VECTOR SPACES AND FOURIER THEORY — FURTHER EXERCISES

Exercise 1. Put

V ={(a,b,c,d) eR*|a+b+c+d=0}

Show that each of the following lists of vectors is a basis for V.

uy = (15070771)7 (Oa 170 ) = (0 0717 )
U1 = (17_1a070)7 ( 0,1,— ) (0 0,1,— )
wi = (1,1,-1, 1), wo = (1, ) ws = (1,-1,~1,1)

Solution: We first note that in every vector we have mentioned, the sum of the four coordinates is zero, so
all our vectors lie in V.

(a)

(b)

Suppose we have a vector x = (a,b,c,d) € V. We then have auy + bug + cuz = (a,b, ¢, —a — b — ¢)
but d = —a — b — ¢ (because & € V) so x = auy + bug 4+ cug. This shows that u1, us and us span
V. Next, as the first three entries in au; + bus + cug are just a, b and ¢, the only way we can have
auy + bug + cuz = 01is if a = b = ¢ = 0. This shows that u;, us and ug are linearly independent, so
they give a basis for V.

Suppose again that = (a,b,¢,d) € V. Then

avy + (a4 b)vg + (a + b+ c)vs = (a,—a,0,0) + (0,a + b,—a — b,0) + (0,0,a+b+c,—a —b—c)

= (a,b,c,—a—b—c) =u=z.

This means that any x € V is a linear combination of vy, vy and vz, so these vectors span V. As
V has dimension 3 (by part (a)) and our spanning set has size 3, it is automatically a basis. More
explicitly, suppose that pv; + qua = rvs = 0. This means that (p,q — p,r — ¢,—r) = (0,0,0,0), so

p=0and g=pand r =q and ¢ =0, so p =g = r = 0. This shows that v{, v and v3 are linearly

independent, and so form a basis.
Note that u; = (wy + w2)/2 and uy = (w1 — w3)/2 and uz = (wy — ws)/2. It follows that for
x = (a,b,c,d) € V we have

@ = auy + buy + cuz = 3(a+ b+ c)wi + §(a+ c)wz — (b + c)ws,

so wi, wy and wg span V. As V has dimension 3 and our spanning set has size 3, it is automatically
a basis. More explicitly, suppose that pw; + qws + rws = 0. This means that

p+q+r,p—q—r,—p+q—r,—p—q+r)=1(0,0,0,0),

SO
p+qg+r=0
p—q—r=0
—p+q—r=0
—p—q+r=0

By adding the first equation to each of the other three, we see that p = ¢ = r = 0. This shows that
w1, we and wsg are linearly independent, as claimed.

Exercise 2. Show that the following matrices give a basis for MsR:

N



Solution: Suppose we have a matrix P = {f ﬂ, which we want to write as a linear combination of W,

X,Y and Z, say
at+b+c+d a+b—c—d

p q| _ _
[ s}_aW—i_bX—i_CY—i_dZ_{aqucd a—b—c+d

r
This is equivalent to the system of equations
p=a+b+c+d
g=a+b—c—d
r=a—b+c—d
s=a—b—c+d,
which have the unique solution
a=(p+qg+tr+s)/4
b=(p+qg—r—13s)/4
c=(—q+r—s)/4
d=(p—q—r+s)/4
This means that P can be written in a unique way as a linear combination of W, X, Y and Z, so these

matrices form a basis for M>R.

Exercise 3. Find p, ¢ and r such that

[ 5o = 1) +as1/2) 4101
for all f(z) € Rlz]<2.
Solution: The answer is p=r =1/6, ¢ = 2/3.
Exercise 4. Put
V={AeMR|AT = A}
W ={A € MsR | trace(4) = 0}
Show that V + W = M3R, and find a basis for VN W.

Solution: If A € M3R, put t = trace(A4)/3 and B = A — tI. We have trace(I) = 3 so trace(t]) = trace(A),
so trace(B) = 0, so B € W. We also have tI € V and A = ¢t + B so A € V + W. This shows that
V+W = MsR.

Next, the matrices in V' are those of the form

a b
A=1b d e
c e f

Such a matrix lies in VN W iff f = —a — d, so we have
a b c
A=|b d e
c e —a—d
Now put
{1 o} {0 1 0} {0 0 1} [0 0 0} {
Ey = |0 0 Ex=|1 0 o0 Es=|0 0 o0 Es= |0 1 0 Es =
0 —1 0 0 0 1 0 0 0 0 —1

so Fy,...,FE5 € VN W. Our previous equation for A can now be written
A= aE1 + bE2 + CEg + dE4 + 6E5.

oo o

It follows that Fjy,..., E5 span VN W, and they are clearly linearly independent, so they form a basis.
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Exercise 5. Define subspaces V, W < RS as follows:

V =span((1,1,0,0,0,0), (1,1,1,1,0,0),(1,1,1,1,1,1))
W =span((1,1,1,0,0,0),(0,0,0,1,1,1)).

Find vectors u, vy, v, w, x1, To such that
{u} is a basis for VW

{u,v1,v2} is a basis for V'

{u, w} is a basis for W

{u,v1, v, w} is a basis for V.+ W
{u,v1,v2,w, 21,22} is a basis for RS,

Solution: First, we note that
V={teR® |ty =ty t3 =14, t5 = t6}
W={teR0 |ty =ty =t3ty=1t5=ts}
SO
VAW ={teR®|t; =ty =--- =14}
=span((1,1,1,1,1,1))

We therefore take v = (1,1,1,1,1,1). If we put v; = (1,1,0,0,0,0) and vs = (0,0,1,1,0,0) then it is
clear that u v; and vy are linearly independent and span V, so they form a basis. Similarly, if we put
w = (1,1,1,0,0,0) then v and w give a basis for W. It is automatic from this that {u,v1,ve, w} is a basis
for V. + W. Finally, put z; = (1,0,0,0,0,0) and 25 = (0,0,0,0,0,1). We then

au+bvy +cvo +dw+exy + frao=(a+b+d+ea+b+da+c+d,a+ca,a+ f)

If this is zero then a = 0 (5th entry) so ¢ = f = 0 (4th and 6th entries) so d = 0 (3rd entry) so b = 0 (2nd
entry) so e = 0 (1st entry). This shows that our six vectors are linearly independent, so they form a basis
for RS,

Exercise 6. Put U = {f e C*°(R) | D(D —1)(D —-2)(D—-3)f =0} and V ={f € U | f(0) = 0}. Give a
basis for V.

Solution: By standard theory of differential equations, we see that U is the set of functions of the form
f(z) = ag + a1e” + aze®® + aze®”

for some ag, . ..,as3 € R. For such f we have f(0) = ag+a1+as+as, so f € V iff we have ag = —a; —as —ag,
which means that

f(z) = a1(e” = 1) + az(e*” — 1) + ag(e’ — 1).

It follows that the functions e — 1, €2* — 1 and e3® — 1 give a basis for V.

Exercise 7. Let A and w be real numbers. Define functions f; € C*°(R) by

fi(z) = e sin(wz)
fa(z) = e cos(wz)
f3(z) = e sin(wz)
fa(x) = 2e ™ cos(wz).

You may assume that these are linearly independent, so they form a basis for the space V' = span( f1, fa, f3, f4).
Show that Df; € V for i = 1,...,4, and write down the matrix for D: V — V with respect to our basis.
Hence or otherwise, show that ((D — \)? + w?)? acts as zero on V.
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Solution: Using the product rule, we have

fi(z) = Xe M sin(wz) + we cos(wz) = My (x) + wio(x)

fh(x) = Xe™ cos(wz) — wer sin(wz) = —wfi(z) + Ma(z)
fi(x) = e sin(wz) + zXe  sin(wz) + zwe cos(wz) = f1(z) + Afs(x) + wfs(z)
fi(x) = e cos(wz) + zAe™ cos(wz) — zwe sin(wz) = fa(z) — ws(z) + Afa(x)
It follows that the matrix of D is
A —w 1 0
w A 0 1
A= 0 0 AN —w
0 0 w A
This means that
0 —w 1 0% [«* 0 0 0 00 0 —2w
2,2 w00 1 0 w2 0 0] |00 2w 0
U=ADP+e =10 g 0 | Tlo 0 & o] {00 0 o
0 0 w O 0 0 0 w? 0 0 0 0

From this we see that ((A — AI)? + w?I)? = 0. Moreover, this is the matrix of the linear map ((D — \)? +
w)?: V — V, so we see that this map is zero as claimed.

Exercise 8. Define a map T': M3R — M3R by

a b ¢ b ¢ f
T(d e fl=1|a e i
g h i d g h

so the entries in the matrix get moved around like this:

a+——ph——cC

| T

d e f

| T

g—h—1

Find a basis for the kernel of T'— 1. Write down the matrix of T" with respect to a suitable basis of M3R,
and thus calculate the characteristic polynomial of 7.

a b c
Solution: Consider a matrix A= |d e f|. We have A € ker(T — 1) iff A=T(A), iff
g h 1
a b c b ¢ f

d e fl=1|a e i
g h i d g h

This means that a = b, b =c¢,c = f,d=a, f =i, g = d, h = g and i = h, which just means that
a=b=c=d=f=g=h=1i (but e can be different). In other words, we have

a a a 1 1 1 0 0 O
A=|a e al=a|l 0 1| +e|0 1 O
a a 1 1 1 0 0 O
{1 0 o] {0 0 0} [0 0 0} [0 0 0} [0 0 0]
Ey=1]0 0 0 Ex= 1|1 0 0 Ez3=1|0 0 0 Es=1|0 0 0 Es=]0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
[0 0 0} [0 0 1} {0 1 0} [0 0 0}
Eg= |0 0 1 E;=]0 0 0 Eg=1|0 0 0 Eg=1|0 1 0
0 0 0 0 0 0 0 0 0 0 0 0



These matrices form a basis for M3R, with the property that T(Ey) = FEa, T(F2) = Es, T(E;) = Ej,
T(E4) = Es, T(Es) = Eg, T(FEg) = Er, T(E;) = Eg, T(Eg) = E; and T(Ey) = Ey. The matrix of T with
respect to this basis is

G

Il
[eNeoloNoNoNoNel e}
[eNeoleNoNeNol leNe}
OO0 Q0oOO0OHOOO
[eNoNeNoltNoNoRoNo}
OO0OO0OROOOOO
[Nl NoleNoNeNoNe}
[=R N eNoleNoleNole}]
[=NeNelelelelelall
EleleNoloNoNeNole}

The characteristic polynomial of T is the determinant of tI — U, which is (8 — 1)(¢t — 1).

Exercise 9. Let A be a 2 x 2 matrix over the reals. Define a map p: MaR — MR by pu(X) = AX. Find
the matrix of M with respect to a suitable basis of M>R, and thus show that det(u) = det(A)2.

Solution: Let A be [CCL Z} . The most convenient basis to use is as follows:
1 0 0 0 0 1 0 0
O O B VO e O IR

(It would be more usual to have E5 and E3 the other way around, but in this exercise that makes the picture
a little less clear.) We then have

,LL(El) = AEl = Z 8 = aE1 + CE2
b o]
‘LL(EQ) = AEQ = d 0 = bE1 + dEQ
0 ol
/J(Eg,) = AE3 = 0 ¢ = CI,E3 + CE4
0 5]
,U(E4) = AE4 = 0 d = bE3 + CE4.
This means that the matrix of u is
a b 0 0
c d 0 0
B= 0 0 a b
0 0 ¢ d
This gives
d 0 0 c 0 0 o b o b
det(B) =adet |0 a b| —bdet |0 a b| = addet [C d] — bedet [C d] = (ad — bec)? = det(A)2.
0 ¢ d 0 ¢ d

Exercise 10. Suppose we have vectors a = (u,v,w) and b = (z,y,2) in R?, with a # 0 # b and (a,b) = 0.
Define matrices A, B and C by
2 2

ut uv  uw x° xy xz
A= |w ¥ ww B=|zy 3*> yz C=A+B.
ww  vw  w? rz yz 2°

Show that image(C') = span{a, b}, and thus that rank(C) = 2.

Solution: For any vector p = (r, s,t) we have

W ww  uw w?r + uvs + uwt

T U
Ar=|uww v? ow| |s| = | uwor +vis+ovwt | = (ur +vs+wt) |v| = (a,p)a.
t w

ww vw  w? wwr + vws + w3t

Similarly, we have Bp = (b, p)b, so

Cp= Ap+ Bp = (a,p)a + (b, p)b € span{a, b}.
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It follows that image(C) < span{a,b}. Now note that a # 0 so (a,a) > 0 so we can take p = a/(a,a). As
{a,by = 0, the above gives
Cp = (a,a/{a,a))a = a,

which shows that a € image(C). Similarly we see that b € image(C), so any linear combination of a and b
must also lie in image(C), or in other words, image(C') < span{a,b}. We have already proved the reverse
inclusion, so image(C) = span{a,b}. To complete the exercise we need to show that a and b are linearly
independent (so they give a basis for image(C'), so rank(C') = dim(image(C')) = 2). Consider a linear relation
aa + Bb = 0. Taking the inner product with a gives

0 = (0,a) = (aa + pb,a) = ala, a) + Bla,b) = alla|*.

As a # 0 we have |la/|? > 0 and so we must have o = 0. Similarly we have 8 = 0, so a and b are linearly
independent, as required.
a a® a
Exercise 11. For any real number a, we consider the matrix A = [a? a? a*|. Find the determinant of
4 4 4
a* a* a

A, and factorise it. Using this as the first step, determine the rank of A for all a.

Solution: First, we have
2 4 2 4 2 2
det(A) = adet [24 34} —a®det [24 34] + a* det [24 24] =(a—a*)(a® —a®) =a"(1 —a)*(1 +a).

If a ¢ {0,1,—1} we see that det(A) # 0 and so rank(A) = 3. If @ = 0 then A is the zero matrix and
rank(A) = 0. If a = 1 then every entry in A is equal to one, so the image of A is spanned by the vector

-1 1 1
(1,1,1),sorank(A) =1. Ifa=—-1then A= | 1 1 1], so the first two columns are linearly independent
1 1 1
but the third is equal to the second, which shows that rank(A) = 2. In conclusion, we have
0 ifa=0
1 ifa=1
rank(A) = 1 “
2 ifa=-1
3 otherwise

Exercise 12. Suppose that u € R? and |lu|| = 1. Define ¢: R> — R x R? by ¢(x) = ((u,x),u x ), and
define 1: R x R? by v (t,y) = tu — y. Simplify ¥(¢(x)), and deduce that ker(¢) = 0. Find ker(1)).

Solution:

p
1—¢q
P and a diagonal matrix D such that P~'AP = D.

. . 1—- . . . . .
Exercise 13. Let A be a matrix of the form { q p} , with 0 < p,q < 1. Find an invertible matrix

Solution: The diagonal entries in D will be the eigenvalues of A, and the columns of P will be the
corresponding eigenvectors. To find these, we note that the characteristic polynomial is

det[éi]i ’Zij]=<t—p><t—q>—<p—1><q_1):t2_pt_qt+pq_pq+p+q_l
=t —(p+t+p+g-1)=0t-Dt-p—q+1).

p+qg—1 0

The eigenvalues are thus 1 and p4+¢q—1,s0 D = [ 0 J . Tt is easy to see that [1] is an eigenvector

of eigenvalue 1. Next, put

_ _ A qg—1 p—1
B=(p+q-1)I A—|:q1 pl]'
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We see that B [2:11’] =1[9], so [l_p} is an eigenvector of A with eigenvalue p + ¢ — 1. Our matrix P is thus

qg—1
[1 —-p 1

g1 J . As a check, we note that det(P) = 2 — p — ¢ (which is nonzero, as 0 < p,q < 1) and so

1 1 -1
pl=_— :
2—p—q{1—q I—P}

Exercise 14. Define

V= {f € Rlz]<s | /_1f(x)da;:O}

1
W={f€Rids | [ f(o)ds =0},
0
Find bases for V, W and V N W. Show that V + W = Rx]<s.
Solution: We find that
V={ax’+bx+c|la/3—-b/2+c=0}
W = {ax® +br +c|a/3+b/2+c=0}.

It follows that {1 — 3221 + 2z} is a basis for V, and {1 — 3221 — 2z} is a basis for W, and {1 — 32%} is a
basis for VN W.

Exercise 15. Put
V{AeMQRAm — 0}
W={AeMR|[1 1]A=0}.
Find bases for V, W and VN W.

Solution: Consider a matrix A = {Z Z} We have A € V iff [Zi_ﬂ = {8], or equivalently b = —a and
d = —c. In that case we have
a —a 1 -1 0 0
S R ) R
Using this, we see that the matrices P; = Ll) _01} and P, = {(1) _OJ give a basis for V. Similarly, we have

[1 1] A= [a +c b+ d], which vanishes iff A has the form

a b 1 0 0 1
=l Sl g el A
. . . 1 0 0
Using this, we see that the matrices ()1 = {_1 0} and Qg = [0
that Ac VNWiff b= —a and d = —c and ¢ = —a and d = —b, or equivalently a = d = —b = —¢, which

11 —11} . It follows that the single matrix [ 1 —1} =P, — Py = Q1 — Q> gives a basis

_11] give a basis for W. Finally, we see
means that A = a [_ 1
for VAW.

Exercise 16. For each k > 0 we define 1, € C[0,1] by ri(z) = 1/(x + k). Show that these are linearly
independent in C10, 1].

Solution: Find a good proof not using analytic continuation, and include some hints in the
question.
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Exercise 17. Put
V = { symmetric 3 x 3 real matrices }
={Aec MzR | AT = A}
W = { homogeneous quadratic polynomials in z,y, z}
= {pa® + qry + rez + sy® +tyz +u? | p,...,u € R}
Define ¢: V. — W by

Show that this is an isomorphism.

Solution: Any element A € V has the form

a b ¢
A=1|b d e
c e f
For such A we have
a b c| |z
¢(A):[gg y z} b d el |y| =ax®+ 2bzy + 2caxz + dy? + 2eyz + f22
c e f| |z
Now define ¢p: W — V by
P q/2 r/2
Y(px? 4+ qry +rez +sy? +Ftyz +u) = [¢/2 s t)2
r/2 t/2 wu

We find that ¢ (¢(A)) = A for all A € V, and ¢(¢(Q)) = Q for all Q € W, so ¢ and ¢ are isomorphisms.
Exercise 18. Let V) be the set of functions f(z) of the form
ao + a1 In(z) + agIn(x)?® + --- + a, In(x)"

for some n > 0 and some constants aq,...,a, € R. In other words, the functions in Vi have the form
p(In(z)) for some polynomial p(t) € R[t]. Next, let V,, be the set of functions of the form 2™ p(ln(x)) for
some polynomial p, so for example, the function f(x) = 2?(1 + In(z) + 91In(z)?) is a typical element of V5.
Show that differentiation gives a homomorphism D: V,,, — V,,_1, which is an isomorphism except when
m = 0.

Solution:

Exercise 19. Define a map
¢: Rz, yl<o = Rlz]<o X Rlz]<2
by
o(f)(@) = (f(z,2), f(z, —2)).
Find bases for the kernel and image of ¢.
Solution: The space ker(¢) is one-dimensional, with basis {#? — y?}. The elements
(17 1)’ (x7 0)7 (0’ ':I;)7 (1"0)7 (07 x2)
give a basis for image(¢).
Exercise 20. Define a map H: Rz, y]<a — M3R (called the Hessian) by

Uz (0,0)  ugy(0,0)

H(uw) = gy (0,0) 1y, (0,0)

Find bases for ker(H) and image(H ).



Solution: Any element of u € R[x,y]<2 has the form
u(z,y) = a + bx + cy + de* + exy + fy°
for some a,b, ..., f € R. We then have

H(u)z[zed ;f}:Qd[(l) 8}+e[(1) (1)}+2f[8 ﬂ

It follows that the matrices Ll) 8}, [(1) (1)] and {8 ﬂ give a basis for image(H). In the above we have

H(u)=0iff d = e = f =0, or equivalently, u actually has degree < 1. This means that {1,z,y} is a basis
for ker(H).

Exercise 21. Give a basis for the space
V={Aec MsR| A= AT and trace(A) = 0}.
Solution: Any matrix A € M>3R lies in V iff it has the form

ab c
A:{bd e }
c a—d

0

e _
o488 ]+ [238] +e[304] + a8 8]
%60 000 “1700 00 -1
for some a,b,c,d € R. It follows that the matrices

100 010 001 0
000 |,|100|,|000], 0
00 -1 000 100 -1

span V', and they are clearly linearly independent, so they form a basis for V.

ooo
o—=Oo

Exercise 22. Suppose we are given u,v,q > 0. Define a bilinear form on Rlz]<s by

(f,9) = uf(=@)g9(=q) + v f(0)g(0) + uf(q)g(q)-
Show that this is an inner product. Find w, v and ¢ such that (f, g) = 9f711 f(t)g(t)dt for all f,g € Rlz]<o.

Solution: The solution is u =5, v = 8 and ¢ = \/V = /15/5. This can be found using Maple with the
following steps:

b := (£,g) —> wxf(-q)*g(-q) + v * £(0)*g(0) + uxf(q)*g(q);

f = (t) -> al0+alxt+a2*t~2;

g = (t) -> bO+blxt+b2*t~2;

d := expand(b(f,g) - 9*int(£f(t)*g(t),t=-1..1));

_EnvExplicit := true;

solve({coeffs(d,{a0,al,a2,b0,b1,b2}),9>0},{u,v,q});

Exercise 23. Investigate the Haar basis.
Solution:
Exercise 24. Define a linear map ¢: R[z]<2 — R3 by
o(f) = [ o f@)de, [? f(2) du, [} f(x)dz]
Show that this is an isomorphism.
Solution: The effect of ¢ on the basis 1, z, 22 is as follows:
o()=[1 1 1]
o(x)=[1/2 3/2 5/2]
o(z*)=[1/3 3 19/3]
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The matrix of ¢ with respect to the obvious bases is thus

1 1/2 1/3
A=|1 3/2 3
1 5/2 19/3

By hand or by Maple, we can check that det(A) = 2 # 0, so A is an invertible matrix, so ¢ is an isomorphism.

Exercise 25. For each of the following lists of vectors, say (with justification) whether they are linearly
independent, whether they span R*, and whether they form a basis of R3. (If you understand the concepts
involved, you should be able to do this by eye, without any calculation.)

17 M2 M3
(a)u1:§,u2:é,u3:8.

17 0] "0 1
(b) vi=|0|,va= 1], V3= g}wzm.
@w=[t]w=[4]
c) wy = Wy =

1 0, W2 0

17 17 M

(d) x1 = Ty xe= 1], x3= 8}
Solution:

(a)

These are linearly dependent, because of the relation ug — 2u; = 0. In each of the u;’s the y
coordinate is twice the x coordinate. This will therefore also be true for anything in the span of the

u;’s. In particular, the vector {é} does not lie in the span, so the u;’s do not span all of R3. This
means that they do not form a basis.

Any list of four vectors in R? is automatically linearly dependent (and so cannot form a basis). More
specifically, the relation v; + vo + v3 — v4 = 0 shows that the v;’s are dependent. These vectors
span all of R3, because any vector a = [é} € R3 can be expressed as a = xv; + yvy + 2v3 + 0vy.
A list of two vectors can only be linearly dependent if one is a multiple of the other, which is clearly

not the case here, so w; and wy are linearly independent. Moreover, a list of two vectors can never
span all of R3. More explicitly, w; and wo both have y-coordinate equal to zero, so the same is true

of anything in the span of w; and wy. In particular, [g} is not in the span. This shows that wy

and wy do not form a basis of R3.

The vectors x;, X3 and x3 are linearly independent and span R3, so they form a basis. One way

.. . . 111
to see this is to write down the matrix A = h 10 whose columns are x;, X2 and x3, and observe
that it row-reduces almost instantly to the identity. Alternatively, we must show that for any vector

a= [z} € R?, there are unique real numbers \, j1, v such that

HERHEANEE

This equation is equivalent to A+ py+v =x and A+ pu =y and A = z. It is easy to see that there is
indeed a unique solution, namely A=z and py =y —z and v =x — y.

Exercise 26. Define a map 7: R? — R? by

2e—y—=z :|

m [é} - [\/§(y—2)

Investigate ker(r), image(w), ©*, nn*, 7*7.

Solution: T is surjective, with kernel spanned by [1,1,1]7. We have n7* = 615, and 7*7 = 613 — 27, where
Jij = 1 for all ¢ and j.

10



