the following vectors in R>:
1 2 3 4
Vi = 2 Vo = 3 V3 = 4 Vy = 5
3 4 5 6

Then vi — 2v» + v3 =0, so [1,—2,1,0]" is a linear relation of height 3.

The equation can be rearranged as vz = —v; + 2v», showing that
vz € span(vi, v») = V,. One can check that

Vo=Vs={[x,y,2]" | x+2z=2y}.

Thus, in this example, with i = 3, we see that (a), (b) and (c) all hold.
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then so are the other two):
(a) The list V has a nontrivial linear relation of height i

(b) vie Viy (c) Vi= Vi1

Proof that (a)=-(b): Let A = [\1,..., \s]” be a nontrivial linear relation of
height i, so Aivi + ...+ Asvy = 0. The fact that the height is i/ means that
Ai # 0 but A\iy1 = A\iy2 = --- = 0. We can thus rearrange the linear relation as
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Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):
(a) The list V has a nontrivial linear relation of height i

(b) vie Viy (c) Vi= Vi1

Proof that (a)=-(b): Let A = [\1,..., \s]” be a nontrivial linear relation of
height i, so Aivi + ...+ Asvy = 0. The fact that the height is i/ means that

Ai # 0 but A\iy1 = A\iy2 = --- = 0. We can thus rearrange the linear relation as
AiVi= —Avi — - = Nic1Viel — Aif1Vig1 — - — ApVp
= —Avi — - — Ai1Vie1 — O.V,‘+1 — - —0.vp

= —Avi— - — Ajim1vic



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (a)=-(b): Let A = [\1,..., \s]” be a nontrivial linear relation of
height i, so Aivi + ...+ Asvy = 0. The fact that the height is i/ means that

Ai # 0 but A\iy1 = A\iy2 = --- = 0. We can thus rearrange the linear relation as
AiVi= —Aivi — - — XNic1Vie1 — Nig1Vigl — -+ — AnVa
= —Avi — - — Ai1Vie1 — O.V,‘+1 — - —0.vp
= —Avi—--—Ai_1viet

— -1
Vi= —MA v — = XA v € Vi



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i

(b) vie Viy (c) Vi= Vi1
Proof that (a)=-(b): Let A = [\1,..., \s]” be a nontrivial linear relation of
height i, so Aivi + ...+ Asvy = 0. The fact that the height is i/ means that
Ai # 0 but A\iy1 = A\iy2 = --- = 0. We can thus rearrange the linear relation as
Aivi= —Avi — - = AimaVic1 — Ai1Vigr — -0 — AV
= —Avi — - — Ai1Vie1 — O.V,‘+1 — - —0.vp
= —Avi— - — Ajim1vic
Vi= =M\ v — = N il € Vi,

sov; € Vi_1.






Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (b)=(a):



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (b)=-(a): Suppose that v; € Vi1 =span(vi, ..., vi—1)



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (b)=-(a): Suppose that v; € Vi_; = span(vi,...,vj_1), so
Vi=pavi+ -+ Mi—1vic1 for some scalars M1y eeoy iz,



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i

(b) vi€ Via () Vi=Vi1.
Proof that (b)=-(a): Suppose that v; € Vi_; = span(vi,...,vj_1), so
Vi = piva + -+ + pi—1vj—1 for some scalars p1, ..., pui—1. We can rewrite this

as a nontrivial linear relation

pivi + -+ pi—1vier + (=1).vi + 0vigr + - -+ 0.v, =0,



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i

(b) vi€ Via () Vi=Vi1.
Proof that (b)=-(a): Suppose that v; € Vi_; = span(vi,...,vj_1), so
Vi = piva + -+ + pi—1vj—1 for some scalars p1, ..., pui—1. We can rewrite this

as a nontrivial linear relation
pivi + -+ pi—1vier + (=1).vi + 0vigr + - -+ 0.v, =0,

which clearly has height /.






Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (b)=(c):



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (b)=-(c): Suppose again that v; € V;_; = span(v1,...,vj_1)



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (b)=-(c): Suppose again that v; € Vi1 = span(wv1,...,vj_1), so
Vi = pivi+ -+ fi—1Viel for some scalars M1y .oy izt



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):
(a) The list V has a nontrivial linear relation of height i

(b) vie Viy (c) Vi= Vi1
Proof that (b)=-(c): Suppose again that v; € Vi1 = span(wv1,...,vj_1), so
Vi = piva + - - -+ pi—1vi—1 for some scalars 1, ..., pi—1. We need to show that

Vi=Vi1



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):
(a) The list V has a nontrivial linear relation of height i

(b) vie Viy (c) Vi= Vi1
Proof that (b)=-(c): Suppose again that v; € Vi1 = span(wv1,...,vj_1), so
Vi = piva + - - -+ pi—1vi—1 for some scalars 1, ..., pi—1. We need to show that

Vi = V,_1, but it is clear that V;_; < V;



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (b)=-(c): Suppose again that v; € Vi1 = span(wv1,...,vj_1), so
Vi = piva + - - -+ pi—1vi—1 for some scalars 1, ..., pi—1. We need to show that
Vi = Vi_1, but it is clear that V;_; < V;, so it will be enough to show that

Vi < Vi1



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (b)=-(c): Suppose again that v; € Vi1 = span(wv1,...,vj_1), so

Vi = piva + - - -+ pi—1vi—1 for some scalars 1, ..., pi—1. We need to show that
Vi = Vi_1, but it is clear that V;_; < V;, so it will be enough to show that

V; < V;_1. Consider an element w € V;; we must show that w € V;_;.



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):
(a) The list V has a nontrivial linear relation of height i

(b) vie Viy (c) Vi= Vi1
Proof that (b)=-(c): Suppose again that v; € Vi1 = span(wv1,...,vj_1), so
Vi = piva + - - -+ pi—1vi—1 for some scalars 1, ..., pi—1. We need to show that

Vi = Vi_1, but it is clear that V;_; < V;, so it will be enough to show that
Vi < Vi_1. Consider an element w € V;; we must show that w € V;_1. As
w € Vi we have w = A\1vi + -+ 4+ \jv; for some scalars A\1,..., A



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):
(a) The list V has a nontrivial linear relation of height i

(b) vie Viy (c) Vi= Vi1
Proof that (b)=-(c): Suppose again that v; € Vi1 = span(wv1,...,vj_1), so
Vi = piva + - - -+ pi—1vi—1 for some scalars 1, ..., pi—1. We need to show that

Vi = Vi_1, but it is clear that V;_; < V;, so it will be enough to show that
Vi < Vi_1. Consider an element w € V;; we must show that w € V;_1. As
w € V; we have w = A\1vi + - - - + \jv; for some scalars A\1,...,\;. This can be

rewritten as

w =X vi + -+ Acavicr + Ni(pave 4 -+ pie1vier)



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):
(a) The list V has a nontrivial linear relation of height i

(b) vie Viy (c) Vi= Vi1
Proof that (b)=-(c): Suppose again that v; € Vi1 = span(wv1,...,vj_1), so
Vi = piva + - - -+ pi—1vi—1 for some scalars 1, ..., pi—1. We need to show that

Vi = Vi_1, but it is clear that V;_; < V;, so it will be enough to show that
Vi < Vi_1. Consider an element w € V;; we must show that w € V;_1. As
w € V; we have w = A\1vi + - - - + \jv; for some scalars A\1,...,\;. This can be

rewritten as
w =X vi + -+ Acavicr + Ni(pave 4 -+ pie1vier)
= A1+ Nip)vi + (A2 + Nip2)vi + - - + (Nie1 + Aipgi—1) vie1.



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):
(a) The list V has a nontrivial linear relation of height i

(b) vie Viy (c) Vi= Vi1
Proof that (b)=-(c): Suppose again that v; € Vi1 = span(wv1,...,vj_1), so
Vi = piva + - - -+ pi—1vi—1 for some scalars 1, ..., pi—1. We need to show that

Vi = Vi_1, but it is clear that V;_; < V;, so it will be enough to show that
Vi < Vi_1. Consider an element w € V;; we must show that w € V;_1. As
w € V; we have w = A\1vi + - - - + \jv; for some scalars A\1,...,\;. This can be

rewritten as

w=Avi+ -+ ANicvier + Ni(pave + -+ pie1vier)
= A1+ Nip)vi + (A2 + Nip2)vi + - - + (Nie1 + Aipgi—1) vie1.

This is a linear combination of vi,...,vi_1



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):
(a) The list V has a nontrivial linear relation of height i

(b) vie Viy (c) Vi= Vi1
Proof that (b)=-(c): Suppose again that v; € Vi1 = span(wv1,...,vj_1), so
Vi = piva + - - -+ pi—1vi—1 for some scalars 1, ..., pi—1. We need to show that

Vi = Vi_1, but it is clear that V;_; < V;, so it will be enough to show that
Vi < Vi_1. Consider an element w € V;; we must show that w € V;_1. As
w € V; we have w = A\1vi + - - - + \jv; for some scalars A\1,...,\;. This can be

rewritten as
w=Avi+ -+ ANicvier + Ni(pave + -+ pie1vier)
= A1+ Nip)vi + (A2 + Nip2)vi + - - + (Nie1 + Aipgi—1) vie1.

This is a linear combination of vi,...,vj_1, showing that w € V;_;, as

claimed.






Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (c)=-(b):



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (c)=-(b): Suppose that V; = Vi_;.



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (c)=-(b): Suppose that V; = Vi_1. It is clear that the element v;
lies in span(vi,...,v;) = V;



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (c)=-(b): Suppose that V; = Vi_1. It is clear that the element v;
lies in span(vi,...,v;) = Vi, but V; = Vi,



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (c)=-(b): Suppose that V; = Vi_1. It is clear that the element v;
lies in span(vi,...,v;) = Vi, but V; = Vi1, s0 v; € Vj_1.



Proposition ??: The following are equivalent (so if any one of them is true,

then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1
Proof that (c)=-(b): Suppose that V; = Vi_1. It is clear that the element v;
lies in span(vi,...,v;) = Vi, but V; = Vi1, s0 v; € Vj_1.

This completes the proof of the Proposition. O



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):
(a) The list V has a nontrivial linear relation of height i

(b) vie Viy (c) Vi= Vi1

Proof that (c)=-(b): Suppose that V; = Vi_1. It is clear that the element v;
lies in span(vi,...,v;) = Vi, but V; = Vi1, s0 v; € Vj_1.

This completes the proof of the Proposition. O

Corollary ?7: If for all i we have v; & Vi_;



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):
(a) The list V has a nontrivial linear relation of height i

(b) vie Viy (c) Vi= Vi1

Proof that (c)=-(b): Suppose that V; = Vi_1. It is clear that the element v;
lies in span(vi,...,v;) = Vi, but V; = Vi1, s0 v; € Vj_1.

This completes the proof of the Proposition. O

Corollary ??: If for all / we have v; € Vi_1, then there cannot be a linear
relation of any height



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):
(a) The list V has a nontrivial linear relation of height i

(b) vie Viy (c) Vi= Vi1

Proof that (c)=-(b): Suppose that V; = Vi_1. It is clear that the element v;
lies in span(vi,...,v;) = Vi, but V; = Vi1, s0 v; € Vj_1.

This completes the proof of the Proposition. O

Corollary ??: If for all / we have v; € Vi_1, then there cannot be a linear

relation of any height, so V must be linearly independent. O



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):
(a) The list V has a nontrivial linear relation of height i

(b) vie Viy (c) Vi= Vi1

Proof that (c)=-(b): Suppose that V; = Vi_1. It is clear that the element v;
lies in span(vi,...,v;) = Vi, but V; = Vi1, s0 v; € Vj_1.

This completes the proof of the Proposition. O

Corollary ??: |If for all i we have v; € V;_1, then there cannot be a linear

relation of any height, so V must be linearly independent. O

Corollary ??: The following are equivalent:

(a) The list V has no nontrivial linear relation of height i
(b) vi & Vis (c) Vi # Via.



Proposition ??: The following are equivalent (so if any one of them is true,
then so are the other two):

(a) The list V has a nontrivial linear relation of height i
(b) vie Viy (c) Vi= Vi1

Proof that (c)=-(b): Suppose that V; = Vi_1. It is clear that the element v;
lies in span(vi,...,v;) = Vi, but V; = Vi1, s0 v; € Vj_1.

This completes the proof of the Proposition. O
Corollary ??: |If for all i we have v; € V;_1, then there cannot be a linear
relation of any height, so V must be linearly independent. O
Corollary ??: The following are equivalent:

(a) The list V has no nontrivial linear relation of height i

(b) vi & Vies (c) Vi # Viv.

If these three things are true, we say that i is a jump.



Every spanning set contains a basis



Every spanning set contains a basis

Lemma ??: Let V = wv1,..., Vv, be a list that spans a vector space V.
Then some sublist V' C V is a basis for V.



Every spanning set contains a basis

Lemma ??: Let V = wv1,..., Vv, be a list that spans a vector space V.
Then some sublist V' C V is a basis for V.

Proof:



Every spanning set contains a basis

Lemma ??: Let V = wv1,..., Vv, be a list that spans a vector space V.
Then some sublist V' C V is a basis for V.

Proof: Put I' = {jumps} = {i<n|v, & Vi_1}



Every spanning set contains a basis

Lemma ??: Let V = wv1,..., Vv, be a list that spans a vector space V.
Then some sublist V' C V is a basis for V.

Proof: Put I’ = {jumps} ={i<n|v;g Via},and V' ={v; | i € I'}.



Every spanning set contains a basis

Lemma ??: Let V = wv1,..., Vv, be a list that spans a vector space V.
Then some sublist V' C V is a basis for V.

Proof: Put I’ = {jumps} ={i<n|v;g Via},and V' ={v; | i € I'}.
We first claim that V' is linearly independent.



Every spanning set contains a basis

Lemma ??: Let V = wv1,..., Vv, be a list that spans a vector space V.
Then some sublist V' C V is a basis for V.

Proof: Put I’ = {jumps} ={i<n|v;g Via},and V' ={v; | i € I'}.
We first claim that V' is linearly independent.
If not, then there is a nontrivial relation.



Every spanning set contains a basis

Lemma ??: Let V = wv1,..., Vv, be a list that spans a vector space V.
Then some sublist V' C V is a basis for V.

Proof: Put I’ = {jumps} ={i<n|v;g Via},and V' ={v; | i € I'}.

We first claim that V' is linearly independent.

If not, then there is a nontrivial relation.

If we write only the nontrivial terms, then the relation takes the form
AgVip +--+ A, vi, =0

with i, € I’ for all k, and A, 70 for all k, and 4 < --- < .



Every spanning set contains a basis

Lemma ??: Let V = wv1,..., Vv, be a list that spans a vector space V.
Then some sublist V' C V is a basis for V.

Proof: Put I’ = {jumps} ={i<n|v;g Via},and V' ={v; | i € I'}.

We first claim that V' is linearly independent.

If not, then there is a nontrivial relation.

If we write only the nontrivial terms, then the relation takes the form
AgVip +--+ A, vi, =0

with i, € I’ for all k, and A, 70 for all k, and 4 < --- < .

This can be regarded as a nontrivial linear relation for V, of height i;.



Every spanning set contains a basis

Lemma ??: Let V = wv1,..., Vv, be a list that spans a vector space V.
Then some sublist V' C V is a basis for V.

Proof: Put I’ = {jumps} ={i<n|v;g Via},and V' ={v; | i € I'}.

We first claim that V' is linearly independent.

If not, then there is a nontrivial relation.

If we write only the nontrivial terms, then the relation takes the form
AgVip +--+ A, vi, =0

with i, € I’ for all k, and A, 70 for all k, and 4 < --- < .

This can be regarded as a nontrivial linear relation for V, of height i;.

Proposition ?? therefore tells us that v;, € Vi, 1



Every spanning set contains a basis

Lemma ??: Let V = wv1,..., Vv, be a list that spans a vector space V.
Then some sublist V' C V is a basis for V.

Proof: Put I’ = {jumps} ={i<n|v;g Via},and V' ={v; | i € I'}.
We first claim that V' is linearly independent.
If not, then there is a nontrivial relation.
If we write only the nontrivial terms, then the relation takes the form
AgVip +--+ A, vi, =0
with i, € I’ for all k, and A, 70 for all k, and 4 < --- < .
This can be regarded as a nontrivial linear relation for V, of height i;.
Proposition ?? therefore tells us that v;, € Vi _1, which is impossible, as i is a
jump.



Every spanning set contains a basis

Lemma ??: Let V = wv1,..., Vv, be a list that spans a vector space V.
Then some sublist V' C V is a basis for V.

Proof: Put I’ = {jumps} ={i<n|v;g Via},and V' ={v; | i € I'}.
We first claim that V' is linearly independent.
If not, then there is a nontrivial relation.
If we write only the nontrivial terms, then the relation takes the form
AgVip +--+ A, vi, =0
with i, € I’ for all k, and A, 70 for all k, and 4 < --- < .
This can be regarded as a nontrivial linear relation for V, of height i;.
Proposition ?? therefore tells us that v;, € Vi _1, which is impossible, as i is a
jump.
This contradiction shows that V' must be linearly independent, after all.



Every spanning set contains a basis

V = span(V) = span(vi, ..., va); Vi = span(wi, ..., v);
I"={jumps} = {i <n|vi & Vi1}; V' ={vl|iell.
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V = span(V) = span(vi, ..., va); Vi = span(wi, ..., v);
I"={jumps} = {i <n|vi & Vi1}; V' ={vl|iell.

Now put V' = span(}’).
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V = span(V) = span(vi, ..., va); Vi = span(wi, ..., v);
I"={jumps} = {i <n|vi & Vi1}; V' ={vl|iell.

Now put V'’ = span(V’). We will show by induction that V; < V’ for all i < n.



Every spanning set contains a basis

V = span(V) = span(vi, ..., va); Vi = span(wi, ..., v);
I"={jumps} = {i <n|vi & Vi1}; V' ={vl|iell.

Now put V'’ = span(V’). We will show by induction that V; < V’ for all i < n.
For the initial step, we note that Vo = 0 so certainly Vo < V’.



Every spanning set contains a basis

V = span(V) = span(vi, ..., va); Vi = span(wi, ..., v);
I"={jumps} = {i <n|vi & Vi1}; V' ={vl|iell.

Now put V'’ = span(V’). We will show by induction that V; < V’ for all i < n.
For the initial step, we note that Vo = 0 so certainly Vo < V’. Suppose that
Vip < VL
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V = span(V) = span(vi, ..., va); Vi = span(wi, ..., v);
I"={jumps} = {i <n|vi & Vi1}; V' ={vl|iell.

Now put V'’ = span(V’). We will show by induction that V; < V’ for all i < n.
For the initial step, we note that Vo = 0 so certainly Vo < V’. Suppose that
Vi_1 < V. There are two cases to consider:



Every spanning set contains a basis

V = span(V) = span(vi, ..., va); Vi = span(wi, ..., v);
I"={jumps} = {i <n|vi & Vi1}; V' ={vl|iell.

Now put V'’ = span(V’). We will show by induction that V; < V’ for all i < n.
For the initial step, we note that Vo = 0 so certainly Vo < V’. Suppose that
Vi_1 < V. There are two cases to consider:

(a) Suppose that i is a jump, so i € I'.



Every spanning set contains a basis

V = span(V) = span(vi, ..., va); Vi = span(wi, ..., v);
I"={jumps} = {i <n|vi & Vi1}; V' ={vl|iell.

Now put V'’ = span(V’). We will show by induction that V; < V’ for all i < n.

For the initial step, we note that Vo = 0 so certainly Vo < V’. Suppose that

Vi_1 < V. There are two cases to consider:

(a) Suppose that i is a jump, so i € I’. Then (by the definition of V') we have
vieV



Every spanning set contains a basis

V = span(V) = span(vi, ..., va); Vi = span(wi, ..., v);
I"={jumps} = {i <n|vi & Vi1}; V' ={vl|iell.

Now put V'’ = span(V’). We will show by induction that V; < V’ for all i < n.

For the initial step, we note that Vo = 0 so certainly Vo < V’. Suppose that

Vi_1 < V. There are two cases to consider:

(a) Suppose that i is a jump, so i € I’. Then (by the definition of V') we have
vieV andsov, € V.



Every spanning set contains a basis

V = span(V) = span(vi, ..., va); Vi = span(wi, ..., v);
I"={jumps} = {i <n|vi & Vi1}; V' ={vl|iell.

Now put V'’ = span(V’). We will show by induction that V; < V’ for all i < n.

For the initial step, we note that Vo = 0 so certainly Vo < V’. Suppose that

Vi_1 < V. There are two cases to consider:

(a) Suppose that i is a jump, so i € I’. Then (by the definition of V') we have
vieV andsovie V. As V=V, 1 +Ryv;and Vi_.; < V' and Rv; < V/,
we conclude that V; < V’.



Every spanning set contains a basis

V = span(V) = span(vi, ..., va); Vi = span(wi, ..., v);
I"={jumps} = {i <n|vi & Vi1}; V' ={vl|iell.

Now put V'’ = span(V’). We will show by induction that V; < V’ for all i < n.

For the initial step, we note that Vo = 0 so certainly Vo < V’. Suppose that

Vi_1 < V. There are two cases to consider:

(a) Suppose that i is a jump, so i € I’. Then (by the definition of V') we have
vieV andsovie V. As V=V, 1 +Ryv;and Vi_.; < V' and Rv; < V/,
we conclude that V; < V’.

(b) Suppose that i is not a jump



Every spanning set contains a basis

V = span(V) = span(vi, ..., va); Vi = span(wi, ..., v);
I"={jumps} = {i <n|vi & Vi1}; V' ={vl|iell.

Now put V'’ = span(V’). We will show by induction that V; < V’ for all i < n.

For the initial step, we note that Vo = 0 so certainly Vo < V’. Suppose that

Vi_1 < V. There are two cases to consider:

(a) Suppose that i is a jump, so i € I’. Then (by the definition of V') we have
vieV andsovie V. As V=V, 1 +Ryv;and Vi_.; < V' and Rv; < V/,
we conclude that V; < V’.

(b) Suppose that i is not a jump, so v; € Vi_1 and so V; = V_;.



Every spanning set contains a basis

V = span(V) = span(vi, ..., va); Vi = span(wi, ..., v);
I"={jumps} = {i <n|vi & Vi1}; V' ={vl|iell.

Now put V'’ = span(V’). We will show by induction that V; < V’ for all i < n.

For the initial step, we note that Vo = 0 so certainly Vo < V’. Suppose that

Vi_1 < V. There are two cases to consider:

(a) Suppose that i is a jump, so i € I’. Then (by the definition of V') we have
vieV andsovie V. As V=V, 1 +Ryv;and Vi_.; < V' and Rv; < V/,
we conclude that V; < V’.

(b) Suppose that i is not a jump, so v; € Vi_1 and so V; = Vj_;. By the
induction hypothesis we have V;_; < V’



Every spanning set contains a basis

V = span(V) = span(vi, ..., va); Vi = span(wi, ..., v);
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Now suppose (for the induction step) that every linearly independent list in
Vi_1 has length at most i — 1. Suppose we have a linearly independent list
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Proposition ??7: Let V be a finite-dimensional vector space, and let W be a
subspace of V. Then W is also finite-dimensional, and dim(W) < dim(V/).

Proof: Put n=dim(V). We define a list W = wi, w, ... as follows.

If W =0 then we take W to be the empty list.

Otherwise, we let w; be any nonzero vector in W.

If wi spans W we take W = wj.
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Proposition ??7: Let V be a finite-dimensional vector space, and let W be a
subspace of V. Then W is also finite-dimensional, and dim(W) < dim(V/).

Proof: Put n=dim(V). We define a list W = wi, w, ... as follows.

If W =0 then we take W to be the empty list.

Otherwise, we let w; be any nonzero vector in W.

If wi spans W we take W = wj.

Otherwise, we can choose an element w, € W that is not in span(wy).

If span(wi, wo) = W then we stop and take W = wq, w,.

Otherwise, we can choose an element ws € W that is not in span(wi, w»).

We continue in this way, so we always have w; & span(wi, ..., w;_1), so the
w's are linearly independent (by Corollary ??). However, V has a spanning set
of length n, so Steinitz's Lemma tells us that we cannot have a linearly
independent list of length greater than n, so our list of w's must stop before we
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Proposition ??: Let V be an n-dimensional vector space, and let

V = vi,..., v, be a linearly independent list of elements of V. Then p < n,
and V can be extended to a list V' = v1,..., v, such that V' is a basis of V.
Proof: Corollary ?7? tells us that p < n. If span(vi,...,v,) = V then we take
Vi=vi,...,Vp.

Otherwise, we choose some vp1 & span(vi, ..., Vp).
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Otherwise, we choose some vji2 & span(vi, ..., vp1) and continue in the same
way.
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Corollary ??). Any linearly independent list has length at most n (by

Corollary ??) so our process must stop before we get to vo11. This means that
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so m = n (by Corollary ?? again).
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a basis.

(b) Let W = (w1, ..., w,) be a linearly independent list.
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Corollary ??: Let V be an finite-dimensional vector space, and let W be a
subspace with dim(W) = dim(V); then W = V.

Proof: Put n=dim(V) = dim(W)
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list, and so is a basis.

Corollary ??: Let V be an finite-dimensional vector space, and let W be a
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Proof: Put n=dim(V) =dim(W), and let W = wx, ..., w, be a basis for
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(a) Any spanning list for V with exactly n elements is linearly independent,
and so is a basis.

(b) Any linearly independent list in V' with exactly n elements is a spanning
list, and so is a basis.

Corollary ??: Let V be an finite-dimensional vector space, and let W be a
subspace with dim(W) = dim(V); then W = V.

Proof: Put n=dim(V) =dim(W), and let W = wx, ..., w, be a basis for
W. Then W is a linearly independent list in V with n elements, so part (b) of
the Proposition tells us that WV spans V.
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(a) Any spanning list for V with exactly n elements is linearly independent,
and so is a basis.

(b) Any linearly independent list in V' with exactly n elements is a spanning
list, and so is a basis.

Corollary ??: Let V be an finite-dimensional vector space, and let W be a
subspace with dim(W) = dim(V); then W = V.

Proof: Put n=dim(V) =dim(W), and let W = wx, ..., w, be a basis for
W. Then W is a linearly independent list in V with n elements, so part (b) of
the Proposition tells us that W spans V. Thus V = span(W) = W.
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be subspaces of U. Then one can find lists (u1,. .., up), (vi,...,vq) and
(wi, ..., w) (for some p, g, r > 0) such that
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Uly.o.yUpy Viy..oy Vg, Wi, ..., W,) is a basis for V + W.
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be subspaces of U. Then one can find lists (u1,. .., up), (vi,...,vq) and
(wi, ..., w) (for some p, g, r > 0) such that
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dim(VnW)=p dim(V)=p+q dim(W)=p+r dim(V+W) = p+q+r,
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Proposition ??7: Let U be a finite-dimensional vector space, and let V and W

be subspaces of U. Then one can find lists (u1,. .., up), (vi,...,vq) and
(wi, ..., w) (for some p, g, r > 0) such that

» (u1,...,up) is a basis for VN W

» (u1,...,Up,V1,...,Vq) is a basis for V

» (u1,...,Up,Wi,..., W) is a basis for W

» (u1,...,Up, V1, ., Vg, Wi,...,W,) is a basis for V + W.

In particular, we have
dim(VnW)=p dim(V)=p+q dim(W)=p+r dim(V+W) = p+q+r,

so dim(V) +dim(W) =2p + g+ r =dim(V N W) 4+ dim(V + W).
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Proof: Choose a basis U = (uy,...,up) for VN W.
Then U is a linearly independent list in V/, so it can be extended to a basis for

V, say (U1, Up,V1,.. .,y Vq).
Similarly U is a linearly independent list in W, so it can be extended to a basis
for W, say (u1,...,Up, wi,..., w,).

All that is left is to prove that the list
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Proof: Choose a basis U = (uy,...,up) for VN W.
Then U is a linearly independent list in V/, so it can be extended to a basis for

V, say (U1, Up,V1,.. .,y Vq).
Similarly U is a linearly independent list in W, so it can be extended to a basis
for W, say (u1,...,Up, wi,..., w,).

All that is left is to prove that the list
X = (U1, .y Upy Vi, ooy Vg, Wi,y ooy We)
is a basis for V + W. Consider an element
x=oqu + -+ aplp+ fivi+ -+ Bgvg + 1iwr + - - + - w, € span(X).

Puty =3 aiui+ 32, Bjvj and z = 37, vwi, so x = y +z. We have
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Proof: Choose a basis U = (uy,...,up) for VN W.
Then U is a linearly independent list in V/, so it can be extended to a basis for

V, say (U1, Up,V1,.. .,y Vq).
Similarly U is a linearly independent list in W, so it can be extended to a basis
for W, say (u1,...,Up, wi,..., w,).

All that is left is to prove that the list
X = (U1, .y Upy Vi, ooy Vg, Wi,y ooy We)
is a basis for V + W. Consider an element
x=oqu + -+ aplp+ fivi+ -+ Bgvg + 1iwr + - - + - w, € span(X).

Puty =3 aiui+ 32, Bjvj and z = 37, vwi, so x = y +z. We have
u,vyeEVandwie WsoyeVandze Wsox=y+zeV+ W. Thus
span(X) < V + W.
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for some scalars \;, G;.
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As (u1,...,Up,vi,...,Vq) is a basis for V, we have
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for some scalars \;, G;.
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for some scalars pj, y«.
If we put aj = A\j + pi we get

x=y+z=oam+ - Fapup+Livi+---+Bqvg+riwi+- - +v-w, € span(X).
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Now suppose we start with an element x € V 4+ W.
We can then find y € V and z € W such that x =y + z.
As (u1,...,Up,vi,...,Vq) is a basis for V, we have

y:Alul+"'+)\pup+ﬁlvl+"'+,8qvq

for some scalars \;, G;.
Similarly, we have

Z =i+ -+ pplp + 1wt + -+ YW

for some scalars pj, y«.
If we put aj = A\j + pi we get

x=y+z=oam+ - Fapup+Livi+---+Bqvg+riwi+- - +v-w, € span(X).

It follows that span(X) =V + W.
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Finally, suppose we have a linear relation

arur + -+ apup + Bivi + -+ Bgvg + v + -+ yewr = 0.
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Puty=>aiui+3 ;Bjvjand z=3%", nwi, soy +z=0,s0z=—y.
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y € V, so z also lies in V/, because z = —y.



Two subspaces

Finally, suppose we have a linear relation
ai + -t opup + frvi + -+ Bavg + awa + -+ yrwr = 0.

Puty =3 aiui+3;Bjvjand z =37, vwi, soy +z=0,s0 z=—y. Now
y € V, so z also lies in V, because z = —y. Also z € W



Two subspaces

Finally, suppose we have a linear relation
ai + -t opup + frvi + -+ Bavg + awa + -+ yrwr = 0.

Puty =3 aiui+3;Bjvjand z =37, vwi, soy +z=0,s0 z=—y. Now
y € V,so z also lies in V, because z=—y. Alsoze W,soze VN W.



Two subspaces

Finally, suppose we have a linear relation
ai + -t opup + frvi + -+ Bavg + awa + -+ yrwr = 0.

Puty =3 aiui+3;Bjvjand z =37, vwi, soy +z=0,s0 z=—y. Now
y € V, so z also lies in V, because z= —y. Alsoze€ W,soze VN W. We
know that U is a basis for V. N W
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Finally, suppose we have a linear relation
ai + -t opup + frvi + -+ Bavg + awa + -+ yrwr = 0.

Puty =3 aiui+3;Bjvjand z =37, vwi, soy +z=0,s0 z=—y. Now
y € V, so z also lies in V, because z= —y. Alsoze€ W,soze VN W. We
know that U is a basis for VN W, so z = Aiu1 + - - - + Apup for some
A1, ..., Ap. This means that

Arus + - Aplp — yws — -+ — yw, = 0.



Two subspaces
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ai + -t opup + frvi + -+ Bavg + awa + -+ yrwr = 0.

Puty =3 aiui+3;Bjvjand z =37, vwi, soy +z=0,s0 z=—y. Now
y € V, so z also lies in V, because z= —y. Alsoze€ W,soze VN W. We
know that U is a basis for VN W, so z = Aiu1 + - - - + Apup for some
A1, ..., Ap. This means that

Arus + - Aplp — yws — -+ — yw, = 0.

We also know that (u1,. .., Up, wi,...,w,) is a basis for W
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Finally, suppose we have a linear relation
ai + -t opup + frvi + -+ Bavg + awa + -+ yrwr = 0.
Puty =3 aiui+3;Bjvjand z =37, vwi, soy +z=0,s0 z=—y. Now

y € V, so z also lies in V, because z= —y. Alsoze€ W,soze VN W. We
know that U is a basis for VN W, so z = Aiu1 + - - - + Apup for some

A1, ..., Ap. This means that
Arus + - Aplp — yws — -+ — yw, = 0.
We also know that (uy,. .., up, wi,...,w,) is a basis for W, so the above gives

)\1:'“:)\;;:71:-":%:0-
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Finally, suppose we have a linear relation
ai + -t opup + frvi + -+ Bavg + awa + -+ yrwr = 0.
Puty =3 aiui+3;Bjvjand z =37, vwi, soy +z=0,s0 z=—y. Now
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relation, we get ayur + -+ + Qpup + Brvi + -+ + Bqvg = 0.
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ai + -t opup + frvi + -+ Bavg + awa + -+ yrwr = 0.
Puty =3 aiui+3;Bjvjand z =37, vwi, soy +z=0,s0 z=—y. Now

y € V, so z also lies in V, because z= —y. Alsoze€ W,soze VN W. We
know that U is a basis for VN W, so z = Aiu1 + - - - + Apup for some

A1, ..., Ap. This means that

At 4+ Aptp — 7w — -+ — yew, = 0.
We also know that (uy,. .., up, wi,...,w,) is a basis for W, so the above gives
Al =:-=Ap =7 ="--= = 0. Feeding this back into our original

relation, we get ayur + -+ + Qpup + Brvi + -+ + Bqvg = 0.

The list (u1, ..., Up,va,...,Vq) is a basis for V, so the above gives
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Finally, suppose we have a linear relation
ai + -t opup + frvi + -+ Bavg + awa + -+ yrwr = 0.

Puty =3 aiui+3;Bjvjand z =37, vwi, soy +z=0,s0 z=—y. Now
y € V, so z also lies in V, because z= —y. Alsoze€ W,soze VN W. We
know that U is a basis for VN W, so z = Aiu1 + - - - + Apup for some

A1, ..., Ap. This means that

At 4+ Aptp — 7w — -+ — yew, = 0.
We also know that (uy,. .., up, wi,...,w,) is a basis for W, so the above gives
Al =:-=Ap =7 ="--= = 0. Feeding this back into our original

relation, we get ayur + -+ + Qpup + Brvi + -+ + Bqvg = 0.

The list (u1, ..., Up,va,...,Vq) is a basis for V, so the above gives
ar=---=ap=01=---=p¢=0. As all a's, B's and 7's are zero, we see
that our original linear relation was trivial.
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Finally, suppose we have a linear relation
ai + -t opup + frvi + -+ Bavg + awa + -+ yrwr = 0.

Puty =3 aiui+3;Bjvjand z =37, vwi, soy +z=0,s0 z=—y. Now
y € V, so z also lies in V, because z= —y. Alsoze€ W,soze VN W. We
know that U is a basis for VN W, so z = Aiu1 + - - - + Apup for some

A1, ..., Ap. This means that

Aur + -+ Apup —yiwg — - —yew, = 0.
We also know that (uy,. .., up, wi,...,w,) is a basis for W, so the above gives
Al =:-=Ap =7 ="--= = 0. Feeding this back into our original

relation, we get ayur + -+ + Qpup + Brvi + -+ + Bqvg = 0.

The list (u1, ..., Up,va,...,Vq) is a basis for V, so the above gives
ar=---=ap=01=---=p¢=0. As all a's, B's and 7's are zero, we see
that our original linear relation was trivial. This shows that the list X is linearly
independent
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Finally, suppose we have a linear relation
ai + -t opup + frvi + -+ Bavg + awa + -+ yrwr = 0.

Puty =3 aiui+3;Bjvjand z =37, vwi, soy +z=0,s0 z=—y. Now
y € V, so z also lies in V, because z= —y. Alsoze€ W,soze VN W. We
know that U is a basis for VN W, so z = Aiu1 + - - - + Apup for some

A1, ..., Ap. This means that

Aur + -+ Apup —yiwg — - —yew, = 0.
We also know that (uy,. .., up, wi,...,w,) is a basis for W, so the above gives
Al =:-=Ap =7 ="--= = 0. Feeding this back into our original

relation, we get ayur + -+ + Qpup + Brvi + -+ + Bqvg = 0.

The list (u1, ..., Up,va,...,Vq) is a basis for V, so the above gives
ar=---=ap=01=---=p¢=0. As all a's, B's and 7's are zero, we see
that our original linear relation was trivial. This shows that the list X is linearly
independent, so it gives a basis for V + W as claimed.
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V={AcU| anrowssumto()}:{AeU\A[ﬂ:[‘é]

W={Ae U] all columnssumto 0} ={Ae U][1,1,1]A=0,0,0]}
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Put U = MsR and
V={AcU] al rowssumtoO}:{AEU\AH] - [‘é]
W={Ae U] all columnssumto 0} ={Ae U][1,1,1]A=0,0,0]}
Then V N W is the set of all matrices of the form

a b —a—b 10-1 01 —1 000 00 O
A= c d —c—d =al 000 [+b[00 0 [+c| 1 0=-1}4+4d|01 —1
—a—c —b—d at+b+c+d —10 1 0—-11 —10 1 0—-11



An example

Put U = MsR and

V={AcU| anrowssumto()}:{AeU\A[ﬂ:[‘é]

W={Ae U] all columnssumto 0} ={Ae U][1,1,1]A=0,0,0]}
Then V N W is the set of all matrices of the form

a b —a—b 10-1 01 —1 000 00 O
A= c d —c—d =al 000 [+b[00 0 [+c| 1 0=-1}4+4d|01 —1
—a—c —b—d at+b+c+d —10 1 0—-11 —10 1 0—1

It follows that the list
[ 1
up = i)

is a basis for VN W.

-

0— 01 —1 000 00 0
00 ,up =100 0 , U3 = 10-1|,u =01 —1
10 1 0—-11 —10 1 0—-11
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An example

10-1 0 —1 0 8 0 8 0 0
up = 000 |,up=1]00 0 |,u3= 1 0-1],u = 1 -1
1 —10 1 2 0—-11 3 —10 1 4 0—-11

Now put

00 0 00 0 00 1 00 0
vlz{oo o],VQ:[oo u},wlz[uo o],w2:[oo 1}
10-1 01 -1 00 -1 00 -1

sovi € Vand w; € W. A typical element of V has the form

ab—a—b
A= |cd—c—d
ef —e—f



An example

10-1 0 —1 0 8 0 8 0
up = 000 |,up=1]00 0 |,u3= 1 0-1],u = 1 -1
1 —10 1 2 0—-11 3 —10 1 4 0—-11

Now put

00 0 00 0 00 1 00 0
v1:[00 o],VQ:[oo u},wlz[uo o],w2:[oo 1}
10-1 01 -1 00 -1 00 -1

sovi € Vand w; € W. A typical element of V has the form

ab—a—b 0 0 0
A=|cd—c—d :2Ul+bu2+cu3+du4+{ 0 0 0 ]
ef —e—f e—a—cf—b—datbtctd—e—f
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Now put
00 0 00 0 00 1 00 0
a-[988 ] = (888 ] m=[580] wa =8 1]
sovi € Vand w; € W. A typical element of V has the form

ab—a—b 0 0 0
A=|cd—c—d :2Ul+bu2+cu3+du4+{ 0 0 0 ]
ef —e—f e—a—cf—b—datbtctd—e—f

= auy + buy + cuz +dug + (e —a—c)vy + (f — b — d)vp.
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Now put

00 0 00 0 00 1 00 0
vlz{oo o],VQ:[oo 0},w1:[00 0],w2:[00 1}
10-—1 01 -1 00—-1 00 -1
sovi € Vand w; € W. A typical element of V has the form
ab—a—b 0 0 0
A:{cdfcfd] :2Ul+bu2+cu3+du4+{ 0 0 0 ]
ef —e—f e—a—cf—b—datbtc+d—e—f

= auy + buy + cuz +dug + (e —a—c)vy + (f — b — d)vp.

Using this, we see that v, ..., us, vi, v is a basis for V.
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Now put

00 0 00 0 00 1 00 0
vlz{oo o],VQ:[oo 0},w1:[00 0],w2:[00 1}
10-—1 01 -1 00—-1 00 -1
sovi € Vand w; € W. A typical element of V has the form
ab—a—b 0 0 0
A:{cdfcfd] :2Ul+bu2+cu3+du4+{ 0 0 0 ]
ef —e—f e—a—cf—b—datbtc+d—e—f

= auy + buy + cuz +dug + (e —a—c)vy + (f — b — d)vp.

Using this, we see that ui, ..., us, v1, v2 is a basis for V. Similarly,
ui,...,uUs, w1, ws is a basis for W.
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Now put

00 0 00 0 00 1 00 0
vlz{oo o],VQ:[oo 0},w1:[00 0],w2:[00 1}
10-—1 01 -1 00—-1 00 -1
sovi € Vand w; € W. A typical element of V has the form
ab—a—b 0 0 0
A:{cdfcfd] :aul+bu2+cu3+du4+{ 0 0 0 ]
ef —e—f e—a—cf—b—datbtc+d—e—f

= auy + buy + cuz +dug + (e —a—c)vy + (f — b — d)vp.

Using this, we see that ui, ..., us, v1, v2 is a basis for V. Similarly,
ui,...,us, w1, ws is a basis for W. It follows that

ui, Uz, us, Us, vi, v2, Wi, W2

is a basis for V + W.
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Put U = R[x]<3 and
V=A{feUl|f(1)=0}={(x—-1)g(x) | gx) € R[x]<2}
W ={fecU]|f(-1)=0}={(x+1)h(x) | h(x) € R[x]<>}
so VN W = {f € U|fisdivisible by (x +1)(x — 1) = x* — 1}

Any f(x) € VN W has the form (ax + b)(x* — 1) = a(x® — x) + b(x* —1). It
follows that the list uy = x® — x, u = x> — 1 is a basis for V. N W.
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Put U = R[x]<3 and
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follows that the list u; = x> — x, u» = x*> — 1 is a basis for V N W. Now put
vi=x—1¢€ Vand wy =x+ 1€ W. We claim that ui, u, v1 is a basis for V.
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Put U = R[x]<3 and

V=A{feUl|f(1)=0}={(x—-1)g(x) | gx) € R[x]<2}
W =A{feU]|f(-1) =0} ={(x+1)h(x) | h(x) € R[x]<2}
so VN W = {f € U|fisdivisible by (x +1)(x — 1) = x* — 1}
Any f(x) € VN W has the form (ax + b)(x* — 1) = a(x® — x) + b(x* —1). It
follows that the list u; = x> — x, u» = x*> — 1 is a basis for V N W. Now put
vi=x—1¢€ Vand wy =x+ 1€ W. We claim that ui, u, v1 is a basis for V.
Indeed, any element of V has the form
f(x)=(ax’+ bx+c).(x—1)=ax’+ (b—a)x* + (c — b)x — ¢
=an+(b—a)uu+(a—b+c)wa
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V=A{feUl|f(1)=0}={(x—-1)g(x) | gx) € R[x]<2}
W ={feU]|f(-1) =0} = {(x+ 1h(x) | h(x) € R[x]<>}
so VN W = {f € U|fisdivisible by (x +1)(x — 1) = x* — 1}
Any f(x) € VN W has the form (ax + b)(x* — 1) = a(x® — x) + b(x* —1). It
follows that the list u; = x> — x, u» = x*> — 1 is a basis for V N W. Now put
vi=x—1¢€ Vand wy =x+ 1€ W. We claim that ui, u, v1 is a basis for V.
Indeed, any element of V has the form
f(x)=(ax’+ bx+c).(x—1)=ax’+ (b—a)x* + (c — b)x — ¢
=aun+(b—a)uz+(a— b+ c)w,

so the list spans V.
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follows that the list u; = x> — x, u» = x*> — 1 is a basis for V N W. Now put
vi=x—1¢€ Vand wy =x+ 1€ W. We claim that ui, u, v1 is a basis for V.
Indeed, any element of V has the form
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=aun+(b—a)uz+(a— b+ c)w,
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Put U = R[x]<3 and

V=A{feUl|f(1)=0}={(x—-1)g(x) | gx) € R[x]<2}
W ={feU]|f(-1)=0}={(x+1)h(x) | h(x) € R[x]<2}
so VN W = {f € U|fisdivisible by (x +1)(x — 1) = x* — 1}

Any f(x) € VN W has the form (ax + b)(x* — 1) = a(x® — x) + b(x* —1). It
follows that the list u; = x> — x, u» = x*> — 1 is a basis for V N W. Now put

vi=x—1¢€ Vand wy =x+ 1€ W. We claim that ui, u, v1 is a basis for V.
Indeed, any element of V has the form

f(x)=(ax’+ bx+c).(x—1)=ax’+ (b—a)x* + (c — b)x — ¢
=aun+(b—a)uz+(a— b+ c)w,

so the list spans V. If we have a linear relation au; + bu; + cvi = 0 then
a(x® = x) + b(x* —1) + c(x — 1) = 0 for all x



Another example

Put U = R[x]<3 and

V=A{feUl|f(1)=0}={(x—-1)g(x) | gx) € R[x]<2}
W =A{feU]|f(-1) =0} ={(x+1)h(x) | h(x) € R[x]<2}
so VN W = {f € U|fisdivisible by (x +1)(x — 1) = x* — 1}
Any f(x) € VN W has the form (ax + b)(x* — 1) = a(x® — x) + b(x* —1). It
follows that the list u; = x> — x, u» = x*> — 1 is a basis for V N W. Now put

vi=x—1¢€ Vand wy =x+ 1€ W. We claim that ui, u, v1 is a basis for V.
Indeed, any element of V has the form

f(x)=(ax’+ bx+c).(x—1)=ax’+ (b—a)x* + (c — b)x — ¢
=aun+(b—a)uz+(a— b+ c)w,
so the list spans V. If we have a linear relation au; + bu; + cvi = 0 then

a(x® —x)+b(x®*—1)+c(x—1)=0forall x,s0 ax* + bx* + (c—a)x —c =0
for all x



Another example

Put U = R[x]<3 and

V=A{feUl|f(1)=0}={(x—-1)g(x) | gx) € R[x]<2}
W =A{feU]|f(-1) =0} ={(x+1)h(x) | h(x) € R[x]<2}
so VN W = {f € U|fisdivisible by (x +1)(x — 1) = x* — 1}
Any f(x) € VN W has the form (ax + b)(x* — 1) = a(x® — x) + b(x* —1). It
follows that the list u; = x> — x, u» = x*> — 1 is a basis for V N W. Now put

vi=x—1¢€ Vand wy =x+ 1€ W. We claim that ui, u, v1 is a basis for V.
Indeed, any element of V has the form

f(x)=(ax’+ bx+c).(x—1)=ax’+ (b—a)x* + (c — b)x — ¢
=aun+(b—a)uz+(a— b+ c)w,
so the list spans V. If we have a linear relation au; + bu; + cvi = 0 then

a(x® —x)+b(x®*—1)+c(x—1)=0forall x,s0 ax* + bx* + (c—a)x —c =0
for all x, which implies that a= b =c = 0.
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Put U = R[x]<3 and

V=A{feUl|f(1)=0}={(x—-1)g(x) | gx) € R[x]<2}
W ={feU]|f(-1)=0}={(x+1)h(x) | h(x) € R[x]<2}
so VN W = {f € U|fisdivisible by (x +1)(x — 1) = x* — 1}

Any f(x) € VN W has the form (ax + b)(x* — 1) = a(x® — x) + b(x* —1). It
follows that the list u; = x> — x, u» = x*> — 1 is a basis for V N W. Now put
vi=x—1¢€ Vand wy =x+ 1€ W. We claim that ui, u, v1 is a basis for V.
Indeed, any element of V has the form

f(x)=(ax’+ bx+c).(x—1)=ax’+ (b—a)x* + (c — b)x — ¢
=aun+(b—a)uz+(a— b+ c)w,

so the list spans V. If we have a linear relation au; + bu; + cvi = 0 then

a(x® —x)+b(x®*—1)+c(x—1)=0forall x,s0 ax* + bx* + (c—a)x —c =0
for all x, which implies that a = b = ¢ = 0. Our list is thus independent as well
as spanning V/, so it is a basis.



Another example

Put U = R[x]<3 and

V=A{feUl|f(1)=0}={(x—-1)g(x) | gx) € R[x]<2}
W ={feU]|f(-1)=0}={(x+1)h(x) | h(x) € R[x]<2}
so VN W = {f € U|fisdivisible by (x +1)(x — 1) = x* — 1}

Any f(x) € VN W has the form (ax + b)(x* — 1) = a(x® — x) + b(x* —1). It
follows that the list u; = x> — x, u» = x*> — 1 is a basis for V N W. Now put
vi=x—1¢€ Vand wy =x+ 1€ W. We claim that ui, u, v1 is a basis for V.
Indeed, any element of V has the form

f(x)=(ax’+ bx+c).(x—1)=ax’+ (b—a)x* + (c — b)x — ¢
=aun+(b—a)uz+(a— b+ c)w,

so the list spans V. If we have a linear relation au; + bu; + cvi = 0 then

a(x® —x)+b(x®*—1)+c(x—1)=0forall x,s0 ax* + bx* + (c—a)x —c =0
for all x, which implies that a = b = ¢ = 0. Our list is thus independent as well
as spanning V, so it is a basis. Similarly u1, u2, wy is a basis for W.



Another example

Put U = R[x]<3 and

V=A{feUl|f(1)=0}={(x—-1)g(x) | gx) € R[x]<2}
W ={feU]|f(-1)=0}={(x+1)h(x) | h(x) € R[x]<2}
so VN W = {f € U|fisdivisible by (x +1)(x — 1) = x* — 1}

Any f(x) € VN W has the form (ax + b)(x* — 1) = a(x® — x) + b(x* —1). It
follows that the list u; = x> — x, u» = x*> — 1 is a basis for V N W. Now put
vi=x—1¢€ Vand wy =x+ 1€ W. We claim that ui, u, v1 is a basis for V.
Indeed, any element of V has the form

f(x)=(ax’+ bx+c).(x—1)=ax’+ (b—a)x* + (c — b)x — ¢
=aun+(b—a)uz+(a— b+ c)w,

so the list spans V. If we have a linear relation au; + bu; + cvi = 0 then

a(x® —x)+b(x®*—1)+c(x—1)=0forall x,s0 ax* + bx* + (c—a)x —c =0
for all x, which implies that a = b = ¢ = 0. Our list is thus independent as well
as spanning V, so it is a basis. Similarly u1, u2, wy is a basis for W. It follows
that w1, u2, vi, wy is a basis for V + W.
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Theorem ??: Let a: U — V be a linear map between finite-dimensional
vector spaces. Then one can choose a basis Y = u1,...,um for U, and a basis
V =wvi,...,v, for V, and an integer r < min(m, n) such that

(@) au)=viforl <i<r

(b) a(uj)=0forr<i<m
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Theorem ??: Let a: U — V be a linear map between finite-dimensional
vector spaces. Then one can choose a basis Y = u1,...,um for U, and a basis
V =wvi,...,v, for V, and an integer r < min(m, n) such that

(@) au)=viforl <i<r
(b) a(ui) =0forr<i<m

(¢) urg1,...,um is a basis for ker(a) < U
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Theorem ??: Let a: U — V be a linear map between finite-dimensional

vector spaces. Then one can choose a basis Y = u1,...,um for U, and a basis
V =wvi,...,v, for V, and an integer r < min(m, n) such that

(@) a(u)=vifor1 <i<r

(b) a(uj)=0forr<i<m

(¢) urg1,...,um is a basis for ker(a) < U
(d) vi,..., v, is a basis for image(a) < V.



Adapted bases

Theorem ??: Let a: U — V be a linear map between finite-dimensional
vector spaces. Then one can choose a basis Y = u1,...,um for U, and a basis
V =wvi,...,v, for V, and an integer r < min(m, n) such that

(@) a(u)=vifor1 <i<r

(b) a(uj)=0forr<i<m

(¢) ur+1,...,um is a basis for ker(«)

<Uu
(d) vi,..., v, is a basis for image(a) < V.

Remark ?7: If we use bases as in the theorem, then the matrix of a with
respect to those bases has the form

I ‘ Or,m—r

On—r,r ‘ On—r,m—r

A=




Adapted bases

U=uw,...,un a basis for U V=w,...,V, a basis for V
a(u)=vifor1<i<r a(u)=0forr<i<m
Ur41,...,Um a basis for ker(a) < U wi,..., v, a basis for image(a) < V
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U=uw,...,un a basis for U V=w,...,V, a basis for V
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Ur41,...,Um a basis for ker(a) < U wi,..., v, a basis for image(a) < V

Corollary ??: If a: U — V is a linear map then

dim(ker(a)) 4 dim(image(a)) = dim(U).



Adapted bases

U=uw,...,un a basis for U V=w,...,V, a basis for V
a(u)=vifor1<i<r a(u)=0forr<i<m
Ur41,...,Um a basis for ker(a) < U wi,..., v, a basis for image(a) < V

Corollary ??: If a: U — V is a linear map then

dim(ker(a)) 4 dim(image(a)) = dim(U).
Proof: Choose bases as in the theorem. Then dim(U) = m and
dim(image(a)) = r and

dim(ker(a)) = {ur+1, .-y Um}| =m—r.

The claim follows.
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Proof of Theorem 77:
Let vi,..., Vv, be any basis for image(a) (so (d) is satisfied).
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basis for all of V.



Adapted bases

U=uw,...,un a basis for U YV =wi,...,V, a basis for V
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Let vi,..., Vv, be any basis for image(a) (so (d) is satisfied).

By Proposition ??, this can be extended to a list V = vi,..., v, which is a
basis for all of V.

Next, for j < r we have v; € image(«), so we can choose uj € U with
a(u;) = vj (so (a) is satisfied).
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U=u,...,um a basis for U YV =wi,...,V, a basis for V
(@) a(uj)=vifor1<i<r (b) a(ui)=0forr<i<m
(¢) try1, ..., um a basis for ker(a) (d) vi,..., v, a basis for image(«)

Proof of Theorem 77:
Let vi,..., Vv, be any basis for image(a) (so (d) is satisfied).

By Proposition ??, this can be extended to a list V = vi,..., v, which is a
basis for all of V.

Next, for j < r we have v; € image(«), so we can choose uj € U with
a(u;) = vj (so (a) is satisfied).

This gives us a list ui, ..., u, of elements of U; to these, we add vectors
Urit, ..., Um forming a basis for ker(a) (so that (b) and (c) are satisfied).



Adapted bases

U=u,...,um a basis for U YV =wi,...,V, a basis for V
(@) a(uj)=vifor1<i<r (b) a(ui)=0forr<i<m
(¢) try1, ..., um a basis for ker(a) (d) vi,..., v, a basis for image(«)

Proof of Theorem 77:
Let vi,..., Vv, be any basis for image(a) (so (d) is satisfied).

By Proposition ??, this can be extended to a list V = vi,..., v, which is a
basis for all of V.

Next, for j < r we have v; € image(«), so we can choose uj € U with
a(u;) = vj (so (a) is satisfied).

This gives us a list ui, ..., u, of elements of U; to these, we add vectors
Urit, ..., Um forming a basis for ker(a) (so that (b) and (c) are satisfied).

Now everything is as claimed except that we have not shown that the list
U =u,...,unmis a basis for U.
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Consider an element x € U. We then have a(x) € image(«), and vi,..., v, is a
basis for image(«), so there exist numbers A1, ..., A, such that

a(x) =Avi+ ...+ Av,. Now put X' = M + ...+ Ay, and X7 = x — X',
We have

a(x’) = Ma(wm) + -+ Ma(u) = v + -+ v = a(x),

so a(x”) = a(x) — a(x’) =0, so x”" € ker(a). We also know that
Urit, ..., Um is a basis for ker(a), so there exist numbers Ary1,..., Am with
XN = ArJr1Ur+1 + -+ Amum-
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Consider an element x € U. We then have a(x) € image(«), and vi,..., v, is a
basis for image(«), so there exist numbers A1, ..., A, such that

a(x) =Avi+ ...+ Av,. Now put X' = M + ...+ Ay, and X7 = x — X',
We have

oz(x') = Ma(u) + -+ a(u) =i+ -+ vy = ax),

so a(x”) = a(x) — a(x’) =0, so x”" € ker(a). We also know that
Urit, ..., Um is a basis for ker(a), so there exist numbers Ary1,..., Am with
x" = As1lri1 + -+ + Amtm. Putting this together, we get

X = X, + X” = (/\lul + -+ )\rur) + ()\r+lur+1 + -+ )\mum)
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We have

oz(x') = Ma(u) + -+ a(u) =i+ -+ vy = ax),

so a(x”) = a(x) — a(x’) =0, so x”" € ker(a). We also know that
Urit, ..., Um is a basis for ker(a), so there exist numbers Ary1,..., Am with
x" = As1lri1 + -+ + Amtm. Putting this together, we get

X = X, + X” = (/\lul + -+ )\rur) + ()\r+lur+1 + -+ )\mum),

which is a linear combination of w1, ..., un. It follows that the list I/ spans U.
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Now suppose we have a linear relation A1y + -+ + Amum = 0. We apply a to
both sides of this equation to get

0= hia(ur) + - 4+ Aeaur) + Mrpra(uri) + -+ - + Ama(um)
:>\1V1+"'+>\rVr+>\r+1~0+"'+)\m-0
= )\1V1 +"'+)\rVr-

This is a linear relation between the vectors vi, ..., v, but these form a basis
for image(«), so this must be the trivial relation, so Ay = --- = A, = 0. This
means that our original relation has the form

)\r+lur+1 4+ -+ Apum =0

As Uri1,...,Um is a basis for ker(a), these vectors are linearly independent, so
the above relation must be trivial, so A\,4+1 = --- = A, = 0. This shows that all
the \'s are zero, so the original relation was trivial. Thus, the vectors
ui, ..., uUm are linearly independent. We have already seen that they span U, so
they give a basis for U.
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An example

Consider the map ¢: MR — MR given by ¢(A) =[] A[91], or
equivalently
olzol=[11112a1005] = (1111521 = 519 35€]
=(b+d)[io]+(a+)[51

It follows that if we put

w=1331 w=[33]

e

then ¢(u1) = w1, ¢(t2) = v2, and vi, v» is a basis for image(¢). It can be
extended to a basis for all of MR by adding vs = [93] and v4 = [39
Moreover, we have ¢(A) =0iffa+c=b+d=0iff c=—aand d = —b, in
which case

A=[2b]=a[28]+b[JN].
This means that the matrices u3 = [ 4 0] and uy [8 ! ] form a basis for

ker(¢).



An example

Consider the map ¢: MR — MR given by ¢(A) =[] A[91], or
equivalently
gl=11110z 810851 = (1110521 = [B1g 35c]
=(b+d)[15]+ (a+ )51

It follows that if we put

w=1331 w=[33]

e

then ¢(u1) = w1, ¢(t2) = v2, and vi, v» is a basis for image(¢). It can be
extended to a basis for all of MR by adding vs = [93] and v4 = [39
Moreover, we have ¢(A) =0iffa+c=b+d=0iff c=—aand d = —b, in
which case

A=[2 5] =alhs]+b[a 4]

This means that the matrices u3 = [31 8] and uy = [8 ,1] form a basis for
ker(¢). Putting this together, we see that u1,...,us and vi,..., v4 are bases
for MbR such that ¢(u;) = v; for i < 2, and ¢(u;) = 0 for i > 2.
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Eigenvalues and eigenvectors

Definition ??: Let V be a finite-dimensional vector space over C, and let

a: V — V be a C-linear map. Let A be a complex number. An eigenvector for
«, with eigenvalue X is a nonzero element v € V such that a(v) = Av. If such
a v exists, we say that A is an eigenvalue of a.

Remark ??: Suppose we choose a basis V for V, and let A be the matrix of «
with respect to V and V. Then the eigenvalues of « are the same as the
eigenvalues of the matrix A, which are the roots of the characteristic
polynomial det(t/ — A).
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Example ??: Put V = C[x]<4, and define ¢: V — V by ¢(f)(x) = f(x+ 1)
so ¢(x*) = (x + 1) for all k < 4. We claim that 1 is the only eigenvalue.
Indeed, the corresponding matrix P (with respect to the basis 1,x,...,x*) is

11111
01234
P=100136
00014
00001

The characteristic polynomial is thus

t—1 -1 —1 —1 —1
0 t—1 —2 —3 —4
det(t/ — P) = det 0 0 t—1 -3 —6
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so 1 is the only root of the characteristic polynomial. The eigenvectors are
just the polynomials f with ¢(f) = 1.f or equivalently f(x + 1) = f(x) for all
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Example ??: Put V = C[x]<4, and define ¢: V — V by ¢(f)(x) = f(x+ 1)
so ¢(x*) = (x + 1) for all k < 4. We claim that 1 is the only eigenvalue.
Indeed, the corresponding matrix P (with respect to the basis 1,x,...,x*) is

11111
01234
P=100136
00014
00001

The characteristic polynomial is thus

t—1 -1 —1 —1 —1
0 t—1 —2 —3 —4
det(t/ — P) = det 0 0 t—1 -3 —6
0

0O 0 0 0 t—1

so 1 is the only root of the characteristic polynomial. The eigenvectors are
just the polynomials f with ¢(f) = 1.f or equivalently f(x + 1) = f(x) for all
x. These are just the constant polynomials.
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-
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The eigenvalues are thus 0 and (u,v). The eigenvectors of eigenvalue 0 are
the vectors orthogonal to u. The eigenvectors of eigenvalue (u,v) are the
multiples of v.

If we had noticed this in advance then the whole argument would have been
much easier. We could have chosen a basis of the form a,b,v with a and b

00 0
orthogonal to u.  With respect to that basis, ¢ would have matrix [88 ( 0 >]
u,v

which immediately gives the characteristic polynomial.
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Definition ??: Let V be a vector space over R. An inner product on V' is a

rule that gives a number (u, v) € R for each u, v € V, with the following
properties:

(a) (u+v,w) = (u,w) + (v,w) forall u,v,w € V.

(b) (tu,v) = t(u,v) for all u,v € V and t € R.
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Given an inner product, we write ||u|| = v/(u, u), and call this the norm of u.

We say that u is a unit vector if ||u]| = 1.

We say that u and v are orthogonal if {u,v) = 0.



Other fields



Other fields

Remark ?77:



Other fields

Remark ?7: Unlike most of the other things we have done, this does not
immediately generalise to fields K other than R.



Other fields

Remark ?7: Unlike most of the other things we have done, this does not
immediately generalise to fields K other than R. The reason is that axiom (d)
involves the condition (u,u) >0



Other fields

Remark ?7: Unlike most of the other things we have done, this does not
immediately generalise to fields K other than R. The reason is that axiom (d)
involves the condition (u, u) > 0, and in an arbitrary field K (such as Z/5, for
example) we do not have a good notion of positivity.



Other fields

Remark ?7: Unlike most of the other things we have done, this does not
immediately generalise to fields K other than R. The reason is that axiom (d)
involves the condition (u, u) > 0, and in an arbitrary field K (such as Z/5, for
example) we do not have a good notion of positivity.

Moreover, all our examples will rely heavily on the fact that x> > 0 for all
x €R



Other fields

Remark ?7: Unlike most of the other things we have done, this does not
immediately generalise to fields K other than R. The reason is that axiom (d)
involves the condition (u, u) > 0, and in an arbitrary field K (such as Z/5, for
example) we do not have a good notion of positivity.

Moreover, all our examples will rely heavily on the fact that x> > 0 for all
x € R, and of course this ceases to be true if we work over C.



Other fields

Remark ?7: Unlike most of the other things we have done, this does not
immediately generalise to fields K other than R. The reason is that axiom (d)
involves the condition (u, u) > 0, and in an arbitrary field K (such as Z/5, for
example) we do not have a good notion of positivity.

Moreover, all our examples will rely heavily on the fact that x> > 0 for all
x € R, and of course this ceases to be true if we work over C. We will see in
Section ?? how to fix things up in the complex case.
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The standard inner product on R”

(@) (u+v,w) = (u,w) + {v,w) (b) (tu, v) = t{u, v)
(c) (u,v) = (v,u) (d) (u,u) >0, equality iff u=0

Example ??: We can define an inner product on R” by

X1 Y1 n
<|:E:|,|:E:|>:ZXi}/i:X1y1+X2y2+"'+Xn)/n~

Xn Yn i=1

Properties (a) to (c) are obvious. For property (d), note that if
u= [ul,...,u,,]T € R" then

<u,u):uf—|—u§+-~-—|—ui.

All the terms in this sum are at least zero, so the sum must be at least zero.
Moreover, there can be no cancellation, so the only way that (u,u) can be zero
is if all the individual terms are zero, which means ts =, =--- = u, =0, so
u = 0 as a vector.



Inner products and matrix multiplication



Inner products and matrix multiplication

Remark ??: If x,y € R" then we can regard x and y as n x 1 matrices
sy g y



Inner products and matrix multiplication

Remark ?7: If x,y € R" then we can regard x and y as n x 1 matrices, so x"
is a 1 X n matrix



Inner products and matrix multiplication

Remark ?7: If x,y € R" then we can regard x and y as n x 1 matrices, so x"
is a 1 X n matrix, so xTy isa 1 x 1 matrix



Inner products and matrix multiplication

Remark ?7: If x,y € R" then we can regard x and y as n x 1 matrices, so x"
is a 1 X n matrix, so xTy is a 1 x 1 matrix, or in other words a number.



Inner products and matrix multiplication

Remark ?7: If x,y € R" then we can regard x and y as n x 1 matrices, so x"
is a 1 X n matrix, so xTy is a 1 x 1 matrix, or in other words a number. This
number is just (x,y).



Inner products and matrix multiplication

Remark ?7: If x,y € R" then we can regard x and y as n x 1 matrices, so x"
is a 1 X n matrix, so xTy is a 1 x 1 matrix, or in other words a number. This
number is just (x,y). This is most easily explained by example: in the case

n =4 we have

x1T n n
[2] {ﬁ} =[x 2 s x] [ﬁ] = xy1 + xay2 + x3y3 + xaya = (X, y).

X4 ya Ya
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Inner products of physical vectors

Example ??7: Let U be the set of physical vectors, as in Example ?7. Given
u,v € U we can define
(u,v) =(length of u in miles) x (length of v in miles)x
cos( angle between u and v ).
This turns out to give an inner product on U. Of course we could use a

different unit of length instead of miles, and that would just change the inner
product by a constant factor.
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(@) (u+v,w) = (u,w) + {v,w) (b) (tu, v) = t{u, v)
(c) (u,v) = (v,u) (d) (u,u) >0, equality iff u =0

Example ??:  We can define an inner product on CJ[0, 1] by

(u,v) = /O V() dx.

Properties (a) to (c) are obvious. For property (d), note that if u € C[0, 1] then

(uyu) = /01 u(x)? dx

As u(x)? > 0 for all x, we have (u,u) > 0.

If (u, u) = 0 then the area between the x-axis and the graph of u(x)? is zero,
so u(x)? must be zero for all x, so u = 0 as required.

(There is a more careful proof in the notes.)
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(@) (u+v,w) = (u,w) + {v,w) (b) (tu, v) = t{u, v)
(c) (u,v) = (v,u) (d) (u,u) >0, equality iff u =0

Example ??: We can define an inner product on the space M,R by
(A, B) = trace(AB).
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Consider for example the case n = 3, so a= [321 a) a3 byy byy b3
a31 332 233 b3y bso b33
SO
+ [211 2122137 [ b11 b2 by
AB' = | 221 322 223 | | byp byp b3y | =
231232 233 | | by3 bp3 b3z
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a31 b1y +agobio+azzby3 a3y bpy +agabontagzboz a31b31 +a3zb32+a33b33

a11b11 + a12b1p + a13b13+ 3.3
so (A, B) = trace(ABT) = ap1bpy + appbpp + apzbpz+ = Z Z ajjbjj -
a31b31 + a3pb3n + a33b33 i=1j=1

In other words (A, B) is the sum of the entries of A multiplied by the

corresponding entries in B. Thus, if we identify M,R with R"Z, our inner
2

product on M,R corresponds to the standard inner product on R" .
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Example ??: For any a < b we can define an inner product (-, -)[s,s ON
R[x]<2 by
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Example ??: For any a < b we can define an inner product (-, -)[s,s ON
R[x]<2 by

b
(U, V)[ap) = / u(x)v(x) dx.
a
In particular, we have
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Another example

Example ??: Let V be the set of functions of the form p(x)e‘x2/2, where
p(x) is a polynomial. For example, the function f(x) = (x* — x)e’x2/2, shown

in the graph below, is an element of V:

We can define an inner product on V by (f,g) = [*°_f(x)g(x) dx

Note that this only works because of the special form of the functions in V. For
most functions f and g that you might think of, the integral [*_f(x)g(x) dx

- . . 2
will give an infinite or undefined answer. However, the function e decays
very rapidly to zero as |x| tends to infinity, and one can check that this is
enough to make the integral well-defined and finite when f and g are in V.



In fact, we have the formula
oo
2 2 2
<Xne x/2,Xme x/2>:/ Xn+me ** dx
— 00

2nFm ((n+m)/2)!
0 if n+ m is odd

{ﬁ _Em)l i 1 m is even
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If v and w are vectors in R? or R®, you should be familiar with the fact that
(v, w) = ||v[| [lw]| cos(6),
where 0 is the angle between v and w.

In particular, as the cosine lies between —1 and 1, we see that
(v, w) | < lv]] [|wl].

We would like to extend all this to arbitrary inner-product spaces.
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Theorem 77:
Let V be an inner product space over R, and let v and w be elements of V.
Then [{v,w)| < ||v|| ||w||, with equality iff v and w are linearly dependent.

Proof: We may assume w # 0 (otherwise everything is trivial).

For any real numbers s and t, we have
0 < llsv+ twl? = (sv+ tw, sv + tw) = s2(v, v) +st(v, w) + stw, v) + £ (w, w) =

s2|v]12 + 2st(v, w) + £2||w]2.
Now take s = (w, w) = ||w|* and t = —(v, w). The above inequality gives
0 < Qwl*Ivii? = 2lwli® (v, w)? + (v, w)2{Iwli? = [IwliPwli? v = (v, w)?).

We have assumed that w # 0, so ||w]||?> > 0. We can thus divide by ||w|/* and
rearrange to see that (v, w)? < ||v||?||w]|]. It follows that |(v,w)| < ||v||||w||
as claimed.



The Cauchy-Schwartz inequality

s = [wlf? t=—(v,w) lIsv + tw[® = wlP(lwl*[lv]]* = (v, w)?)




The Cauchy-Schwartz inequality

s = [wlf? t=—(v,w) lIsv + tw[® = wlP(lwl*[lv]]* = (v, w)?)

If we have equality (i.e. |{v, w)| = ||v]||||w||) then our calculation shows that
lsv 4 tw|* = 0, so sv + tw = 0.



The Cauchy-Schwartz inequality

s = [wlf? t=—(v,w) lIsv + tw[® = wlP(lwl*[lv]]* = (v, w)?)

If we have equality (i.e. |{v, w)| = ||v]||||w]||) then our calculation shows that
lsv 4 tw|* = 0, so sv + tw = 0. Here s = ||w||> > 0, so we have a nontrivial
linear relation between v and w



The Cauchy-Schwartz inequality

s = [wlf? t=—(v,w) lIsv + tw[® = wlP(lwl*[lv]]* = (v, w)?)

If we have equality (i.e. |{v, w)| = ||v]||||w]||) then our calculation shows that
lsv 4 tw|* = 0, so sv + tw = 0. Here s = ||w||> > 0, so we have a nontrivial
linear relation between v and w, so they are linearly dependent.



The Cauchy-Schwartz inequality

s = |lw|? t=—(v,w) lIsv + twl|* = [[w]([[w]*[IvI* = (v, w)?)

If we have equality (i.e. |{v, w)| = ||v]||||w]||) then our calculation shows that
lsv 4 tw|* = 0, so sv + tw = 0. Here s = ||w||> > 0, so we have a nontrivial
linear relation between v and w, so they are linearly dependent.

Conversely, suppose we start by assuming that v and w are linearly dependent.



The Cauchy-Schwartz inequality

s = |lw|? t=—(v,w) lIsv + twl|* = [[w]([[w]*[IvI* = (v, w)?)

If we have equality (i.e. |{v, w)| = ||v]||||w]||) then our calculation shows that
lsv 4 tw|* = 0, so sv + tw = 0. Here s = ||w||> > 0, so we have a nontrivial
linear relation between v and w, so they are linearly dependent.

Conversely, suppose we start by assuming that v and w are linearly dependent.
As w # 0, this means that v = Aw for some A € R.



The Cauchy-Schwartz inequality

s = |lw|? t=—(v,w) lIsv + twl|* = [[w]([[w]*[IvI* = (v, w)?)

If we have equality (i.e. |{v, w)| = ||v]||||w]||) then our calculation shows that
lsv 4 tw|* = 0, so sv + tw = 0. Here s = ||w||> > 0, so we have a nontrivial
linear relation between v and w, so they are linearly dependent.

Conversely, suppose we start by assuming that v and w are linearly dependent.
As w # 0, this means that v = Aw for some X € R. It follows that

2
(v,w) = Allw||



The Cauchy-Schwartz inequality

s = |lw|? t=—(v,w) lIsv + twl|* = [[w]([[w]*[IvI* = (v, w)?)

If we have equality (i.e. |{v, w)| = ||v]||||w]||) then our calculation shows that
lsv 4 tw|* = 0, so sv + tw = 0. Here s = ||w||> > 0, so we have a nontrivial
linear relation between v and w, so they are linearly dependent.

Conversely, suppose we start by assuming that v and w are linearly dependent.
As w # 0, this means that v = Aw for some X € R. It follows that
(vow) = A|wlf?, so [{v,w)]| = [All|w]*.




The Cauchy-Schwartz inequality

s = |lw|? t=—(v,w) lIsv + twl|* = [[w]([[w]*[IvI* = (v, w)?)

If we have equality (i.e. |{v, w)| = ||v]||||w]||) then our calculation shows that
lsv 4 tw|* = 0, so sv + tw = 0. Here s = ||w||> > 0, so we have a nontrivial
linear relation between v and w, so they are linearly dependent.

Conversely, suppose we start by assuming that v and w are linearly dependent.
As w # 0, this means that v = Aw for some X € R. It follows that

(v,w) = X|w]|]?, so |(v,w)|| = |\|||w]|]>. On the other hand, we have

VIl = [Allwl]




The Cauchy-Schwartz inequality

s = |lw|? t=—(v,w) lIsv + twl|* = [[w]([[w]*[IvI* = (v, w)?)

If we have equality (i.e. |{v, w)| = ||v]||||w]||) then our calculation shows that
lsv 4 tw|* = 0, so sv + tw = 0. Here s = ||w||> > 0, so we have a nontrivial
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Conversely, suppose we start by assuming that v and w are linearly dependent.
As w # 0, this means that v = Aw for some X € R. It follows that
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s = |lw|? t=—(v,w) lIsv + twl|* = [[w]([[w]*[IvI* = (v, w)?)

If we have equality (i.e. |{v, w)| = ||v]||||w]||) then our calculation shows that
lsv 4 tw|* = 0, so sv + tw = 0. Here s = ||w||> > 0, so we have a nontrivial
linear relation between v and w, so they are linearly dependent.

Conversely, suppose we start by assuming that v and w are linearly dependent.
As w # 0, this means that v = Aw for some X € R. It follows that

(v,w) = X|w|]?, so |(v,w)|| = |A|||w]|]>. On the other hand, we have

vl = IAllwll, so [[v]| [[w]l = |M|[|w]|?, which is the same.
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Example ??: We claim that for any vector x € R", we have

Ix1 4+ xa| < Vx4 xR

To see this, use the standard inner product on R”, and consider the vector
e=[1,1,...,1]". We have

The Cauchy-Schwartz inequality therefore tells us that
b+ xal = [(x, )]
< Ixllllell = Vay/x2 + - + X2,

as claimed.
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We claim that for any continuous function f: [0,1] — R we have

8 1 2
< 1/1—51/f0 f(x)* dx.
Indeed, we can define an inner product on C[0,1] by (u,v) = fol u(x)v(x) dx.

We then have ||f]| = 1/ [} f(x)? dx and
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fol(l - x3)f(x) dx’ < \/%q/fol f(x)? dx as claimed.
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(a) trace(A)? < ntrace(AAT), with equality iff A is a multiple of the identity.

(b) |trace(A?)| < trace(AAT), with equality iff A is either symmetric or
antisymmetric.
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(b) Now instead apply the inequality to A and A", noting that
|All = ||AT|| = \/trace(AAT) and (A, A7) = trace(AATT) = trace(A?).
The conclusion is that | trace(A?)| < \/trace(AAT)/trace(AAT), which
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A, say AT = MA for some . This means that A = ATT = \AT = \2A,
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then AT = A and A is symmetric




Examples with matrices

Let A be a nonzero n x n matrix over R. We claim that

(a) trace(A)? < ntrace(AAT), with equality iff A is a multiple of the identity.

(b) |trace(A?)| < trace(AAT), with equality iff A is either symmetric or
antisymmetric.

In both cases we use the inner product (A, B) = trace(AB”) on M,R and the

Cauchy-Schwartz inequality.

(b) Now instead apply the inequality to A and A", noting that
|All = ||AT|| = \/trace(AAT) and (A, A7) = trace(AATT) = trace(A?).
The conclusion is that | trace(A?)| < \/trace(AAT)/trace(AAT), which
gives | trace(A?)| < trace(AAT). This is an equality iff A7 is a multiple of
A, say AT = MA for some . This means that A = ATT = \AT = \2A,
and A # 0, so this means that A\ = 1, or equivalently A = +1. If A =1
then AT = A and A is symmetric; if A= —1 then AT = —Aand A'is
antisymmetric.
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so (A, B)/(JIAllB|]) = 4/(4v2) = 1/v/2 = cos(w/4). The angle between A
and B is thus 7 /4.
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Definition ??: Let V be a vector space with inner product, and let W be a
subspace. We then put

W ={veV|{v,w)=0forall we W}

This is called the orthogonal complement (or annihilator) of W. We say that
W is complemented if W + W+ = V.

Lemma ??: We always have W N wt =o. (Thus, if W is complemented, we
have V = W @ W)

Proof: Suppose that v € W N W™, As v € W, we have (v, w) = 0 for all
w € W. As v € W, we can take w = v, which gives ||v||* = (v, v) = 0.



Orthogonal complements

Definition ??: Let V be a vector space with inner product, and let W be a
subspace. We then put

W ={veV|{v,w)=0forall we W}
This is called the orthogonal complement (or annihilator) of W. We say that

W is complemented if W + W+ = V.

Lemma ??: We always have W N wt =o. (Thus, if W is complemented, we
have V = W @ W)

Proof: Suppose that v € W N W™, As v € W, we have (v, w) = 0 for all
we W. As v € W, we can take w = v, which gives ||v||*> = (v, v) = 0. This
implies that v = 0, as required.
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Orthogonal sequences

Definition ??: Let V be a vector space with inner product. We say that a
sequence V = vi,..., v, of elements of V is orthogonal if we have (v;, v;) =0
for all i # j. We say that the sequence is strictly orthogonal if it is orthogonal,
and all the elements v; are nonzero. We say that the sequence is orthonormal if
it is orthogonal, and also (v;, v;) =1 for all i.

Remark ?7: If V is a strictly orthogonal sequence then we can define an
orthonormal sequence V1,..., U, by i = vi/||vi|.
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Orthonormal examples

Example ??: The standard basis ey, ..., e, for R" is an orthonormal sequence.

Example ??: Let a, b and ¢ be the vectors joining the centre of the earth to
the North Pole, the mouth of the river Amazon, and the city of Mogadishu.
These are elements of the inner product space U discussed in Examples ??
and ??. Then a,b, c is an orthogonal sequence, and a/4000, b/4000, c/4000 is
an orthonormal sequence.

(Of course, these statements are only approximations. You can take it as an
exercise to work out the size of the errors involved.)
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Pythagoras

Lemma ??: Let w1,..., Vv, be an orthogonal sequence, and put
v=wvi+---+ v, Then

vl = VIvl> + -+ [[val 2
Proof: We have

IIvI[® = Zv,,Zvj => (vi,y).
ij

Because the sequence is orthogonal, all terms in the sum are zero except those
for which i = j. We thus have

IvI® = {vi,w) Z vil|.

i

We can now take square roots to get the equation in the lemma.
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Lemma ??: Any strictly orthogonal sequence is linearly independent.

Proof: Let V = vi,..., v, be a strictly orthogonal sequence, and suppose we
have a linear relation A\1vy + -+ - 4+ Apv, = 0. For each i it follows that

<V,‘,)\1V1 —+ -4 /\,,v,,> = <V,',0> =0.
The left hand side here is just
A1 (vi, vi) + X2 (vi, va) + -+ An(Vi, Vi)

Moreover, the sequence V is orthogonal, so the inner products (v;, v;) are zero
unless j = i, so the only nonzero term on the left hand side is A\;(vi, v;), so we
conclude that Ai(v;, v;) = 0. Moreover, the sequence is strictly orthogonal, so
vi # 0, so (vj, v;) > 0. It follows that we must have A\; = 0, so our original
linear relation was the trivial one. We conclude that V is linearly independent,
as claimed.
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Orthogonal projections

Proposition ??: Let V be a vector space with inner product, and let W be a
subspace. Suppose that we have a strictly orthogonal sequence

W = wi,...,w, that spans W, and we define
(v, wm) (v, wp)
m(v) = ~——Lwg + -+ ~2Fy
W= Ty ™ (o o)

(for all v € V). Then m(v) € W and v — m(v) € W™, so
v=m(v)+(v—mn(v)) € W+ W=, In particular, we have W + W+ =V, so
W is complemented.

Remark ?7: If the sequence W is orthonormal, then of course we have
(wk, wk) = 1 and the formula reduces to

m(v) = {v,wi)wi + ... + (v, Wp)Wp.
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Proof: First note that the coefficients \j = (v, w;)/(w;, w;) are just numbers,
so the element w(v) = Aiwi + ... + Apw, lies in the span of wi,. .., w,, which
is W. Next, we have

<W,',7T(V)> = )\1<W,', W1> 4+ ...+ )\,‘(W,', W,'> 4+ ...+ )\,,(W,‘, Wp>.

As the sequence W is orthogonal, we have (w;, w;) =0 for j # i, so only the
i"th term in the above sum is nonzero. This means that

(wi, m(v)) = Ai{wi, wi) = %Wﬁ wi) = (v, wi) = (wj, v),
so (wi, v —m(v)) = (wi, v) — (w;, m(v)) = 0. As this holds for all i, and the
elements w; span W, we see that (w,v — w(v)) = 0 for all w € W, or in other
words, that v — 7(v) € W™, as claimed.
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subspace. Suppose that we have a strictly orthogonal sequence

W = wi,...,w, that spans W, and we define
(v, wm) (v, wp)
m(v) = ~——Lwg + -+ ~2Fy
W= Ty ™ (o o)

(for all v € V). Then m(v) € W and v — m(v) € W™, so
v=m(v)+(v—mn(v)) € W+ W=, In particular, we have W + W+ =V, so
W is complemented.

Remark ?7: If the sequence W is orthonormal, then of course we have
(wk, wk) = 1 and the formula reduces to

m(v) = {v,wi)wi + ... + (v, Wp)Wp.
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also that y € W (because 7(v) € W and w € W) and x € W™, so
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Proposition ??: Let VW and 7 be as in Proposition ??. Then 7(v) is the
point in W that is closest to v.

Proof: Put x = v — 7(v), so x € W+, The distance from v to m(v) is just
[lv — m(v)]| = ||x||. Now consider another point w € W, with w # 7(v). The
distance from v to w is just ||v — w||; we must show that this is larger than
Ix]]. Put y = m(v) — w, and note that v — w = 7(v) + x — w = x + y. Note
also that y € W (because 7(v) € W and w € W) and x € W™, so

(x,y) = 0= (y,x). Finally, note that y # 0 and so ||y|| > 0. It follows that

Iv—wl?=lx+ylP = (x+y,x+y)
= (x) + () Ay, x) +{y,y)
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Theorem ?7: Let V be a vector space with inner product, and let
U = uw,...,u, be a linearly independent list of elements of V.

Then there is a strictly orthogonal sequence V = w1, ..., v, such that
span(vi,...,vi) =span(ui,...,u;) for all i.

Proof: The sequence W is generated by the Gram-Schmidt procedure, which
we now describe.

Put U; = span(us, ..., u;). We will construct the elements v; by induction.
For the initial step, we take vi = u1, so (v1) is an orthogonal basis for Us.

Suppose we have constructed an orthogonal basis vi,...,vi_1 for Ui_1.
Proposition ?? then tells us that U;_1 is complemented, so V = U,-L_l + Ui—1.
In particular, we can write u; = v; + w; with v; € U,-fl and w; € U;i_1.
Explicitly, the formulae are
— (ui, VJ'>

w; = VY Vi = uj — w;.

= vy v)



The Gram-Schmidt procedure

Uk = span(u, . . ., uk) Vi,...,Vi—1 an orthogonal basis for U;_1
1
ui=vi+w vi € U2, w; € Uiz




The Gram-Schmidt procedure

Uk = span(u, . . ., uk) Vi,...,Vi—1 an orthogonal basis for U;_1
1
ui=vi+w vi € U2, w; € Uiz

As v; € U,-Jll and vi,...,vi_1 € Ui_1



The Gram-Schmidt procedure

Uk = span(u, . . ., uk) Vi,...,Vi—1 an orthogonal basis for U;_1
1
ui=vi+w vi € U2, w; € Uiz

Asvi € Ut;and wvi,...,vi_1 € Ui_1, we have (v, v;) =0 for j < i



The Gram-Schmidt procedure

Uk = span(u, . . ., uk) Vi,...,Vi—1 an orthogonal basis for U;_1
ui=vi+w vi e Ur, w; € Uiz

Asvi € Ut;and wvi,...,vi_1 € Ui_1, we have (v, v;) =0 for j < i, so
(va,...,v) is an orthogonal sequence.

Next, note that U; = U;—1 + Ru;.



The Gram-Schmidt procedure

Uk = span(u, . . ., uk) Vi,...,Vi—1 an orthogonal basis for U;_1
ui=vi+w vi e Ur, w; € Uiz

Asvi € Ut;and wvi,...,vi_1 € Ui_1, we have (v, v;) =0 for j < i, so
(va,...,v) is an orthogonal sequence.

Next, note that U; = U;—1 + Ru;. As u; = v; + w; with w; € U;_1, we see that
this is the same as U;_1 + Rv;.



The Gram-Schmidt procedure

Uk = span(u, . . ., uk) Vi,...,Vi—1 an orthogonal basis for U;_1
ui=vi+w vi e Ur, w; € Uiz

Asvi € Ut;and wvi,...,vi_1 € Ui_1, we have (v, v;) =0 for j < i, so
(va,...,v) is an orthogonal sequence.

Next, note that U; = U;—1 + Ru;. As u; = v; + w; with w; € U;—_1, we see that
this is the same as U;—1 + Rv;. By our induction hypothesis, we have
Ui—1 = span(vi, ..., vi—1)



The Gram-Schmidt procedure
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Uk = span(u, . . ., uk) Vi,...,Vi—1 an orthogonal basis for U;_1
ui=vi+w vi e Ur, w; € Uiz

Asvi € Ut;and wvi,...,vi_1 € Ui_1, we have (v, v;) =0 for j < i, so
(va,...,v) is an orthogonal sequence.

Next, note that U; = U;—1 + Ru;. As u; = v; + w; with w; € U;—_1, we see that
this is the same as U;—1 + Rv;. By our induction hypothesis, we have

Ui—1 = span(wvi, ..., vi—1), and it follows that

U= Ui—1 +Rv; =span(wvi, ..., v).

This means that vi, ..., v; is a spanning set of the i-dimensional space Uj, so it
must be a basis. O
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Corollary ??: If V and U are as above, then there is an orthonormal sequence

V1, ..., Vn with span(¥1, ..., %) = span(u1, ..., u;) for all i.
Proof: Just find a strictly orthogonal sequence vi,..., v, as in the

Proposition, and put ¥ = v;/||vi|| as in Remark ?7?.
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0
0
0l .
1
1

1 0
0 i
up = uy = uz =
1 0 2 0 3
0 0
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Example ??: Consider the following elements of R®:
0
0
0l .
1
1

1 0

; :
up = upy = uz =
1 0 2 0 3

0 0

We apply the Gram-Schmidt procedure to get an orthogonal basis for the
space U = span(us, uo, u3, ug). We have vi = 1y = [11000]", s0 (v1,v1) =2
and (w2, v1) = 1. Next, we have
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0
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Example ??: Consider the following elements of R®:
0
0
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1
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1 0
0 i
up = uy = uz =
1 0 2 0 3
0 0

We apply the Gram-Schmidt procedure to get an orthogonal basis for the
space U = span(us, uo, u3, ug). We have vi = 1y = [11000]", s0 (v1,v1) =2
and (w2, v1) = 1. Next, we have
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0
1
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Example ??: Consider the following elements of R®:
0
0
0l .
1
1

1 0
0 i
up = uy = uz =
1 0 2 0 3
0 0

We apply the Gram-Schmidt procedure to get an orthogonal basis for the
space U = span(us, uo, u3, ug). We have vi = 1y = [11000]", s0 (v1,v1) =2
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It follows that (v2, v») = 3/2 and (us, vo) = 1, whereas (usz, vi) = 0.
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Example ??: Consider the following elements of R®:
0
0
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1
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1 0
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up = uy = uz =
1 0 2 0 3
0 0

We apply the Gram-Schmidt procedure to get an orthogonal basis for the
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Example ??: Consider the following elements of R®:
0
0
0l .
1
1

uy =

1 0
0 i
up = uy = uz =
1 0 2 0 3
0 0

We apply the Gram-Schmidt procedure to get an orthogonal basis for the
space U = span(us, uo, u3, ug). We have vi = 1y = [11000]", s0 (v1,v1) =2
and (w2, v1) = 1. Next, we have

(up, v1) (1J 1 % 71])22
1-v1 0 0 0

0

0
0
1
1
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It follows that (v2, vo) = 3/2 and (us, vo) = 1, whereas (uz, vi) = 0. It follows
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1 —1/2 1/3
1 1/2 -1/3
vi=]0 V2 = 1 v = 1/3
0 0 1
0 0 0

It now follows that (vs, vs) = 4/3 and (us, v3) = 1, whereas
<U4, V1> = <U4, V2> =0.
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1 —1/2 1/3
1 1/2 -1/3
vi=]0 V2 = 1 v = 1/3
0 0 1
0 0 0

It now follows that (vs, vs) = 4/3 and (us, v3) = 1, whereas
(ua, vi) = (ua, vo) = 0. It follows that
—1/4
1 j{/33 | e
- s 1{3 =|-1/4

0

vg = ug —

(U4,V1)V B <“47‘/2>V _ ("4«\/3)‘/ _
(vi,v1) (va, v2) (v3,v3)
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1 —1/2 1/3
1 1/2 -1/3
vi=]0 V2 = 1 v = 1/3
0 0 1
0 0 0

It now follows that (vs, vs) = 4/3 and (us, v3) = 1, whereas
(ua, vi) = (ua, vo) = 0. It follows that
1/3 —1/4
1| -1/3 1/4
}—[1/3} —1/4
1
0

(ug, vy) (ug, v2) (ug, v3) [
V4 = uy — v — vy — v =

(vi,v1) (va, v2) (v3,v3)

HHooO

4/3 1/4
1

In conclusion, we have

1 —1/2 1/3 —1/4
1 1/2 —1/3 1/4
Vi= |0 V2 = 1 V3= | 1/3 Va = | —1/4
g 0 1 1/4
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(p,q) = fil p(x)q(x) dx. We will apply the Gram-Schmidt procedure to the
usual basis 1, x, x* to get an orthonormal basis for V. We start with

vi = u1 = 1, and note that (vi,v1) = fil 1dx = 2. We also have

(x,m) = [1 xdx = [x2/2]171 =0, so x is already orthogonal to vi. It follows
that



A polynomial example

Example ??: Consider the space V = R[x]<> with the inner product

(p,q) = fil p(x)q(x) dx. We will apply the Gram-Schmidt procedure to the
usual basis 1, x, x* to get an orthonormal basis for V. We start with

vi = u1 = 1, and note that (vi,v1) = fil 1dx = 2. We also have

(x,m) = [1 xdx = [x2/2]171 =0, so x is already orthogonal to vi. It follows
that

<X7 V1>
Vo =X— ———V] = X
(vi,v1)

and thus that (v, v) = [1, x> dx = [x3/3]1_1 =2/3.
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A polynomial example

Example ??: Consider the space V = R[x]<> with the inner product

(p,q) = fil p(x)q(x) dx. We will apply the Gram-Schmidt procedure to the
usual basis 1, x, x* to get an orthonormal basis for V. We start with

vi = u1 = 1, and note that (vi,v1) = fil 1dx = 2. We also have

(x,m) = [1 xdx = [x2/2]171 =0, so x is already orthogonal to vi. It follows
that

<X7 V1>
Vo =X— 77V =X
(vi,v1)

and thus that (v, v,) = fi1x2 dx = [x3/3]1_1 =2/3. We also have
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A polynomial example

Example ??: Consider the space V = R[x]<> with the inner product

(p,q) = fil p(x)q(x) dx. We will apply the Gram-Schmidt procedure to the
usual basis 1, x, x* to get an orthonormal basis for V. We start with

vi = u1 = 1, and note that (vi,v1) = fil 1dx = 2. We also have

(x,m) = [1 xdx = [x2/2]171 =0, so x is already orthogonal to vi. It follows
that

<X7 V1>
Vo =X— 77V =X
(vi,v1)

and thus that (v, v,) = fi1x2 dx = [x3/3]1_1 =2/3. We also have

I

1 1
<x2,v1>:/ x*dx =2/3 (X%, va) :/ x*dx =0
—1 —1

le]

2 2
Vs = X2 — <X’V1>V1— (X,v2>v2:X2_%231:X2_1/3.




A polynomial example

=1 Vo = X vi=x"—1/3

We find that

1 1 1
(v3, v3) :/ (x*—1/3) dx :/ x* —2x + dx = [1x5 — 7X + Xi| = 8/45.
-1

-1
The required orthonormal basis is thus given by
n=w/nl=1/v2
V2 = wvo/||va|l = V/3/2x
03 = v3/|lvs|| = \/45/8(x> — 1/3).
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matrices of trace zero. We will find the matrix @ € V closest to P.
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. 111 .
Example ?7: Consider P = 00091, and let V be the space of 3 X 3 symmetric
matrices of trace zero. We will find the matrix @ € V closest to P.

The general form of a matrix in V is A = [ZZ . d] . Thus, if we put
c e —a—

0 010 001 00 0 000
0 } AZ:[IOO} A3:[000] A4={01 0 } A5:[001]
—1 000 100 00—1 010

coo

w3
1= o
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. 111 .
Example ?7: Consider P = 00091, and let V be the space of 3 X 3 symmetric
matrices of trace zero. We will find the matrix @ € V closest to P.
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The general form of a matrix in V is A = [b d
c e
10 0 010 001 00 0 000
A1:[00 0} AZ:I:IOO} A3:[000] A4:[01 0} A5:[001]y
00—1 000 100 00—1 010

we see that an arbitrary element A € V can be written uniquely as
aAi1 + bA; + cAs + dAs + eAs
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Example ?7: Consider P = 00091, and let V be the space of 3 X 3 symmetric
matrices of trace zero. We will find the matrix @ € V closest to P.

. d] . Thus, if we put

. . ab
The general form of a matrix in V is A = [b d
c e
10 0 010 001 00 0 000
A1:[00 0} AZ:I:IOO} A3:[000] A4:[01 0} A5:[001]y
00—1 000 100 00—1 010

we see that an arbitrary element A € V can be written uniquely as
aAi1 + bAz + cAs + dAs + €As, so Ai, ..., As is a basis for V.



A matrix example

. 111 .
Example ?7: Consider P = 00091, and let V be the space of 3 X 3 symmetric
matrices of trace zero. We will find the matrix @ € V closest to P.

The general form of a matrix in V is A = [ZZ . d] . Thus, if we put
c e

100 010 001 00 0 000
A1:[OO 0 } AZ:[IOO} A3:[000] A4:[01 0 } A5:[001]y
00—1 000 100 00—1 010

we see that an arbitrary element A € V can be written uniquely as
aAi1 + bAz + cAs + dAs + €As, so Ai, ..., As is a basis for V.

It is not far from being an orthonormal basis: we have (A;, A;) =2 for all i
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. 111 .
Example ?7: Consider P = [8 0 8]' and let V be the space of 3 X 3 symmetric
matrices of trace zero. We will find the matrix @ € V closest to P.

The general form of a matrix in V is A = [ZZ . d] . Thus, if we put
c e

100 010 001 00 0 000
A1:[OO 0 } AZ:[IOO} A3:[000] A4:[01 0 } A5:[001]y
00—1 000 100 00—1 010

we see that an arbitrary element A € V can be written uniquely as
aAi1 + bAx + cAs + dAs + €As, so Ax, ..., As is a basis for V.

It is not far from being an orthonormal basis: we have (A;, A;) = 2 for all i,
and when i # j we have (A;, A;) = 0 except for the case (A1, As) = 1.
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10 00
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00 10

The Gram-Schmidt procedure works out as follows:
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1= 1o
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10 00
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00 10

The Gram-Schmidt procedure works out as follows:

By = A1
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1 00 0 00
AI:[O 0 0} A5:[00
0 00 —1 01

oro

10 00
oo} A3:[00
00 10

The Gram-Schmidt procedure works out as follows:

By = A
Ay, B
(A2, B1)

By = Ay —
(B1, B1)
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LA il i
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1 00 0 00
AI:[O 0 0} A5:[00
0 00 —1 01

oro

10 00
oo} A3:[00
00 10

The Gram-Schmidt procedure works out as follows:
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Ay, B
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By = Ay —
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] a- (N3] a- (3] a-[393] - [38]
—1 2 0 3 100 4 -1 5 010

coo
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1= 1o

oro

1 0
0 0
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The Gram-Schmidt procedure works out as follows:

By = A
Ay, B
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LA il i

coo

00 0 00
0 0} A5:[00
00-1 01

oro

1 10 00
Alz[o oo} A3:[oo
0 00 10

The Gram-Schmidt procedure works out as follows:

By = Ay
Ay, B
52:A27<2 Vg o
(B1, B1)
(A3, By) (A3, By)
PR G L VP - T _
(B1, By) (B, By)
As, Br) (A4, By) (A4, B3)
B4:A4—<41 R S

1 2 3
(By, By) (By, By) (B3, B3)
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10 0 010 001 00 0 000
Alz[ooo] Azz[loo} A3:[ooo} A4:[01 0} A5:[001}
00 -1 000 100 00—1 010
The Gram-Schmidt procedure works out as follows:
Bl = A
Ay, B
By = Ay — (A2, 1>B _
(B1, By)
Az, B Az, B
B3:A3—<3 1>B—<3 2) o
(B, By) (By, By)
A, B Ay, B: Ay, B 1
B = Ay — (Aq 1>Bl— (Aq 2>327 (Ag 3>B3:A4——Bl
(B, By) (By, By) (B3, B3) 2
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coo

A [1
=10
1= 1o

The Gram-Schmidt procedure works out as follows:

Bl = A
Ay, B
Bymny - L2 g
(B1, B1)
(A3, By) (A3, By)
B3 = A _ VPl g VB2 g = Az
(B1, By) (B, By)
As, Br) (Ag, Bo) (A4, B3) 1
B4:A4—<4 Vg Yoy b Ll
(By, By) (B, Bp) (B3, B3) 2

00 0 11100
[01 0}7—[000]
00—1 2 L00—1
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coo

A [1
=10
1= 1o

The Gram-Schmidt procedure

works out as follows:

Bl = A
Ay, B
Bymny - L2 g
(B1, B1)
(A3, By) (A3, Bp)
By=Ag — > Vg V82 p 4
(B1, By) (By, By)
As, Br) (Ag, Bo) (A4, B3) 1
54:4*<4157 4 2 g 4383:/-\47—81
(By, By) (By, By) (B3, B3) 2
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00—1 2 Loo— 0 0-1/2
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coo

A [1
=10
1= 1o

The Gram-Schmidt procedure

works out as follows:

By = A
Ay, B
By —ay— 2BV
(B1, B1)
(A3, By) (A3, Bp)
By=Ag — > Vg V82 p 4
(B1, By) (B, By)
As, Br) (Ag, Bo) (A4, B3) 1
Bp—ny - LBV CaBa)p CaB) o, lg
(By, By) (B, Bp) (B3, B3) 2
00 0 1710 0 —1/20 0
A2 - [
00—1 2 loo—1 0 0-1/2
(As, By) (As, By) (As, B3) (As, By)
Bs = Ag — - _ _
(By. By) (By, By) (B3, B3) (Ba, Bg)



A matrix example

10 0 010 001 00 0 000
Alz[ooo] AQ—[IOO} A37[000} A4:[01 0} A57[001}
00 —1 000 i00 001 010
The Gram-Schmidt procedure works out as follows:
Bl = A
Ay, B
By = Ay — ws = Ay
(B1, B1)
A3, B Az, B
B3:A—<3 1>B—<3 2>B:A3
(B1, By) (B, By)
Ay, B Ay, B Ay, B 1
B4:A4—<4 1>B—<4 2>Bi(4 3>B3:A4——Bl
(By, By) (B, Bp) (B3, B3) 2
00 0 17100 —1/20 0
:[010}77[000]: 0 1 0
00—1 2 loo—1 0 0-1/2
(As, By) (Ag, Bp) (As, B3) (As, By)
Bs = Ag — - - - = Ag.
(B, By) (By, By) (B3, B3) (By, By)
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We have || Bs]|



A matrix example
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ocor
coco

We have ||Bs|| = /3/2 and ||Bi|| = /2 for all other i.



A matrix example

1
0 001 —300
0] 33:[000] By4=| 010
0 100 0 o

coco

B [[1) 8] B {01
1= loo-1 2~ oo

We have ||Bs]| = \/3/2 and ||Bi|| = /2 for all other i. After noting that
(1/2)//3/2 = 1/v/6



A matrix example

1
0 001 —300
0] 33:[000] By4=| 010
0 100 0 o

coco

B [[1) 8] B {01
1= loo-1 2~ oo

We have ||Bs]| = \/3/2 and ||Bi|| = /2 for all other i. After noting that

(1/2)/+/3/2 = 1//6, it follows that the following matrices give an
orthonormal basis for V:
1
28 [

B =

coco

8} B
1 2 =

oro

03] &
00 3=

5l
-
5
-
5



A matrix example

B [é
17 o

coco

0 01
0] 52:[10
—1 00

We have ||Bs]| = \/3/2 and ||Bi|| = /2 for all other i. After noting that

(1/2)/+/3/2 = 1//6, it follows that the following matrices give an
orthonormal basis for V:

_ 1 7100 _ 1 70107 = 1 1001
BI:—[OOO} @:—[100} @:—[ooo}
V2 Loo -1 V2 Looo vz L1oo

. 1 [-100

Bp=—|020

M V6 [ 00-1



A matrix example

B [é
17 o

coco

0 01
0] 52:[10
—1 00

We have ||Bs]| = \/3/2 and ||Bi|| = /2 for all other i. After noting that

(1/2)/+/3/2 = 1//6, it follows that the following matrices give an
orthonormal basis for V:

_ 1 7100 _ 1 70107 = 1 1001
BI:—[OOO} @:—[100} B3-—[ooo}
V2 Loo -1 V2 Looo vz L1oo

. 1 [-100 5 1 7000

By=—|020 :—[001]

4 V6 [ 00-—1 5 v2 Lo1o
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A matrix example

1
10 0 010 001 -300 000
BI:[OOO] Bzz{mo] B3:{000] By=| 010 35:{001]
00-1 000 100 0 0-1 010
The closest point in V to Pis Q = E ) <B >>B,-.
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The closest pointin V to Pis Q = Zle <(g’BB"_)> B;.

The relevant inner products are (P, B1) = (P,By) = (P,B3) =1
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The closest pointin V to Pis @ =3, , <(;”§’i)> B;.

The relevant inner products are (P, B1) = (P, B,) = (P, B3) =1 and
(P,Bs) = —1/2 and (P, Bs) = 0.



A matrix example

-

ocor
coco

The closest pointin V to Pis @ =3, , <(;”§’i)> B;.

The relevant inner products are (P, B1) = (P, B,) = (P, B3) =1 and
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A matrix example

-

ocor
coco

The closest pointin V to Pis @ =3, , <(;”§’i)> B;.

The relevant inner products are (P, B1) = (P, B,) = (P, B3) =1 and
(P,Bs) = —1/2 and (P, Bs) = 0.

Also <B1, B1> = <Bz, Bz) = <B37 B3> =2 and <B4, B4> = 3/2, SO

0 1 B BB —1 2B 2/3 172 1/2
== ——ZBy=|1/2-1/3 o0
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We now discuss the analogue of inner products for complex vector spaces.

Given z = x + iy € C, we write Z for the complex conjugate, which is x — iy.

Definition ??: Let V be a vector space over C. A Hermitian form on V is a
rule that gives a number (u, v) € C for each u,v € V, such that:

(a) (u+v,w) = (u,w) + (v,w) for all u,v,w € V.
(b) (tu,v) =t(u,v) for all u,v € V and t € C.

(c) {u,v) ={v,u) for all u,v € V. In particular, by taking v = u we see that
(u, u) = (u, u), so (u, u) is real.

(d) For all u € V we have (u,u) > 0 (which is meaningful because
(u,u) € R), and (u, uy =0 iff u = 0.
Note that (b) and (c) together imply that (u, tv) = t{u, v).
Given an inner product, we will write |Ju|| = y/(u, u), and call this the norm of
u. We say that u is a unit vector if ||u|| = 1.
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The standard Hermitian form on C”

Example ??: We can define a Hermitian form on C" by
(u,v) = Vi + -+ - + Un Vs
This gives

2 2 2
[Jull™ = {u,0) = fun]” + -+ Jual".
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Hermitian adjoints

Definition ??: For any n x m matrix A over C, we let AT be the complex
conjugate of the transpose of A, so for example

[Li 2+ 3+f]T _ [3oied
atistioti] = [3TieTH] -

The above Hermitian form on C" can then be rewritten as

t

(u,v) = viu =ufv.
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Hermitian examples

Example ??:  We can define a Hermitian form on CJ[t] by

(F.g) = / F(£)a(t) dt.

This gives
1
IFIE = (F.F) = / () .

Example ??: We can define a Hermitian form on M,C by
(A, B) = trace(B'A). If we identify M,C with C" in the usual way, then this is
just the same as the Hermitian form in Example ?7?.



Results about Hermitian forms



Results about Hermitian forms

Let V be a vector space over C with a Hermitian form.



Results about Hermitian forms

Let V be a vector space over C with a Hermitian form.

Theorem ?? (The Cauchy-Schwartz inequality):
For v,w € V we have |(v,w)| < ||v|| ||w]




Results about Hermitian forms

Let V be a vector space over C with a Hermitian form.

Theorem ?? (The Cauchy-Schwartz inequality):
For v,w € V we have |(v,w)| < ||v|| ||w]|, with equality iff v and w are linearly

dependent over C. O




Results about Hermitian forms

Let V be a vector space over C with a Hermitian form.

Theorem ?? (The Cauchy-Schwartz inequality):
For v,w € V we have |(v,w)| < ||v|| ||w]|, with equality iff v and w are linearly
dependent over C. O

Lemma ??: Let v1,..., v, be an orthogonal sequence in V, and put
V=vi+ 4+ Vs



Results about Hermitian forms

Let V be a vector space over C with a Hermitian form.

Theorem ?? (The Cauchy-Schwartz inequality):
For v,w € V we have |(v,w)| < ||v|| ||w]|, with equality iff v and w are linearly
dependent over C. O

Lemma ??: Let v1,..., v, be an orthogonal sequence in V, and put
V=144 vy Then [vl| = v/l + -+ [vall”. O




Results about Hermitian forms

Let V be a vector space over C with a Hermitian form.

Theorem ?? (The Cauchy-Schwartz inequality):
For v,w € V we have |(v,w)| < ||v|| ||w]|, with equality iff v and w are linearly

dependent over C. O
Lemma ??: Let v1,..., v, be an orthogonal sequence in V, and put
V=144 vy Then [vl| = v/l + -+ [vall”. O

Proposition ??: Let W = wi,..., w, be an orthonormal sequence in V.



Results about Hermitian forms

Let V be a vector space over C with a Hermitian form.

Theorem ?? (The Cauchy-Schwartz inequality):
For v,w € V we have |(v,w)| < ||v|| ||w]|, with equality iff v and w are linearly

dependent over C. O
Lemma ??: Let v1,..., v, be an orthogonal sequence in V, and put

V=it +vo Then vl = v/l + -+ vl O
Proposition ??: Let W = w1, ..., w, be an orthonormal sequence in V. Then

for any v € V we have

p

2 2

M= AH
i=1



Results about Hermitian forms

Let V be a vector space over C with a Hermitian form.

Theorem ?? (The Cauchy-Schwartz inequality):
For v,w € V we have |(v,w)| < ||v|| ||w]|, with equality iff v and w are linearly

dependent over C. O
Lemma ??: Let v1,..., v, be an orthogonal sequence in V, and put

V=it +vo Then vl = v/l + -+ vl O
Proposition ??: Let W = w1, ..., w, be an orthonormal sequence in V. Then

for any v € V we have
P
2 2
M= AH
i=1

Moreover, this inequality is actually an equality iff v € span(WV). O
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Definition ??: Let V and W be real vector spaces with inner products (or
complex vector spaces with Hermitian forms). Let ¢: V — W and ¢p: W — V
be linear maps (over R or C as appropriate). We say that ¢ is adjoint to v if
we have

forallve Vand we W.
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Adjoints for matrices

This is essentially a basis-free formulation of the operation of transposing a
matrix, as we see from the following example.

Example ??: Let A be an n X m matrix over R, giving a linear map

éa: R™ — R" by ¢a(v) = Av. The transpose of A is then an m x n matrix A7,
giving a linear map ¢,7: R" — R™. We claim that ¢,7 is adjoint to ¢a. This
is easy to see using the formula (x,y) = xTy as in Remark ??. Indeed, we have

(@a(u), v) = (Au,v) = (Au) v =u"ATv = (u,ATv) = (u, g7 (v)),
as required.

Example ??: Let A be an n X m matrix over C, giving a linear map
éa: C™ — C" by ¢a(v) = Av. Let AT be the complex conjugate of A”. Then
@4t is adjoint to @a.



Cross products are anti self adjoint



Cross products are anti self adjoint

Fix a vector a = [a1, a2, a3]” € R®, and define a: R® — R3 by a(x) = a x x.



Cross products are anti self adjoint

Fix a vector a = [a1, a2, a3]” € R®, and define a: R® — R3 by a(x) = a x x.
Then

axx3—azxy Y1

(a(x),y) = <[33X17M] , [y2]>

ajXp—apxy 3



Cross products are anti self adjoint

Fix a vector a = [a1, a2, a3]” € R®, and define a: R® — R3 by a(x) = a x x.
Then

arX3y1 — asx
apxs— a3 " 2X3Y1 3x2y1+
(a(x),y) = (| ma—as |, [¥2|) = asxiys — aixsy2+
ajXp—apxy 3
aixays — ax1ys



Cross products are anti self adjoint

Fix a vector a = [a1, a2, a3]” € R®, and define a: R® — R3 by a(x) = a x x.

Then
axX3y1 — asx:
apxz—aszxy Y1 2 3y1 3 2y1+ alp X1 yi
(a(x),y) = (|asa—avs |, [¥2|) = asxiye — aixsys+ =det| 2%
ajxp—agxy 3 a3 X3 y3

aixXay3 — d2X1y3



Cross products are anti self adjoint

Fix a vector a = [a1, a2, a3]” € R®, and define a: R® — R3 by a(x) = a x x.
Then

axx3—azxy 1 22Xt axey1t ar X1 y1
(a(x), y) = <[83X1*a1><3] s [}’2 ]) = azxiyz — 31X3y2+ = det [32 x2 yz]
ajxp—agxy 3 a3 X3 y3
aixey3 — axXiys3

It follows that

(a(x),y) = det[a|x|y]



Cross products are anti self adjoint

Fix a vector a = [a1, a2, a3]” € R®, and define a: R® — R3 by a(x) = a x x.
Then

axx3—azxp Y1 a2X3y1 a3X2y1+ alp X1 yi
(a(x),y) = <[f} , M> — apays — avayt = det [ o yz]
ajxp—agxy 3 a3 X3 y3
dixXeys — axiys

It follows that

(a(x),y) = det[a|x|y] = — det[a]y|x]



Cross products are anti self adjoint

Fix a vector a = [a1, a2, a3]” € R®, and define a: R® — R3 by a(x) = a x x.
Then

axx3—azxp Y1 a2X3y1 a3X2y1+ alp X1 yi
(a(x),y) = <[f} , M> — apays — avayt = det [ o yz]
ajxp—agxy 3 a3 X3 y3
dixXeys — axiys

It follows that

(a(x),y) = det[a|x|y] = — det[ay|x] = —(a(y), x)



Cross products are anti self adjoint

Fix a vector a = [a1, a2, a3]” € R®, and define a: R® — R3 by a(x) = a x x.
Then

axx3—azxp Y1 a2X3y1 a3X2y1+ alp X1 yi
(a(x),y) = <[f} , M> — apays — avayt = det [ o yz]
ajxp—agxy 3 a3 X3 y3
dixXeys — axiys

It follows that

(a(x),y) = det[a|x|y] = —det[aly|x] = —(a(y),x) = {x, —a(y))



Cross products are anti self adjoint

Fix a vector a = [a1, a2, a3]” € R®, and define a: R® — R3 by a(x) = a x x.
Then

apxz—aszxy Y1 a2X3y1 - a3X2y1+ alp X1 yi
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! ! axys — axiys
It follows that
(a(x),y) = det[a|x|y] = — det[a]y|x] = —(a(y),x) = (x, —a(y))

SO OZT = —Q.
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Fix a vector a = [a1, a2, a3]” € R®, and define a: R® — R3 by a(x) = a x x.
Then

axx3—azxp y1 a2X3y1 o a3X2y1+ ar X1 y1
(a(x),y) = <[83X1*a1><3] s [}Q]) = azxiyz — 31X3y2+ = det [32 x2 yz]
ajxp—agxy 3 a3 X3 y3
aixey3 — axXiys3
It follows that
(a(x),y) = det[a|x|y] = — det[a]y|x] = —(a(y),x) = (x, —a(y))
so o’ = —a. Alternatively, we have a = ¢4, where A is as found below:

—a3 a 0 —a3 ap

a(e1):[as] a(eg):[o] a(e3):[foal] A:{aa 0 —al}
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Fix a vector a = [a1, a2, a3]” € R®, and define a: R® — R3 by a(x) = a x x.
Then

azXx: — asX
(0toy) = ([EE].[A]) = oot = dee[323
a(X = a3xy—aix3 Y2 = azxiy2 — aixzy» = de [32 X2 yz]
Y ajxp—agxy Py % % a3 X3 y3
aixey3 — axXiys3

It follows that

(a(x),y) = det[a|x|y] = —det[aly|x] = —(a(y),x) = {x, —a(y))

so o’ = —a. Alternatively, we have a = ¢4, where A is as found below:
0 —a a 0 —a3 ap
afer) = [ » ] aler) = [ 03] ales) = [fal] A= { 5 0 —al}
—az ap 0 —ap ap O

It follows that a” = Oar = h_p = —a.
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in Example ??. If we have a function f(x) = p(x)e in V, we note that

F1(x) = p'(x)e /% + p(x).(—x).e /% = (p'(x) — x p(x))e /2,
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Differentiation is anti self adjoint

Example ??: Let V be the set of functions of the form p(x)e‘x2/2, where
p(x) is a polynomial. We use the inner product (f,g) = [*_f(x)g(x)dx, as
—x2/2

in Example ??. If we have a function f(x) = p(x)e in V, we note that

F1(x) = p'(x)e /% + p(x).(—x).e /% = (p'(x) — x p(x))e /2,

and p’(x) — x p(x) is again a polynomial, so f'(x) € V. We can thus define a
linear map D: V — V by D(f) = f’. We claim that D is adjoint to —D. This
is equivalent to the statement that for all f and g in V, we have

(D(f),g) + (f,D(g)) = 0. This is true because

d
o8+ (18 = [77 700800+ 1" o= [ (7980 o = 170801

= x~|>i$oo f(x)g(x) — im f(x)g(x)-

. . 2 .
Both limits here are zero, because the very rapid decrease of e /2 wipes out
the much slower increase of the polynomial terms.
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Example ??:  Consider the vector spaces R[x]<> (with inner product
fo x)g x) dx) and R? (with the usual inner product). Define maps
¢. R[x]§2 — R? and ¢: R? — R[x]<» by

o(f) = [ 1] (5] = (30p +309)x* — (36p + 249)x + (9p + 3).

Claim: ¢ is adjoint to 1. To check, consider f(x) = ax? 4+ bx + ¢ € R[x]<2
and v = [5] € R?. Note that f(0) = c and f(1) = a+b+4c, 50 ¢(f) = [asbec]-
We must show that (f,¥(v)) = {(¢(f), v), or in other words that

1
/0 (ax® + bx + ¢)((30p + 30g)x% — (36p + 24q)x + (9p + 3q)) dx = p F(0) + q F(1) = pc + g(a + b+ c).

This can be done with Maple: entering

expand (int ((a*x~2+b*xx+c) * ((30*p+30%q) *x~2 - (36%p+24*q)*x + (9*p+3*q)) ,x=0..1));

gives ¢cp + aq + bg + cq, as required.
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Proposition ??7: Let V and W be finite-dimensional real vector spaces with
inner products (or complex vector spaces with Hermitian forms). Let
¢: V — W be a linear map (over R or C as appropriate).

Then there is a unique map ¢»: W — V that is adjoint to ¢. (We write ¢ = ¢*
in the real case, or 1) = ¢' in the complex case.)

We will prove the complex case; the real case is similar but slightly easier.
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Proposition ??7: Let V and W be finite-dimensional complex vector spaces
with Hermitian forms. Let ¢: V — W be a C-linear maps.

Then there is a unique map 1) = ¢': W — V that is adjoint to ¢.

Proof:  We first show that there is at most one adjoint. Suppose that ¢ and
1)’ are both adjoint to ¢, so

(v, 9(w)) = (p(v), w) = (v,¢'(w))

for all v € V and w € W. This means that (v,¥(w) — ¢'(w)) = 0 for all v
and w. In particular, we can take v = ¥(w) — v¢’(w), and we find that

l[ib(w) = &' (w)|* = ((w) = ' (w), p(w) — ¢'(w)) =0,
so (w) = ¢’'(w) for all w, so o =’.
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Existence of adjoints

To show that there exists an adjoint, choose an orthonormal basis
V =wvi,...,v, for V, and define a linear map ¢¥: W — V by

n

P(w) =D (w, 6(v))v;.

j=t

Recall that (x, \y) = A(x,y), and that (x, y) = (y, x). Using these rules we
find that

(vis B(w)) = D (vis (w, d(v))vy) = D (w, d(v)) (vis vj) = D (b)), w) (vj, vj) = (b(v;), w).
j J J

More generally, any element v € V can be written as >, x;v; for some
X1,...,Xn € C, and then we have

vy (W) = 3% (v (W) = Z X (p(v) (Zx ) ,w) = (p(v), w).

This shows that v is adjoint to ¢, as required.
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Periodic functions

Definition ??:  We say that a function f: R — C is periodic if

f(t+2m) = f(t) for all t € R. We let P be the set of all continuous periodic
functions from R to C, which is a vector space over C. We define a Hermitian
form on P by

o) = o [ (g o
Some important elements of P are the functions e, (for n € Z), s, (for n > 0)
and ¢, (for n > 0) defined as follows:
en(t) = exp(int) sa(t) = sin(nt) ¢cn(t) = cos(nt)
De Moivre's theorem tells us that

e = Cp + isn
50 = (en — e-n)/(2])
cn=(en+e_n)/2.
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Trigonometric polynomials

Definition ?7?: We put
T, = span({ex | —n<k<n}) <P,

and note that T, < T,41 for all n. We also let T denote the span of all the
ex's, or equivalently, the union of all the sets T,. The elements of T are the
functions f: R — C that can be written in the form

f(t) = Z akex(t) = Z ax exp(ikt)

for some n > 0 and some coefficients a_,...,a, € C. Functions of this form
are called trigonometric polynomials or finite Fourier series.
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Proposition ??: The sequence e_,, e_pt1,...,€n—1, € is an orthonormal basis
for T, (so dim(T,) = 2n+ 1).
Proof: For m # k we have

1 p2m 12w )
(ex>em) = ; A e (t)em(t) dt = ; /0 exp(ikt) exp(—imt) dt
1 r2m 1 [exp(i(k — m)t)]2™
- 7/ expli(k — m)t)dt = — [M}
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T 2k jm)m‘ (eZ(kim)m B 1) :

As k — m is an integer, we have e2*~™7™ =1 and so (ex, e,) = 0. This shows

that the sequence of e’s is orthogonal. We also have

1 27 1 27 27
(e, ex) = 2— /0 e (t)e(t) dt = 2— b exp(2kit) exp(—2kmit) dt = — / ldt =1.
£ e

Our sequence is therefore orthonormal, and so linearly independent. It also
spans T, (by the definition of T,), so it is a basis.
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Projection onto T,

Definition ??: For any f € P, let m,(f) be the orthogonal projection of f in

Th, so
n

ma(f) = Z (f, em)em.
We also put €,(f) = f — mn(f), so f = wa(f) + €n(f), with m,(f) € T, and
ea(f) € T3 (by Proposition 77).
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This shows that C, is an orthogonal sequence.
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Another orthogonal basis

For k > 0 we have

11
(sk, Sk) = E§<ek —e_, e — e_k)
=31-0-0+41)=1/2.

Similarly, we have (ck, cx) = 1/2. In the special case k = 0 we instead have
a(t) =1 for all t, so (co, o) = (27) " 02” 1dt = 1. This completes the proof.

Corollary ??: Using Proposition ??, we deduce that

71',,(f) = <f, C0>Co +2 Z<f, Ck>Ck + 2Z<f, 5k>5k-

k=1 k=1
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Theorem ??: For any f € P we have ||e,(f)]| — 0 as n — oo.

Proof: See Appendix ?7.

(The proof is not examinable and will not be covered in lectures.)

Remark ?7?: Recall that m,(f) is the closes point to f lying in T,, so the
number ||en(f)|| = ||f — wa(f)|| can be regarded as the distance from f to T,.
The theorem says that by taking n to be sufficiently large, we can make this
distance as small as we like. In other words, f can be very well approximated
by a trigonometric polynomial of sufficiently high degree.
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Corollary ??: For any f € P we have

117 = 3" [ el = 1{f o)l +2D [(F,a)l” +2D [(F, )
k=1 k=1

k=—o00

Proof: As e_p,...,e,is an orthonormal basis for T,, we have

IF12 = llea(FI* = llmal > = 1| D_ (F, edenll® = D [(F, )l
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Corollary ??: For any f € P we have

IF1P = [(F.ed = [(f o) +2 (e +2 3 [(f.s0)?
k=—00 k=1 k=1
Proof: As e_p,...,e,is an orthonormal basis for T,, we have
I = llea( ) = lma( O = 1| D (Frede® = D 1(F el
k=—n k=—n

By taking limits as n tends to infinity, we see that ||[f|> =352 |(f, e)|*.
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Parseval's theorem

Similarly, using Corollary ?? and Proposition 7?7, we see that

lma(F)II* = [(F, co) lleoll® + > 41(F, el Pllewll® + D 41(F, sl sl
k=1 k=1

=|(f.e)P+2) [(F,c)lP+2) [(f, s
k=1 k=1

We can again let n tend to infinity to see that

IF1? = [(F o) + 23 [(F, a)l +2 ) I{F, sl
k=1 k=1



Self-adjoint operators

Definition ??: Let V be a finite-dimensional vector space over C. A
self-adjoint operator on V is a linear map a: V — V such that of = a
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Theorem ??: If a: V — V is a self-adjoint operator, then every eigenvalue of
« is real.

Proof: First suppose that A is an eigenvalue of «, so there exists a nonzero
vector v € V with a(v) = Av. We then have

My, vy = (Av,v) = (a(v),v) = (v,aT(v)) = (v,a(v)) = (v, \v) = Xv, v).

As v # 0 we have (v, v) > 0, so we can divide by this to see that A = },
which means that X is real.



The diagonalisation theorem

Theorem ??: If a: V — V is a self-adjoint operator, then one can choose an
orthonormal basis V = vi,..., v, for V such that each v; is an eigenvector of a.
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Lemma ??: Let a: V — V be a self-adjoint operator, and let W < V be a
subspace such that a(W) < W (ie a(w) € W for all w € W). Then
a(Wt) < wt.

Proof: Suppose that v € W™; we must show that a(v) is also in W*. To see
this, consider w € W, and note that (a(v), w) = (v, af(w)) = (v, a(w)) (by
the definition of adjoints and the fact that a = a). As a(W) < W we see
that a(w) € W, so (v, a(w)) = 0 (because v € W=). We conclude that
(a(v),w) =0 for all w € W, so a(v) € W as claimed.
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polynomial of degree n over C, so it must have at least one root (by the
fundamental theorem of algebra), say A1. We know that the roots of the
characteristic polynomial are precisely the eigenvalues, so \; is an eigenvalue,
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unit vector v € V and note that a(vi) € V = Cvy. This means that
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Now suppose that n > 1. The characteristic polynomial of « is then a
polynomial of degree n over C, so it must have at least one root (by the
fundamental theorem of algebra), say A1. We know that the roots of the
characteristic polynomial are precisely the eigenvalues, so \; is an eigenvalue,
so we can find a nonzero vector u; € V with a(u1) = Arui. We then put
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Put n = dim(V); the proof is by induction on n. If n =1 then we choose any
unit vector v € V and note that a(vi) € V = Cvy. This means that

a(vi) = A1vy for some A; € C, so v; is an eigenvector, and this proves the
theorem in the case n = 1.

Now suppose that n > 1. The characteristic polynomial of « is then a
polynomial of degree n over C, so it must have at least one root (by the
fundamental theorem of algebra), say A1. We know that the roots of the
characteristic polynomial are precisely the eigenvalues, so \; is an eigenvalue,
so we can find a nonzero vector u; € V with a(u1) = Arui. We then put

vi = u/||u1]], so ||va]| =1 and w1 is still an eigenvector of eigenvalue A1, which
implies that &(Cvi) < Cvi. Now put V' = (Cv1)*. The lemma tells us that
a(V') < V', so we can regard « as a self-adjoint operator on V’. Moreover,
dim(V’) = n — 1, so our induction hypothesis applies. This means that there is
an orthonormal basis for V' (say v, vs, ..., v,) consisting of eigenvectors for a.
It follows that vi, va, ..., v, is an orthonormal basis for V consisting of
eigenvectors for a.
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Let a € R® be a unit vector. Define 7: C* — C* by m(v) = (v,a)a. This is
self-adjoint because

(m(v), w) = ((v,a)a,w) = (v,a)(a, w)

whereas

<V,TI'(W)> = <V7 <Wv a>a> = <an><v’a> = (a,w) <V7a>7

which is the same. Now choose another unit vector b orthogonal to a and put
c=ax b. Then a,b, c is an orthonormal basis for R3. Moreover, we have
m(a) = a and w(b) =0 and 7(c) =0, so a,b and c are all eigenvectors for 7
(with eigenvalues 1, 0 and 0).
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Let T, be the set of trigonometric polynomials of degree at most n. We use
the usual inner product on T,, given by (f, g) = f:o f(t)g(t) dt. Define
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(f,5(g)) — (5(F). &)

F(t)ig'(t) — if (t)g(t) dt = —i ; F(t)g'(t) + ()8 (t) dt
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