VECTOR SPACES AND FOURIER THEORY — FURTHER EXERCISES

Exercise 1. Put

$$V = \{(a, b, c, d) \in \mathbb{R}^4 \mid a + b + c + d = 0\}$$

Show that each of the following lists of vectors is a basis for V.

- $u_1 = (1, 0, 0, -1), u_2 = (0, 1, 0, -1), u_3 = (0, 0, 1, -1)$
- $v_1 = (1, -1, 0, 0), v_2 = (0, 1, -1, 0), v_3 = (0, 0, 1, -1)$
- $w_1 = (1, 1, -1, -1), w_2 = (1, -1, 1, -1), w_3 = (1, -1, -1, 1)$

Solution: We first note that in every vector we have mentioned, the sum of the four coordinates is zero, so all our vectors lie in V.

- (a) Suppose we have a vector $x = (a, b, c, d) \in V$. We then have $au_1 + bu_2 + cu_3 = (a, b, c, -a b c)$ but d = -a - b - c (because $x \in V$) so $x = au_1 + bu_2 + cu_3$. This shows that u_1, u_2 and u_3 span V. Next, as the first three entries in $au_1 + bu_2 + cu_3$ are just a, b and c, the only way we can have $au_1 + bu_2 + cu_3 = 0$ is if a = b = c = 0. This shows that u_1, u_2 and u_3 are linearly independent, so they give a basis for V.
- (b) Suppose again that $x = (a, b, c, d) \in V$. Then

$$av_1 + (a+b)v_2 + (a+b+c)v_3 = (a, -a, 0, 0) + (0, a+b, -a-b, 0) + (0, 0, a+b+c, -a-b-c) = (a, b, c, -a-b-c) = x.$$

This means that any $x \in V$ is a linear combination of v_1 , v_2 and v_3 , so these vectors span V. As V has dimension 3 (by part (a)) and our spanning set has size 3, it is automatically a basis. More explicitly, suppose that $pv_1 + qv_2 = rv_3 = 0$. This means that (p, q - p, r - q, -r) = (0, 0, 0, 0), so p = 0 and q = p and r = q and q = 0, so p = q = r = 0. This shows that v_1 , v_2 and v_3 are linearly independent, and so form a basis.

(c) Note that $u_1 = (w_1 + w_2)/2$ and $u_2 = (w_1 - w_3)/2$ and $u_3 = (w_2 - w_3)/2$. It follows that for $x = (a, b, c, d) \in V$ we have

$$x = au_1 + bu_2 + cu_3 = \frac{1}{2}(a+b+c)w_1 + \frac{1}{2}(a+c)w_2 - \frac{1}{2}(b+c)w_3,$$

so w_1 , w_2 and w_3 span V. As V has dimension 3 and our spanning set has size 3, it is automatically a basis. More explicitly, suppose that $pw_1 + qw_2 + rw_3 = 0$. This means that

$$(p+q+r, p-q-r, -p+q-r, -p-q+r) = (0, 0, 0, 0),$$

 \mathbf{SO}

$$p + q + r = 0$$
$$p - q - r = 0$$
$$-p + q - r = 0$$
$$-p - q + r = 0$$

By adding the first equation to each of the other three, we see that p = q = r = 0. This shows that w_1, w_2 and w_3 are linearly independent, as claimed.

Exercise 2. Show that the following matrices give a basis for $M_2\mathbb{R}$:

$$W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad \qquad X = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \qquad \qquad Y = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \qquad \qquad Z = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Solution: Suppose we have a matrix $P = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$, which we want to write as a linear combination of W, X, Y and Z, say

$$\begin{bmatrix} p & q \\ r & s \end{bmatrix} = aW + bX + cY + dZ = \begin{bmatrix} a+b+c+d & a+b-c-d \\ a-b+c-d & a-b-c+d \end{bmatrix}$$

This is equivalent to the system of equations

$$p = a + b + c + d$$

$$q = a + b - c - d$$

$$r = a - b + c - d$$

$$s = a - b - c + d,$$

which have the unique solution

$$a = (p+q+r+s)/4$$

$$b = (p+q-r-s)/4$$

$$c = (p-q+r-s)/4$$

$$d = (p-q-r+s)/4.$$

This means that P can be written in a unique way as a linear combination of W, X, Y and Z, so these matrices form a basis for $M_2\mathbb{R}$.

Exercise 3. Find p, q and r such that

$$\int_0^1 f(x) \, dx = pf(0) + qf(1/2) + rf(1)$$

for all $f(x) \in \mathbb{R}[x]_{\leq 2}$.

Solution: The answer is p = r = 1/6, q = 2/3.

Exercise 4. Put

$$V = \{A \in M_3 \mathbb{R} \mid A^T = A\}$$
$$W = \{A \in M_3 \mathbb{R} \mid \text{trace}(A) = 0\}$$

Show that $V + W = M_3 \mathbb{R}$, and find a basis for $V \cap W$.

Solution: If $A \in M_3\mathbb{R}$, put t = trace(A)/3 and B = A - tI. We have trace(I) = 3 so trace(tI) = trace(A), so trace(B) = 0, so $B \in W$. We also have $tI \in V$ and A = tI + B so $A \in V + W$. This shows that $V + W = M_3\mathbb{R}$.

Next, the matrices in ${\cal V}$ are those of the form

$$A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}.$$

Such a matrix lies in $V \cap W$ iff f = -a - d, so we have

$$A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & -a - d \end{bmatrix}.$$

Now put

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad E_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad E_4 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad E_5 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},$$

so $E_1, \ldots, E_5 \in V \cap W$. Our previous equation for A can now be written

$$A = aE_1 + bE_2 + cE_3 + dE_4 + eE_5.$$

It follows that E_1, \ldots, E_5 span $V \cap W$, and they are clearly linearly independent, so they form a basis.

Exercise 5. Define subspaces $V, W \leq \mathbb{R}^6$ as follows:

$$V = \operatorname{span}((1, 1, 0, 0, 0, 0), (1, 1, 1, 1, 0, 0), (1, 1, 1, 1, 1, 1))$$
$$W = \operatorname{span}((1, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 1)).$$

Find vectors u, v_1, v_2, w, x_1, x_2 such that

- $\{u\}$ is a basis for $V \cap W$
- $\{u, v_1, v_2\}$ is a basis for V
- $\{u, w\}$ is a basis for W
- $\{u, v_1, v_2, w\}$ is a basis for V + W
- $\{u, v_1, v_2, w, x_1, x_2\}$ is a basis for \mathbb{R}^6 .

Solution: First, we note that

$$V = \{t \in \mathbb{R}^6 \mid t_1 = t_2, t_3 = t_4, t_5 = t_6\}$$
$$W = \{t \in \mathbb{R}^6 \mid t_1 = t_2 = t_3 t_4 = t_5 = t_6\}$$

 \mathbf{SO}

$$V \cap W = \{t \in \mathbb{R}^6 \mid t_1 = t_2 = \dots = t_6\}$$

= span((1, 1, 1, 1, 1, 1))

We therefore take u = (1, 1, 1, 1, 1, 1). If we put $v_1 = (1, 1, 0, 0, 0, 0)$ and $v_2 = (0, 0, 1, 1, 0, 0)$ then it is clear that u_1v_1 and v_2 are linearly independent and span V, so they form a basis. Similarly, if we put w = (1, 1, 1, 0, 0, 0) then u and w give a basis for W. It is automatic from this that $\{u, v_1, v_2, w\}$ is a basis for V + W. Finally, put $x_1 = (1, 0, 0, 0, 0, 0)$ and $x_2 = (0, 0, 0, 0, 0, 1)$. We then

$$au + bv_1 + cv_2 + dw + ex_1 + fx_2 = (a + b + d + e, a + b + d, a + c + d, a + c, a, a + f)$$

If this is zero then a = 0 (5th entry) so c = f = 0 (4th and 6th entries) so d = 0 (3rd entry) so b = 0 (2nd entry) so e = 0 (1st entry). This shows that our six vectors are linearly independent, so they form a basis for \mathbb{R}^6 .

Exercise 6. Put $U = \{f \in C^{\infty}(\mathbb{R}) \mid D(D-1)(D-2)(D-3)f = 0\}$ and $V = \{f \in U \mid f(0) = 0\}$. Give a basis for V.

Solution: By standard theory of differential equations, we see that U is the set of functions of the form

$$f(x) = a_0 + a_1 e^x + a_2 e^{2x} + a_3 e^{3x}$$

for some $a_0, \ldots, a_3 \in \mathbb{R}$. For such f we have $f(0) = a_0 + a_1 + a_2 + a_3$, so $f \in V$ iff we have $a_0 = -a_1 - a_2 - a_3$, which means that

$$f(x) = a_1(e^x - 1) + a_2(e^{2x} - 1) + a_3(e^{3x} - 1).$$

It follows that the functions $e^x - 1$, $e^{2x} - 1$ and $e^{3x} - 1$ give a basis for V.

Exercise 7. Let λ and ω be real numbers. Define functions $f_i \in C^{\infty}(\mathbb{R})$ by

$$f_1(x) = e^{\lambda x} \sin(\omega x)$$

$$f_2(x) = e^{\lambda x} \cos(\omega x)$$

$$f_3(x) = x e^{\lambda x} \sin(\omega x)$$

$$f_4(x) = x e^{\lambda x} \cos(\omega x).$$

You may assume that these are linearly independent, so they form a basis for the space $V = \text{span}(f_1, f_2, f_3, f_4)$. Show that $Df_i \in V$ for i = 1, ..., 4, and write down the matrix for $D: V \to V$ with respect to our basis. Hence or otherwise, show that $((D - \lambda)^2 + \omega^2)^2$ acts as zero on V. Solution: Using the product rule, we have

$$\begin{aligned} f_1'(x) &= \lambda e^{\lambda x} \sin(\omega x) + \omega e^{\lambda x} \cos(\omega x) = \lambda f_1(x) + \omega f_2(x) \\ f_2'(x) &= \lambda e^{\lambda x} \cos(\omega x) - \omega e^{\lambda x} \sin(\omega x) = -\omega f_1(x) + \lambda f_2(x) \\ f_3'(x) &= e^{\lambda x} \sin(\omega x) + x\lambda e^{\lambda x} \sin(\omega x) + x\omega e^{\lambda x} \cos(\omega x) = f_1(x) + \lambda f_3(x) + \omega f_4(x) \\ f_4'(x) &= e^{\lambda x} \cos(\omega x) + x\lambda e^{\lambda x} \cos(\omega x) - x\omega e^{\lambda x} \sin(\omega x) = f_2(x) - \omega f_3(x) + \lambda f_4(x) \end{aligned}$$

It follows that the matrix of D is

$$A = \begin{bmatrix} \lambda & -\omega & 1 & 0\\ \omega & \lambda & 0 & 1\\ 0 & 0 & \lambda & -\omega\\ 0 & 0 & \omega & \lambda \end{bmatrix}$$

This means that

$$(A - \lambda I)^{2} + \omega^{2}I = \begin{bmatrix} 0 & -\omega & 1 & 0 \\ \omega & 0 & 0 & 1 \\ 0 & 0 & 0 & -\omega \\ 0 & 0 & \omega & 0 \end{bmatrix}^{2} + \begin{bmatrix} \omega^{2} & 0 & 0 & 0 \\ 0 & \omega^{2} & 0 & 0 \\ 0 & 0 & \omega^{2} & 0 \\ 0 & 0 & 0 & \omega^{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -2\omega \\ 0 & 0 & 2\omega & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

From this we see that $((A - \lambda I)^2 + \omega^2 I)^2 = 0$. Moreover, this is the matrix of the linear map $((D - \lambda)^2 + \omega)^2 : V \to V$, so we see that this map is zero as claimed.

Exercise 8. Define a map $T: M_3 \mathbb{R} \to M_3 \mathbb{R}$ by

$$T\begin{bmatrix}a & b & c\\d & e & f\\g & h & i\end{bmatrix} = \begin{bmatrix}b & c & f\\a & e & i\\d & g & h\end{bmatrix}$$

so the entries in the matrix get moved around like this:

$$\begin{array}{c} a \longleftarrow b \longleftarrow c \\ \downarrow & \uparrow \\ d & e & \uparrow \\ \downarrow & \uparrow \\ g \longrightarrow h \longrightarrow i \end{array}$$

Find a basis for the kernel of T-1. Write down the matrix of T with respect to a suitable basis of $M_3\mathbb{R}$, and thus calculate the characteristic polynomial of T.

Solution: Consider a matrix
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
. We have $A \in \ker(T-1)$ iff $A = T(A)$, iff
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} b & c & f \\ a & e & i \\ d & g & h \end{bmatrix}$$

This means that a = b, b = c, c = f, d = a, f = i, g = d, h = g and i = h, which just means that a = b = c = d = f = g = h = i (but *e* can be different). In other words, we have

$$A = \begin{bmatrix} a & a & a \\ a & e & a \\ a & a & a \end{bmatrix} = a \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} + e \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad E_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad E_{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad E_{4} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad E_{5} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$E_{6} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad E_{7} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad E_{8} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad E_{9} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

These matrices form a basis for $M_3\mathbb{R}$, with the property that $T(E_1) = E_2$, $T(E_2) = E_3$, $T(E_3) = E_4$, $T(E_4) = E_5$, $T(E_5) = E_6$, $T(E_6) = E_7$, $T(E_7) = E_8$, $T(E_8) = E_1$ and $T(E_9) = E_9$. The matrix of T with respect to this basis is

$$U = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

The characteristic polynomial of T is the determinant of tI - U, which is $(t^8 - 1)(t - 1)$.

Exercise 9. Let A be a 2×2 matrix over the reals. Define a map $\mu: M_2\mathbb{R} \to M_2\mathbb{R}$ by $\mu(X) = AX$. Find the matrix of M with respect to a suitable basis of $M_2\mathbb{R}$, and thus show that $\det(\mu) = \det(A)^2$.

Solution: Let A be $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. The most convenient basis to use is as follows: $E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad E_2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \qquad E_3 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$

(It would be more usual to have E_2 and E_3 the other way around, but in this exercise that makes the picture a little less clear.) We then have

$$\mu(E_1) = AE_1 = \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix} = aE_1 + cE_2$$

$$\mu(E_2) = AE_2 = \begin{bmatrix} b & 0 \\ d & 0 \end{bmatrix} = bE_1 + dE_2$$

$$\mu(E_3) = AE_3 = \begin{bmatrix} 0 & a \\ 0 & c \end{bmatrix} = aE_3 + cE_4$$

$$\mu(E_4) = AE_4 = \begin{bmatrix} 0 & b \\ 0 & d \end{bmatrix} = bE_3 + cE_4.$$

This means that the matrix of μ is

$$B = \begin{bmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{bmatrix}$$

This gives

$$\det(B) = a \det \begin{bmatrix} d & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{bmatrix} - b \det \begin{bmatrix} c & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{bmatrix} = ad \det \begin{bmatrix} a & b \\ c & d \end{bmatrix} - bc \det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (ad - bc)^2 = \det(A)^2.$$

Exercise 10. Suppose we have vectors a = (u, v, w) and b = (x, y, z) in \mathbb{R}^3 , with $a \neq 0 \neq b$ and $\langle a, b \rangle = 0$. Define matrices A, B and C by

$$A = \begin{bmatrix} u^2 & uv & uw \\ uv & v^2 & vw \\ uw & vw & w^2 \end{bmatrix} \qquad B = \begin{bmatrix} x^2 & xy & xz \\ xy & y^2 & yz \\ xz & yz & z^2 \end{bmatrix} \qquad C = A + B$$

Show that $image(C) = span\{a, b\}$, and thus that rank(C) = 2.

Solution: For any vector p = (r, s, t) we have

$$Ar = \begin{bmatrix} u^2 & uv & uw \\ uv & v^2 & vw \\ uw & vw & w^2 \end{bmatrix} \begin{bmatrix} r \\ s \\ t \end{bmatrix} = \begin{bmatrix} u^2r + uvs + uwt \\ uvr + v^2s + vwt \\ uwr + vws + w^2t \end{bmatrix} = (ur + vs + wt) \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \langle a, p \rangle a.$$

Similarly, we have $Bp = \langle b, p \rangle b$, so

$$Cp = Ap + Bp = \langle a, p \rangle a + \langle b, p \rangle b \in \operatorname{span}\{a, b\}$$

It follows that image(C) \leq span $\{a, b\}$. Now note that $a \neq 0$ so $\langle a, a \rangle > 0$ so we can take $p = a/\langle a, a \rangle$. As $\langle a, b \rangle = 0$, the above gives

$$Cp = \langle a, a/\langle a, a \rangle \rangle a = a,$$

which shows that $a \in \text{image}(C)$. Similarly we see that $b \in \text{image}(C)$, so any linear combination of a and b must also lie in image(C), or in other words, image(C) \leq span{a, b}. We have already proved the reverse inclusion, so $\text{image}(C) = \text{span}\{a, b\}$. To complete the exercise we need to show that a and b are linearly independent (so they give a basis for $\operatorname{image}(C)$, so $\operatorname{rank}(C) = \dim(\operatorname{image}(C)) = 2$). Consider a linear relation $\alpha a + \beta b = 0$. Taking the inner product with a gives

$$0 = \langle 0, a \rangle = \langle \alpha a + \beta b, a \rangle = \alpha \langle a, a \rangle + \beta \langle a, b \rangle = \alpha ||a||^2$$

As $a \neq 0$ we have $||a||^2 > 0$ and so we must have $\alpha = 0$. Similarly we have $\beta = 0$, so a and b are linearly independent, as required.

Exercise 11. For any real number *a*, we consider the matrix $A = \begin{bmatrix} a & a^2 & a^4 \\ a^2 & a^2 & a^4 \\ a^4 & a^4 & a^4 \end{bmatrix}$. Find the determinant of

A, and factorise it. Using this as the first step, determine the rank of A for all a

Solution: First, we have

$$\det(A) = a \det \begin{bmatrix} a^2 & a^4 \\ a^4 & a^4 \end{bmatrix} - a^2 \det \begin{bmatrix} a^2 & a^4 \\ a^4 & a^4 \end{bmatrix} + a^4 \det \begin{bmatrix} a^2 & a^2 \\ a^4 & a^4 \end{bmatrix} = (a - a^2)(a^6 - a^8) = a^7(1 - a)^2(1 + a).$$

If $a \notin \{0, 1, -1\}$ we see that $\det(A) \neq 0$ and so $\operatorname{rank}(A) = 3$. If a = 0 then A is the zero matrix and $\operatorname{rank}(A) = 0$. If a = 1 then every entry in A is equal to one, so the image of A is spanned by the vector

(1,1,1), so rank(A) = 1. If a = -1 then $A = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, so the first two columns are linearly independent

but the third is equal to the second, which shows that rank(A) = 2. In conclusion, we have

$$\operatorname{rank}(A) = \begin{cases} 0 & \text{if } a = 0\\ 1 & \text{if } a = 1\\ 2 & \text{if } a = -1\\ 3 & \text{otherwise} \end{cases}$$

Exercise 12. Suppose that $u \in \mathbb{R}^3$ and ||u|| = 1. Define $\phi \colon \mathbb{R}^3 \to \mathbb{R} \times \mathbb{R}^3$ by $\phi(x) = (\langle u, x \rangle, u \times x)$, and define $\psi \colon \mathbb{R} \times \mathbb{R}^3$ by $\psi(t, y) = tu - y$. Simplify $\psi(\phi(x))$, and deduce that $\ker(\phi) = 0$. Find $\ker(\psi)$.

Solution:

Exercise 13. Let A be a matrix of the form $\begin{bmatrix} p & 1-p \\ 1-q & q \end{bmatrix}$, with 0 < p, q < 1. Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

Solution: The diagonal entries in D will be the eigenvalues of A, and the columns of P will be the corresponding eigenvectors. To find these, we note that the characteristic polynomial is

$$\det \begin{bmatrix} t-p & p-1\\ q-1 & t-q \end{bmatrix} = (t-p)(t-q) - (p-1)(q-1) = t^2 - pt - qt + pq - pq + p + q - 1$$
$$= t^2 - (p+q)t + (p+q-1) = (t-1)(t-p-q+1).$$

The eigenvalues are thus 1 and p+q-1, so $D = \begin{bmatrix} p+q-1 & 0 \\ 0 & 1 \end{bmatrix}$. It is easy to see that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of eigenvalue 1. Next, put

$$B = (p+q-1)I - A = \begin{bmatrix} q-1 & p-1 \\ q-1 & p-1 \end{bmatrix}.$$

We see that $B\begin{bmatrix} 1-p\\ q-1\end{bmatrix} = \begin{bmatrix} 0\\ 0\end{bmatrix}$, so $\begin{bmatrix} 1-p\\ q-1\end{bmatrix}$ is an eigenvector of A with eigenvalue p+q-1. Our matrix P is thus $\begin{bmatrix} 1-p & 1\\ q-1 & 1\end{bmatrix}$. As a check, we note that $\det(P) = 2-p-q$ (which is nonzero, as 0 < p, q < 1) and so

$$P^{-1} = \frac{1}{2 - p - q} \begin{bmatrix} 1 & -1\\ 1 - q & 1 - p \end{bmatrix}$$

Exercise 14. Define

$$V = \{ f \in \mathbb{R}[x]_{\leq 2} \mid \int_{-1}^{0} f(x) \, dx = 0 \}$$
$$W = \{ f \in \mathbb{R}[x]_{\leq 2} \mid \int_{0}^{1} f(x) \, dx = 0 \}.$$

Find bases for V, W and $V \cap W$. Show that $V + W = \mathbb{R}[x]_{\leq 2}$.

Solution: We find that

$$V = \{ax^{2} + bx + c \mid a/3 - b/2 + c = 0\}$$
$$W = \{ax^{2} + bx + c \mid a/3 + b/2 + c = 0\}$$

It follows that $\{1 - 3x^2, 1 + 2x\}$ is a basis for V, and $\{1 - 3x^2, 1 - 2x\}$ is a basis for W, and $\{1 - 3x^2\}$ is a basis for $V \cap W$.

Exercise 15. Put

$$V = \{A \in M_2 \mathbb{R} \mid A \begin{bmatrix} 1\\1 \end{bmatrix} = 0\}$$
$$W = \{A \in M_2 \mathbb{R} \mid \begin{bmatrix} 1 & 1 \end{bmatrix} A = 0\}$$

Find bases for V, W and $V \cap W$.

Solution: Consider a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. We have $A \in V$ iff $\begin{bmatrix} a+b \\ c+d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, or equivalently b = -a and d = -c. In that case we have

$$A = \begin{bmatrix} a & -a \\ c & -c \end{bmatrix} = a \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}$$

Using this, we see that the matrices $P_1 = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ and $P_2 = \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}$ give a basis for V. Similarly, we have $\begin{bmatrix} 1 & 1 \end{bmatrix} A = \begin{bmatrix} a+c & b+d \end{bmatrix}$, which vanishes iff A has the form

$$A = \begin{bmatrix} a & b \\ -a & -b \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$$

Using this, we see that the matrices $Q_1 = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$ and $Q_2 = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$ give a basis for W. Finally, we see that $A \in V \cap W$ iff b = -a and d = -c and c = -a and d = -b, or equivalently a = d = -b = -c, which means that $A = a \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. It follows that the single matrix $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = P_1 - P_2 = Q_1 - Q_2$ gives a basis for $V \cap W$.

Exercise 16. For each k > 0 we define $r_k \in C[0,1]$ by $r_k(x) = 1/(x+k)$. Show that these are linearly independent in C[0,1].

Solution: Find a good proof not using analytic continuation, and include some hints in the question.

Exercise 17. Put

$$V = \{ \text{ symmetric } 3 \times 3 \text{ real matrices } \}$$
$$= \{ A \in M_3 \mathbb{R} \mid A^T = A \}$$
$$W = \{ \text{ homogeneous quadratic polynomials in } x, y, z \}$$
$$= \{ px^2 + qxy + rxz + sy^2 + tyz + uz^2 \mid p, \dots, u \in \mathbb{R} \}.$$

Define $\phi \colon V \to W$ by

$$\phi(A) = \begin{bmatrix} x & y & z \end{bmatrix} A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Show that this is an isomorphism.

Solution: Any element $A \in V$ has the form

$$A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}.$$

For such A we have

$$\phi(A) = \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = ax^2 + 2bxy + 2cxz + dy^2 + 2eyz + fz^2$$

Now define $\psi \colon W \to V$ by

$$\psi(px^2 + qxy + rxz + sy^2 + tyz + uz^2) = \begin{bmatrix} p & q/2 & r/2 \\ q/2 & s & t/2 \\ r/2 & t/2 & u \end{bmatrix}.$$

We find that $\psi(\phi(A)) = A$ for all $A \in V$, and $\phi(\psi(Q)) = Q$ for all $Q \in W$, so ϕ and ψ are isomorphisms.

Exercise 18. Let V_0 be the set of functions f(x) of the form

$$a_0 + a_1 \ln(x) + a_2 \ln(x)^2 + \dots + a_n \ln(x)^n$$

for some $n \ge 0$ and some constants $a_0, \ldots, a_n \in \mathbb{R}$. In other words, the functions in V_0 have the form $p(\ln(x))$ for some polynomial $p(t) \in \mathbb{R}[t]$. Next, let V_m be the set of functions of the form $x^m p(\ln(x))$ for some polynomial p, so for example, the function $f(x) = x^2(1 + \ln(x) + 9\ln(x)^4)$ is a typical element of V_2 . Show that differentiation gives a homomorphism $D: V_m \to V_{m-1}$, which is an isomorphism except when m = 0.

Solution:

Exercise 19. Define a map

$$\phi \colon \mathbb{R}[x, y]_{\leq 2} \to \mathbb{R}[x]_{\leq 2} \times \mathbb{R}[x]_{\leq 2}$$

by

$$\phi(f)(x) = (f(x, x), f(x, -x)).$$

Find bases for the kernel and image of ϕ .

Solution: The space ker(ϕ) is one-dimensional, with basis $\{x^2 - y^2\}$. The elements

$$(1,1), (x,0), (0,x), (x'0), (0,x^2)$$

give a basis for $image(\phi)$.

Exercise 20. Define a map $H \colon \mathbb{R}[x, y]_{\leq 2} \to M_2\mathbb{R}$ (called the Hessian) by

$$H(u) = \begin{vmatrix} u_{xx}(0,0) & u_{xy}(0,0) \\ u_{xy}(0,0) & u_{yy}(0,0) \end{vmatrix}$$

Find bases for $\ker(H)$ and $\operatorname{image}(H)$.

Solution: Any element of $u \in \mathbb{R}[x, y]_{\leq 2}$ has the form

$$u(x,y) = a + bx + cy + dx^2 + exy + fy^2$$

for some $a, b, \ldots, f \in \mathbb{R}$. We then have

$$H(u) = \begin{bmatrix} 2d & e \\ e & 2f \end{bmatrix} = 2d \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + e \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + 2f \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

It follows that the matrices $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ give a basis for $\operatorname{image}(H)$. In the above we have H(u) = 0 iff d = e = f = 0, or equivalently, u actually has degree ≤ 1 . This means that $\{1, x, y\}$ is a basis for $\ker(H)$.

Exercise 21. Give a basis for the space

 $V = \{A \in M_3 \mathbb{R} \mid A = A^T \text{ and } \operatorname{trace}(A) = 0\}.$

Solution: Any matrix $A \in M_2\mathbb{R}$ lies in V iff it has the form

$$A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & -a - d \end{bmatrix}$$
$$= a \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

for some $a, b, c, d \in \mathbb{R}$. It follows that the matrices

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

span V, and they are clearly linearly independent, so they form a basis for V.

Exercise 22. Suppose we are given u, v, q > 0. Define a bilinear form on $\mathbb{R}[x]_{\leq 2}$ by

$$\langle f,g\rangle = uf(-q)g(-q) + vf(0)g(0) + uf(q)g(q).$$

Show that this is an inner product. Find u, v and q such that $\langle f, g \rangle = 9 \int_{-1}^{1} f(t)g(t) dt$ for all $f, g \in \mathbb{R}[x]_{\leq 2}$.

Solution: The solution is u = 5, v = 8 and $q = \sqrt{3/5} = \sqrt{15}/5$. This can be found using Maple with the following steps:

```
b := (f,g) -> u*f(-q)*g(-q) + v * f(0)*g(0) + u*f(q)*g(q);
f := (t) -> a0+a1*t+a2*t^2;
g := (t) -> b0+b1*t+b2*t^2;
d := expand(b(f,g) - 9*int(f(t)*g(t),t=-1..1));
_EnvExplicit := true;
solve({coeffs(d,{a0,a1,a2,b0,b1,b2}),q>0},{u,v,q});
```

Exercise 23. Investigate the Haar basis.

Solution:

Exercise 24. Define a linear map $\phi \colon \mathbb{R}[x]_{\leq 2} \to \mathbb{R}^3$ by

$$\phi(f) = \left[\int_0^1 f(x) \, dx, \int_1^2 f(x) \, dx, \int_2^3 f(x) \, dx\right]$$

Show that this is an isomorphism.

Solution: The effect of ϕ on the basis $1, x, x^2$ is as follows:

$$\phi(1) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$\phi(x) = \begin{bmatrix} 1/2 & 3/2 & 5/2 \end{bmatrix}$$

$$\phi(x^2) = \begin{bmatrix} 1/3 & 3 & 19/3 \end{bmatrix}$$

The matrix of ϕ with respect to the obvious bases is thus

$$A = \begin{bmatrix} 1 & 1/2 & 1/3 \\ 1 & 3/2 & 3 \\ 1 & 5/2 & 19/3 \end{bmatrix}.$$

By hand or by Maple, we can check that $det(A) = 2 \neq 0$, so A is an invertible matrix, so ϕ is an isomorphism.

Exercise 25. For each of the following lists of vectors, say (with justification) whether they are linearly independent, whether they span \mathbb{R}^3 , and whether they form a basis of \mathbb{R}^3 . (If you understand the concepts involved, you should be able to do this by eye, without any calculation.)

(a)
$$\mathbf{u}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 2\\4\\6 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 3\\9\\9 \end{bmatrix}.$$

(b) $\mathbf{v}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$
(c) $\mathbf{w}_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \mathbf{w}_2 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}.$
(d) $\mathbf{x}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \mathbf{x}_3 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}.$

Solution:

- (a) These are linearly dependent, because of the relation $\mathbf{u}_2 2\mathbf{u}_1 = 0$. In each of the \mathbf{u}_i 's the y coordinate is twice the x coordinate. This will therefore also be true for anything in the span of the \mathbf{u}_i 's. In particular, the vector $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ does not lie in the span, so the \mathbf{u}_i 's do not span all of \mathbb{R}^3 . This means that they do not form a basis.
- (b) Any list of four vectors in \mathbb{R}^3 is automatically linearly dependent (and so cannot form a basis). More specifically, the relation $\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 \mathbf{v}_4 = 0$ shows that the \mathbf{v}_i 's are dependent. These vectors span all of \mathbb{R}^3 , because any vector $\mathbf{a} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3$ can be expressed as $\mathbf{a} = x\mathbf{v}_1 + y\mathbf{v}_2 + z\mathbf{v}_3 + 0\mathbf{v}_4$.
- (c) A list of two vectors can only be linearly dependent if one is a multiple of the other, which is clearly not the case here, so \mathbf{w}_1 and \mathbf{w}_2 are linearly independent. Moreover, a list of two vectors can never span all of \mathbb{R}^3 . More explicitly, \mathbf{w}_1 and \mathbf{w}_2 both have *y*-coordinate equal to zero, so the same is true of anything in the span of \mathbf{w}_1 and \mathbf{w}_2 . In particular, $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ is not in the span. This shows that \mathbf{w}_1 and \mathbf{w}_2 do not form a basis of \mathbb{R}^3 .
- (d) The vectors \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 are linearly independent and span \mathbb{R}^3 , so they form a basis. One way to see this is to write down the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ whose columns are \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 , and observe that it row-reduces almost instantly to the identity. Alternatively, we must show that for any vector $\mathbf{a} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3$, there are unique real numbers λ, μ, ν such that

$$\begin{bmatrix} x\\ y\\ z \end{bmatrix} = \lambda \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + \mu \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix} + \nu \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}.$$

This equation is equivalent to $\lambda + \mu + \nu = x$ and $\lambda + \mu = y$ and $\lambda = z$. It is easy to see that there is indeed a unique solution, namely $\lambda = z$ and $\mu = y - z$ and $\nu = x - y$.

Exercise 26. Define a map $\pi \colon \mathbb{R}^3 \to \mathbb{R}^2$ by

$$\pi \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2x - y - z \\ \sqrt{3}(y - z) \end{bmatrix}$$

Investigate ker(π), image(π), π^* , $\pi\pi^*$, $\pi^*\pi$.

Solution: π is surjective, with kernel spanned by $[1, 1, 1]^T$. We have $\pi \pi^* = 6\iota_2$, and $\pi^* \pi = 6\iota_3 - 2\phi_J$, where $J_{ij} = 1$ for all i and j.