
VECTOR SPACES AND FOURIER THEORY — FURTHER EXERCISES

Exercise 1. Put

V = {(a, b, c, d) ∈ R4 | a+ b+ c+ d = 0}

Show that each of the following lists of vectors is a basis for V .

• u1 = (1, 0, 0,−1), u2 = (0, 1, 0,−1), u3 = (0, 0, 1,−1)
• v1 = (1,−1, 0, 0), v2 = (0, 1,−1, 0), v3 = (0, 0, 1,−1)
• w1 = (1, 1,−1,−1), w2 = (1,−1, 1,−1), w3 = (1,−1,−1, 1)

Solution: We first note that in every vector we have mentioned, the sum of the four coordinates is zero, so
all our vectors lie in V .

(a) Suppose we have a vector x = (a, b, c, d) ∈ V . We then have au1 + bu2 + cu3 = (a, b, c,−a − b − c)
but d = −a − b − c (because x ∈ V ) so x = au1 + bu2 + cu3. This shows that u1, u2 and u3 span
V . Next, as the first three entries in au1 + bu2 + cu3 are just a, b and c, the only way we can have
au1 + bu2 + cu3 = 0 is if a = b = c = 0. This shows that u1, u2 and u3 are linearly independent, so
they give a basis for V .

(b) Suppose again that x = (a, b, c, d) ∈ V . Then

av1 + (a+ b)v2 + (a+ b+ c)v3 = (a,−a, 0, 0) + (0, a+ b,−a− b, 0) + (0, 0, a+ b+ c,−a− b− c)
= (a, b, c,−a− b− c) = x.

This means that any x ∈ V is a linear combination of v1, v2 and v3, so these vectors span V . As
V has dimension 3 (by part (a)) and our spanning set has size 3, it is automatically a basis. More
explicitly, suppose that pv1 + qv2 = rv3 = 0. This means that (p, q − p, r − q,−r) = (0, 0, 0, 0), so
p = 0 and q = p and r = q and q = 0, so p = q = r = 0. This shows that v1, v2 and v3 are linearly
independent, and so form a basis.

(c) Note that u1 = (w1 + w2)/2 and u2 = (w1 − w3)/2 and u3 = (w2 − w3)/2. It follows that for
x = (a, b, c, d) ∈ V we have

x = au1 + bu2 + cu3 = 1
2 (a+ b+ c)w1 + 1

2 (a+ c)w2 − 1
2 (b+ c)w3,

so w1, w2 and w3 span V . As V has dimension 3 and our spanning set has size 3, it is automatically
a basis. More explicitly, suppose that pw1 + qw2 + rw3 = 0. This means that

(p+ q + r, p− q − r,−p+ q − r,−p− q + r) = (0, 0, 0, 0),

so

p+ q + r = 0

p− q − r = 0

−p+ q − r = 0

−p− q + r = 0

By adding the first equation to each of the other three, we see that p = q = r = 0. This shows that
w1, w2 and w3 are linearly independent, as claimed.

Exercise 2. Show that the following matrices give a basis for M2R:

W =

[
1 1
1 1

]
X =

[
1 1
−1 −1

]
Y =

[
1 −1
1 −1

]
Z =

[
1 −1
−1 1

]
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Solution: Suppose we have a matrix P =

[
p q
r s

]
, which we want to write as a linear combination of W ,

X, Y and Z, say [
p q
r s

]
= aW + bX + cY + dZ =

[
a+ b+ c+ d a+ b− c− d
a− b+ c− d a− b− c+ d

]
This is equivalent to the system of equations

p = a+ b+ c+ d

q = a+ b− c− d
r = a− b+ c− d
s = a− b− c+ d,

which have the unique solution

a = (p+ q + r + s)/4

b = (p+ q − r − s)/4
c = (p− q + r − s)/4
d = (p− q − r + s)/4.

This means that P can be written in a unique way as a linear combination of W , X, Y and Z, so these
matrices form a basis for M2R.

Exercise 3. Find p, q and r such that∫ 1

0

f(x) dx = pf(0) + qf(1/2) + rf(1)

for all f(x) ∈ R[x]≤2.

Solution: The answer is p = r = 1/6, q = 2/3.

Exercise 4. Put

V = {A ∈M3R | AT = A}
W = {A ∈M3R | trace(A) = 0}

Show that V +W = M3R, and find a basis for V ∩W .

Solution: If A ∈M3R, put t = trace(A)/3 and B = A− tI. We have trace(I) = 3 so trace(tI) = trace(A),
so trace(B) = 0, so B ∈ W . We also have tI ∈ V and A = tI + B so A ∈ V + W . This shows that
V +W = M3R.

Next, the matrices in V are those of the form

A =

a b c
b d e
c e f

 .
Such a matrix lies in V ∩W iff f = −a− d, so we have

A =

a b c
b d e
c e −a− d

 .
Now put

E1 =

1 0 0
0 0 0
0 0 −1

 E2 =

0 1 0
1 0 0
0 0 0

 E3 =

0 0 1
0 0 0
1 0 0

 E4 =

0 0 0
0 1 0
0 0 −1

 E5 =

0 0 0
0 0 1
0 1 0

 ,

so E1, . . . , E5 ∈ V ∩W . Our previous equation for A can now be written

A = aE1 + bE2 + cE3 + dE4 + eE5.

It follows that E1, . . . , E5 span V ∩W , and they are clearly linearly independent, so they form a basis.
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Exercise 5. Define subspaces V,W ≤ R6 as follows:

V = span((1, 1, 0, 0, 0, 0), (1, 1, 1, 1, 0, 0), (1, 1, 1, 1, 1, 1))

W = span((1, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 1)).

Find vectors u, v1, v2, w, x1, x2 such that

• {u} is a basis for V ∩W
• {u, v1, v2} is a basis for V
• {u,w} is a basis for W
• {u, v1, v2, w} is a basis for V +W
• {u, v1, v2, w, x1, x2} is a basis for R6.

Solution: First, we note that

V = {t ∈ R6 | t1 = t2, t3 = t4, t5 = t6}
W = {t ∈ R6 | t1 = t2 = t3 t4 = t5 = t6}

so

V ∩W = {t ∈ R6 | t1 = t2 = · · · = t6}
= span((1, 1, 1, 1, 1, 1))

We therefore take u = (1, 1, 1, 1, 1, 1). If we put v1 = (1, 1, 0, 0, 0, 0) and v2 = (0, 0, 1, 1, 0, 0) then it is
clear that u,v1 and v2 are linearly independent and span V , so they form a basis. Similarly, if we put
w = (1, 1, 1, 0, 0, 0) then u and w give a basis for W . It is automatic from this that {u, v1, v2, w} is a basis
for V +W . Finally, put x1 = (1, 0, 0, 0, 0, 0) and x2 = (0, 0, 0, 0, 0, 1). We then

au+ bv1 + cv2 + dw + ex1 + fx2 = (a+ b+ d+ e, a+ b+ d, a+ c+ d, a+ c, a, a+ f)

If this is zero then a = 0 (5th entry) so c = f = 0 (4th and 6th entries) so d = 0 (3rd entry) so b = 0 (2nd
entry) so e = 0 (1st entry). This shows that our six vectors are linearly independent, so they form a basis
for R6.

Exercise 6. Put U = {f ∈ C∞(R) | D(D − 1)(D − 2)(D − 3)f = 0} and V = {f ∈ U | f(0) = 0}. Give a
basis for V .

Solution: By standard theory of differential equations, we see that U is the set of functions of the form

f(x) = a0 + a1e
x + a2e

2x + a3e
3x

for some a0, . . . , a3 ∈ R. For such f we have f(0) = a0+a1+a2+a3, so f ∈ V iff we have a0 = −a1−a2−a3,
which means that

f(x) = a1(ex − 1) + a2(e2x − 1) + a3(e3x − 1).

It follows that the functions ex − 1, e2x − 1 and e3x − 1 give a basis for V .

Exercise 7. Let λ and ω be real numbers. Define functions fi ∈ C∞(R) by

f1(x) = eλx sin(ωx)

f2(x) = eλx cos(ωx)

f3(x) = xeλx sin(ωx)

f4(x) = xeλx cos(ωx).

You may assume that these are linearly independent, so they form a basis for the space V = span(f1, f2, f3, f4).
Show that Dfi ∈ V for i = 1, . . . , 4, and write down the matrix for D : V −→ V with respect to our basis.
Hence or otherwise, show that ((D − λ)2 + ω2)2 acts as zero on V .
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Solution: Using the product rule, we have

f ′1(x) = λeλx sin(ωx) + ωeλx cos(ωx) = λf1(x) + ωf2(x)

f ′2(x) = λeλx cos(ωx)− ωeλx sin(ωx) = −ωf1(x) + λf2(x)

f ′3(x) = eλx sin(ωx) + xλeλx sin(ωx) + xωeλx cos(ωx) = f1(x) + λf3(x) + ωf4(x)

f ′4(x) = eλx cos(ωx) + xλeλx cos(ωx)− xωeλx sin(ωx) = f2(x)− ωf3(x) + λf4(x)

It follows that the matrix of D is

A =


λ −ω 1 0
ω λ 0 1
0 0 λ −ω
0 0 ω λ

 .
This means that

(A− λI)2 + ω2I =


0 −ω 1 0
ω 0 0 1
0 0 0 −ω
0 0 ω 0


2

+


ω2 0 0 0
0 ω2 0 0
0 0 ω2 0
0 0 0 ω2

 =


0 0 0 −2ω
0 0 2ω 0
0 0 0 0
0 0 0 0


From this we see that ((A − λI)2 + ω2I)2 = 0. Moreover, this is the matrix of the linear map ((D − λ)2 +
ω)2 : V → V , so we see that this map is zero as claimed.

Exercise 8. Define a map T : M3R→M3R by

T

a b c
d e f
g h i

 =

b c f
a e i
d g h


so the entries in the matrix get moved around like this:

a b c

d e f

g h i

Find a basis for the kernel of T − 1. Write down the matrix of T with respect to a suitable basis of M3R,
and thus calculate the characteristic polynomial of T .

Solution: Consider a matrix A =

a b c
d e f
g h i

. We have A ∈ ker(T − 1) iff A = T (A), iff

a b c
d e f
g h i

 =

b c f
a e i
d g h


This means that a = b, b = c, c = f , d = a, f = i, g = d, h = g and i = h, which just means that
a = b = c = d = f = g = h = i (but e can be different). In other words, we have

A =

a a a
a e a
a a a

 = a

1 1 1
1 0 1
1 1 1

+ e

0 0 0
0 1 0
0 0 0


E1 =

1 0 0
0 0 0
0 0 0

 E2 =

0 0 0
1 0 0
0 0 0

 E3 =

0 0 0
0 0 0
1 0 0

 E4 =

0 0 0
0 0 0
0 1 0

 E5 =

0 0 0
0 0 0
0 0 1



E6 =

0 0 0
0 0 1
0 0 0

 E7 =

0 0 1
0 0 0
0 0 0

 E8 =

0 1 0
0 0 0
0 0 0

 E9 =

0 0 0
0 1 0
0 0 0
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These matrices form a basis for M3R, with the property that T (E1) = E2, T (E2) = E3, T (E3) = E4,
T (E4) = E5, T (E5) = E6, T (E6) = E7, T (E7) = E8, T (E8) = E1 and T (E9) = E9. The matrix of T with
respect to this basis is

U =



0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1


The characteristic polynomial of T is the determinant of tI − U , which is (t8 − 1)(t− 1).

Exercise 9. Let A be a 2× 2 matrix over the reals. Define a map µ : M2R −→ M2R by µ(X) = AX. Find
the matrix of M with respect to a suitable basis of M2R, and thus show that det(µ) = det(A)2.

Solution: Let A be

[
a b
c d

]
. The most convenient basis to use is as follows:

E1 =

[
1 0
0 0

]
E2 =

[
0 0
1 0

]
E3 =

[
0 1
0 0

]
E4 =

[
0 0
0 1

]
.

(It would be more usual to have E2 and E3 the other way around, but in this exercise that makes the picture
a little less clear.) We then have

µ(E1) = AE1 =

[
a 0
c 0

]
= aE1 + cE2

µ(E2) = AE2 =

[
b 0
d 0

]
= bE1 + dE2

µ(E3) = AE3 =

[
0 a
0 c

]
= aE3 + cE4

µ(E4) = AE4 =

[
0 b
0 d

]
= bE3 + cE4.

This means that the matrix of µ is

B =


a b 0 0
c d 0 0
0 0 a b
0 0 c d

 .
This gives

det(B) = a det

d 0 0
0 a b
0 c d

− bdet

c 0 0
0 a b
0 c d

 = addet

[
a b
c d

]
− bcdet

[
a b
c d

]
= (ad− bc)2 = det(A)2.

Exercise 10. Suppose we have vectors a = (u, v, w) and b = (x, y, z) in R3, with a 6= 0 6= b and 〈a, b〉 = 0.
Define matrices A, B and C by

A =

u2 uv uw
uv v2 vw
uw vw w2

 B =

x2 xy xz
xy y2 yz
xz yz z2

 C = A+B.

Show that image(C) = span{a, b}, and thus that rank(C) = 2.

Solution: For any vector p = (r, s, t) we have

Ar =

u2 uv uw
uv v2 vw
uw vw w2

rs
t

 =

u2r + uvs+ uwt
uvr + v2s+ vwt
uwr + vws+ w2t

 = (ur + vs+ wt)

uv
w

 = 〈a, p〉a.

Similarly, we have Bp = 〈b, p〉b, so

Cp = Ap+Bp = 〈a, p〉a+ 〈b, p〉b ∈ span{a, b}.
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It follows that image(C) ≤ span{a, b}. Now note that a 6= 0 so 〈a, a〉 > 0 so we can take p = a/〈a, a〉. As
〈a, b〉 = 0, the above gives

Cp = 〈a, a/〈a, a〉〉a = a,

which shows that a ∈ image(C). Similarly we see that b ∈ image(C), so any linear combination of a and b
must also lie in image(C), or in other words, image(C) ≤ span{a, b}. We have already proved the reverse
inclusion, so image(C) = span{a, b}. To complete the exercise we need to show that a and b are linearly
independent (so they give a basis for image(C), so rank(C) = dim(image(C)) = 2). Consider a linear relation
αa+ βb = 0. Taking the inner product with a gives

0 = 〈0, a〉 = 〈αa+ βb, a〉 = α〈a, a〉+ β〈a, b〉 = α‖a‖2.

As a 6= 0 we have ‖a‖2 > 0 and so we must have α = 0. Similarly we have β = 0, so a and b are linearly
independent, as required.

Exercise 11. For any real number a, we consider the matrix A =

 a a2 a4

a2 a2 a4

a4 a4 a4

. Find the determinant of

A, and factorise it. Using this as the first step, determine the rank of A for all a.

Solution: First, we have

det(A) = a det

[
a2 a4

a4 a4

]
− a2 det

[
a2 a4

a4 a4

]
+ a4 det

[
a2 a2

a4 a4

]
= (a− a2)(a6 − a8) = a7(1− a)2(1 + a).

If a 6∈ {0, 1,−1} we see that det(A) 6= 0 and so rank(A) = 3. If a = 0 then A is the zero matrix and
rank(A) = 0. If a = 1 then every entry in A is equal to one, so the image of A is spanned by the vector

(1, 1, 1), so rank(A) = 1. If a = −1 then A =

−1 1 1
1 1 1
1 1 1

, so the first two columns are linearly independent

but the third is equal to the second, which shows that rank(A) = 2. In conclusion, we have

rank(A) =


0 if a = 0

1 if a = 1

2 if a = −1

3 otherwise

Exercise 12. Suppose that u ∈ R3 and ‖u‖ = 1. Define φ : R3 −→ R × R3 by φ(x) = (〈u, x〉, u × x), and
define ψ : R× R3 by ψ(t, y) = tu− y. Simplify ψ(φ(x)), and deduce that ker(φ) = 0. Find ker(ψ).

Solution:

Exercise 13. Let A be a matrix of the form

[
p 1− p

1− q q

]
, with 0 < p, q < 1. Find an invertible matrix

P and a diagonal matrix D such that P−1AP = D.

Solution: The diagonal entries in D will be the eigenvalues of A, and the columns of P will be the
corresponding eigenvectors. To find these, we note that the characteristic polynomial is

det

[
t− p p− 1
q − 1 t− q

]
= (t− p)(t− q)− (p− 1)(q − 1) = t2 − pt− qt+ pq − pq + p+ q − 1

= t2 − (p+ q)t+ (p+ q − 1) = (t− 1)(t− p− q + 1).

The eigenvalues are thus 1 and p+ q − 1, so D =

[
p+ q − 1 0

0 1

]
. It is easy to see that [ 11 ] is an eigenvector

of eigenvalue 1. Next, put

B = (p+ q − 1)I −A =

[
q − 1 p− 1
q − 1 p− 1

]
.
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We see that B
[ 1−p
q−1

]
= [ 00 ], so

[ 1−p
q−1

]
is an eigenvector of A with eigenvalue p+ q− 1. Our matrix P is thus[

1− p 1
q − 1 1

]
. As a check, we note that det(P ) = 2− p− q (which is nonzero, as 0 < p, q < 1) and so

P−1 =
1

2− p− q

[
1 −1

1− q 1− p

]
.

Exercise 14. Define

V = {f ∈ R[x]≤2 |
∫ 0

−1
f(x) dx = 0}

W = {f ∈ R[x]≤2 |
∫ 1

0

f(x) dx = 0}.

Find bases for V , W and V ∩W . Show that V +W = R[x]≤2.

Solution: We find that

V = {ax2 + bx+ c | a/3− b/2 + c = 0}
W = {ax2 + bx+ c | a/3 + b/2 + c = 0}.

It follows that {1− 3x2, 1 + 2x} is a basis for V , and {1− 3x2, 1− 2x} is a basis for W , and {1− 3x2} is a
basis for V ∩W .

Exercise 15. Put

V = {A ∈M2R | A
[
1
1

]
= 0}

W = {A ∈M2R |
[
1 1

]
A = 0}.

Find bases for V , W and V ∩W .

Solution: Consider a matrix A =

[
a b
c d

]
. We have A ∈ V iff

[
a+ b
c+ d

]
=

[
0
0

]
, or equivalently b = −a and

d = −c. In that case we have

A =

[
a −a
c −c

]
= a

[
1 −1
0 0

]
+ c

[
0 0
1 −1

]
.

Using this, we see that the matrices P1 =

[
1 −1
0 0

]
and P2 =

[
0 0
1 −1

]
give a basis for V . Similarly, we have[

1 1
]
A =

[
a+ c b+ d

]
, which vanishes iff A has the form

A =

[
a b
−a −b

]
= a

[
1 0
−1 0

]
+ b

[
0 1
0 −1

]
.

Using this, we see that the matrices Q1 =

[
1 0
−1 0

]
and Q2 =

[
0 1
0 −1

]
give a basis for W . Finally, we see

that A ∈ V ∩W iff b = −a and d = −c and c = −a and d = −b, or equivalently a = d = −b = −c, which

means that A = a

[
1 −1
−1 1

]
. It follows that the single matrix

[
1 −1
−1 1

]
= P1−P2 = Q1−Q2 gives a basis

for V ∩W .

Exercise 16. For each k > 0 we define rk ∈ C[0, 1] by rk(x) = 1/(x + k). Show that these are linearly
independent in C[0, 1].

Solution: Find a good proof not using analytic continuation, and include some hints in the
question.
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Exercise 17. Put

V = { symmetric 3× 3 real matrices }
= {A ∈M3R | AT = A}

W = { homogeneous quadratic polynomials in x, y, z}
= {px2 + qxy + rxz + sy2 + tyz + uz2 | p, . . . , u ∈ R}.

Define φ : V →W by

φ(A) =
[
x y z

]
A

xy
z


Show that this is an isomorphism.

Solution: Any element A ∈ V has the form

A =

a b c
b d e
c e f

 .
For such A we have

φ(A) =
[
x y z

] a b c
b d e
c e f

xy
z

 = ax2 + 2bxy + 2cxz + dy2 + 2eyz + fz2

Now define ψ : W → V by

ψ(px2 + qxy + rxz + sy2 + tyz + uz2) =

 p q/2 r/2
q/2 s t/2
r/2 t/2 u

 .
We find that ψ(φ(A)) = A for all A ∈ V , and φ(ψ(Q)) = Q for all Q ∈W , so φ and ψ are isomorphisms.

Exercise 18. Let V0 be the set of functions f(x) of the form

a0 + a1 ln(x) + a2 ln(x)2 + · · ·+ an ln(x)n

for some n ≥ 0 and some constants a0, . . . , an ∈ R. In other words, the functions in V0 have the form
p(ln(x)) for some polynomial p(t) ∈ R[t]. Next, let Vm be the set of functions of the form xmp(ln(x)) for
some polynomial p, so for example, the function f(x) = x2(1 + ln(x) + 9 ln(x)4) is a typical element of V2.
Show that differentiation gives a homomorphism D : Vm → Vm−1, which is an isomorphism except when
m = 0.

Solution:

Exercise 19. Define a map

φ : R[x, y]≤2 → R[x]≤2 × R[x]≤2

by

φ(f)(x) = (f(x, x), f(x,−x)).

Find bases for the kernel and image of φ.

Solution: The space ker(φ) is one-dimensional, with basis {x2 − y2}. The elements

(1, 1), (x, 0), (0, x), (x,0), (0, x2)

give a basis for image(φ).

Exercise 20. Define a map H : R[x, y]≤2 −→M2R (called the Hessian) by

H(u) =

[
uxx(0, 0) uxy(0, 0)
uxy(0, 0) uyy(0, 0)

]
Find bases for ker(H) and image(H).
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Solution: Any element of u ∈ R[x, y]≤2 has the form

u(x, y) = a+ bx+ cy + dx2 + exy + fy2

for some a, b, . . . , f ∈ R. We then have

H(u) =

[
2d e
e 2f

]
= 2d

[
1 0
0 0

]
+ e

[
0 1
1 0

]
+ 2f

[
0 0
0 1

]
.

It follows that the matrices

[
1 0
0 0

]
,

[
0 1
1 0

]
and

[
0 0
0 1

]
give a basis for image(H). In the above we have

H(u) = 0 iff d = e = f = 0, or equivalently, u actually has degree ≤ 1. This means that {1, x, y} is a basis
for ker(H).

Exercise 21. Give a basis for the space

V = {A ∈M3R | A = AT and trace(A) = 0}.

Solution: Any matrix A ∈M2R lies in V iff it has the form

A =
[
a b c
b d e
c e −a−d

]
= a

[
1 0 0
0 0 0
0 0 −1

]
+ b

[
0 1 0
1 0 0
0 0 0

]
+ c

[
0 0 1
0 0 0
1 0 0

]
+ d

[
0 0 0
0 1 0
0 0 −1

]
for some a, b, c, d ∈ R. It follows that the matrices[

1 0 0
0 0 0
0 0 −1

]
,
[
0 1 0
1 0 0
0 0 0

]
,
[
0 0 1
0 0 0
1 0 0

]
,
[
0 0 0
0 1 0
0 0 −1

]
span V , and they are clearly linearly independent, so they form a basis for V .

Exercise 22. Suppose we are given u, v, q > 0. Define a bilinear form on R[x]≤2 by

〈f, g〉 = uf(−q)g(−q) + vf(0)g(0) + uf(q)g(q).

Show that this is an inner product. Find u, v and q such that 〈f, g〉 = 9
∫ 1

−1 f(t)g(t) dt for all f, g ∈ R[x]≤2.

Solution: The solution is u = 5, v = 8 and q =
√

3/5 =
√

15/5. This can be found using Maple with the
following steps:

b := (f,g) -> u*f(-q)*g(-q) + v * f(0)*g(0) + u*f(q)*g(q);

f := (t) -> a0+a1*t+a2*t^2;

g := (t) -> b0+b1*t+b2*t^2;

d := expand(b(f,g) - 9*int(f(t)*g(t),t=-1..1));

_EnvExplicit := true;

solve({coeffs(d,{a0,a1,a2,b0,b1,b2}),q>0},{u,v,q});

Exercise 23. Investigate the Haar basis.

Solution:

Exercise 24. Define a linear map φ : R[x]≤2 −→ R3 by

φ(f) = [
∫ 1
0
f(x) dx,

∫ 2
1
f(x) dx,

∫ 3
2
f(x) dx ]

Show that this is an isomorphism.

Solution: The effect of φ on the basis 1, x, x2 is as follows:

φ(1) =
[
1 1 1

]
φ(x) =

[
1/2 3/2 5/2

]
φ(x2) =

[
1/3 3 19/3

]
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The matrix of φ with respect to the obvious bases is thus

A =

1 1/2 1/3
1 3/2 3
1 5/2 19/3

 .
By hand or by Maple, we can check that det(A) = 2 6= 0, so A is an invertible matrix, so φ is an isomorphism.

Exercise 25. For each of the following lists of vectors, say (with justification) whether they are linearly
independent, whether they span R3, and whether they form a basis of R3. (If you understand the concepts
involved, you should be able to do this by eye, without any calculation.)

(a) u1 =
[
1
2
3

]
, u2 =

[
2
4
6

]
, u3 =

[
3
6
9

]
.

(b) v1 =
[
1
0
0

]
, v2 =

[
0
1
0

]
, v3 =

[
0
0
1

]
, v4 =

[
1
1
1

]
.

(c) w1 =
[
1
0
1

]
, w2 =

[
1
0
−1

]
.

(d) x1 =
[
1
1
1

]
, x2 =

[
1
1
0

]
, x3 =

[
1
0
0

]
.

Solution:

(a) These are linearly dependent, because of the relation u2 − 2u1 = 0. In each of the ui’s the y
coordinate is twice the x coordinate. This will therefore also be true for anything in the span of the

ui’s. In particular, the vector
[
1
0
0

]
does not lie in the span, so the ui’s do not span all of R3. This

means that they do not form a basis.
(b) Any list of four vectors in R3 is automatically linearly dependent (and so cannot form a basis). More

specifically, the relation v1 + v2 + v3 − v4 = 0 shows that the vi’s are dependent. These vectors

span all of R3, because any vector a =
[
x
y
z

]
∈ R3 can be expressed as a = xv1 + yv2 + zv3 + 0v4.

(c) A list of two vectors can only be linearly dependent if one is a multiple of the other, which is clearly
not the case here, so w1 and w2 are linearly independent. Moreover, a list of two vectors can never
span all of R3. More explicitly, w1 and w2 both have y-coordinate equal to zero, so the same is true

of anything in the span of w1 and w2. In particular,
[
0
1
0

]
is not in the span. This shows that w1

and w2 do not form a basis of R3.
(d) The vectors x1, x2 and x3 are linearly independent and span R3, so they form a basis. One way

to see this is to write down the matrix A =
[
1 1 1
1 1 0
1 0 0

]
whose columns are x1, x2 and x3, and observe

that it row-reduces almost instantly to the identity. Alternatively, we must show that for any vector

a =
[
x
y
z

]
∈ R3, there are unique real numbers λ, µ, ν such that[

x
y
z

]
= λ

[
1
1
1

]
+ µ

[
1
1
0

]
+ ν

[
1
0
0

]
.

This equation is equivalent to λ+ µ+ ν = x and λ+ µ = y and λ = z. It is easy to see that there is
indeed a unique solution, namely λ = z and µ = y − z and ν = x− y.

Exercise 26. Define a map π : R3 → R2 by

π
[
x
y
z

]
=
[

2x−y−z√
3(y−z)

]
Investigate ker(π), image(π), π∗, ππ∗, π∗π.

Solution: π is surjective, with kernel spanned by [1, 1, 1]T . We have ππ∗ = 6ι2, and π∗π = 6ι3−2φJ , where
Jij = 1 for all i and j.
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